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ABSTRACT 

In this paper, the derivation of block procedure for linear multi-step methods (K=2) using the Laguerre 

polynomials as the basis functions was considered. Discrete methods was given which were used in block and 

implemented for solving the initial value problems, being the continuous interpolation derived and collocated 

at grid points. The derived scheme was used to solve some second order ordinary differential equations (ODEs) 

in order to show their validity and accuracy .The numerical results obtained shows that the proposed methods 

are efficient in solving second order ordinary differential equations.  
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INTRODUCTION 

The analytical solutions of ordinary differential equations of the form: 

                          (1) 

have been difficult to obtain, especially when the equation is nonlinear. In order to obtain an approximate solution to the problem, 

numerical methods are resorted to. Also, solutions to differential equations which always occur in series form have been possibly 

obtained in closed forms as a result of numerical methods. Hence, various numerical techniques such as finite difference methods 

(FDM), integral transform methods (ITM) and linear multi-step methods (LMM) have been developed by many researchers to 

provide approximate solutions to both ordinary and partial differential equations. For instance, the power series expansion solution 

in the form of convergent series was considered in (Abualnaja, 2015) to obtain analytical solutions of partial differential equations. 

Also, in Awoyemi (2001), iterative methods were developed for solving initial value problems using approximate solutions with 

series form in terms of parametric form. The methods are always developed based on the nature and the type of the differential 

equation under consideration. 

Ordinary differential equations of higher orders always give rise to discrete variable methods known as the single step and multi-

step methods which are otherwise known as linear multi-step methods. 

The single step methods such as Euler's and Runge-Kutta methods among others are purposely developed to solve first order (IVP) 

of ordinary differential equations. Solving these kinds of differential equations by implementing the single-step methods require 

that the differential is reduced to a system of first order initial value problems (IVP). However, eminent researchers like (Awoyemi, 

2003; Chu & Hamilton, 1987; El-Ajou, Abu & Momani, 2015) have attempted to solve the differential equation using (LMM) 

without reducing to a system of a first order ODEs. 

Moreover, El-Ajou et al. (2015) proposed (LMM) for the first order differential equations in the predictor-corrector mode, using 

the power series as basis function. Continuous (LMM) ensures easy approximation of solution at all points of the integration interval 

(Fatunla, 1994), based on the collocation method, Isamil, Ken, and Othman (2009) proposed a two-step hybrid method for the 

solution of a first order (IVP) at chosen grid points which was implemented on the hybrid predictor-corrector mode. Other 

researchers who also studied the hybrid method include Jator (2007), Jator and Li (2009). The development of a class of methods 

called block method is an outcome of improving the numerical solution of (IVPs) of ordinary differential equations. It was first 

proposed by Kayode (2004), afterwards, many scholars have been working on the implementation of the block methods for the 

numerical solution of ordinary differential equations. Among them are Lambert (1973), Milne (1953), Okedayo, Owolanke, 

Amumeji, and Ogunbamike (2018), Omar and Suleiman (1999, 2003). 

In the recent years, Onumanyi, Sirisena, and Dauda (2001); Sararfyan (1990) proposed five-step and four-step (LMM) respectively 

to obtain a (FDM) as a block for the direct solution of first order (IVP), also, block technique with (LMM) adopting Legendre 
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polynomials as basis function was recently developed by Onumanyi et al. (2001), but the block schemes were not included. Thus, 

in this work, Laguerre polynomial is considered as basis function. 

Abualnaja (2015) developed a block procedure with linear multi-steps using Legendre polynomials but did not include the block 

schemes. Okedayo et al. (2018) made an extension to Abualnaja (2015) work, using Legendre polynomial as a basis function to 

derive some block methods for the solution of first order ordinary differential equation. Okedayo et al. (2018) also worked on the 

same principle using Laguerre polynomials as a basis function to solve the same problems. Thus, in this paper, Laguerre polynomial 

is used as a basis function to derive some block methods for the solution of second order ordinary differential equation, which is 

an extension of Okedayo et al. (2018). 

 

Definition:   Linear Multi-step method 

A LMM with k-step size have the form 

𝑦𝑛 = ∑ 𝑐𝑖𝑥𝑛+𝑖 + ℎ ∑ 𝛽𝑖𝑓𝑛+𝑖

𝑘

𝑖=0

                    

𝑛

𝑖=0

 

Where 𝑐𝑖 and 𝛽𝑗  are constants, 𝑦𝑛 is the numerical solution at 𝑥 = 𝑥𝑛 , 𝑓𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛). If 𝛽𝑘 ≠ 0, the LMM becomes implicit 

scheme, otherwise explicit, (Yahaya & Badmus, 2009). 

Definition:  Zero Stability 

The LMM (1) is said to satisfy the root conditions if all the roots of the first characteristics polynomial have modulus less than or 

equal to unity and those of modulus unity are simple 

Derivation of the Method 

In the derivation of the method, we consider the approximate solution of the form 

    knn

k

i

iik xxxxcxy 



 ,
0

 .                                                                                                               (2)  

                       
n

nnn xcxcc  ...10
 

Then we perturb the equation above, we get: 

     xLyyxfxc k

k

i

ii  


''
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'' ,,         (3) 

Where   kixx i

i ,...,1,0,   and  xLk  is the Laguerre polynomial of degree k, which is defined on the interval  1,1

, and can be determined with the aid of the recurrence formula: 

     1
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Where the first four polynomials are: 
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                              (5) 

In other to use these polynomials on the interval  knn xx , , we define the Shifted Laguerre polynomials by introducing the 

change of variable: 

 
3,2,1,

2



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

 k
xx

xxx
x

nkn

nkn
                                                                                                                           (6) 

 

Specification of the method 

For the derivation at 𝑘 = 2, 

CASE K=2: 

we take the polynomial   242

2  xxxL and use (6), then collocate this equation at 21,  nnn xandxx , we obtain 
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Taking hxxhxxxx nnnnn 2,, 21    
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Collocating (7) at 2,1,0,  ix in and interpolate (2) at nxx   a system of 5 equations is obtain  3,2,1,0, ici  and 

parameter , 
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nxcnxcnxccnya   

          
3

3

2

210 nnnn xcxcxccy                   (9)

          ;33221:
2

nxcnxccnfb                                                                                                        

          
2

321 32 nnn xcxccf                   (10)  

      7)3(622:  nxccnpd   

             762 32  nn xccp                  (11) 
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             hcxccp nn 3322 1262                (13) 

 

Subtract (13) from (12) 

gej :  

36 321   hcpp nn                         (14) 

Subtract (12) from (11) 

)(exp: edandk   
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hcpp nn 31 65                                                                                                                 (15)                                                              

Subtract (11) from (10) 
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Substitute (16) into (15) 
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Substitute (16) and (17) into (11) 







 

 

h

hphppxpxpxhp
c nnnnnnnnn 2121

2

7145835

4

1
                                         (18) 

Substitute (16), (17) and (18) into (10) 
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Substitute (17), (18) and (19) into (9) and using (2), 
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We now use (2), 
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Substitute (17), (18), (19) and (20) into (2) we have, 
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Where 21,,  nnn ppp is the second derivative.    

 The block scheme of case K=2 is therefore: 
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Analysis of the method 

The necessary and sufficient conditions for LMM to be convergent are that it must be consistent and zero stable. 
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Order, Error Constant and Consistency of the Methods 

The schemes developed above belong to the class of the Linear Multi-step Method (LMM) of the form: 

                                                                                (23) 

Equation (23) is a method associated with a linear difference operator 

                                                               (24) 

Where is continuously differentiable on the interval , and the Taylor series expansion about the point x is expressed 

as 

                                      (25) 

Confirming [12], scheme (21) is said to be of order P if and the error constant is . 

Hence, we establish that (21) is of the following order: 

When and  

 

Stability Analysis 

The scheme for K=2 is expressed as: 

 

The first characteristics polynomial of the scheme is: 

 
 

Numerical Experiments 

In order to confirm the accuracy and efficiency of the scheme, we now consider two non-linear initial value problems: Tables 1 

and 2. Where F is the function, N is the number of terms, YEXT is Exact solution of Y, F’ is second derivative of function F and 

YLAG is Laguerre solution of Y. 
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Example 1.    
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Exact solution:         

Table 1: Results and errors of problem 1 for K=2. 

K=2 

N X F YEXT F' YLAG |YEXT-YLAG| 

0 0.52360 0.86603 0.25000 0.09375 0.25000 0.00000 

1 0.57360 0.91162 0.29448 0.12236 0.29342 0.00106 

2 0.62360 0.94810 0.34101 0.15326 0.34022 0.00079 

3 0.67360 0.97511 0.38913 0.18500 0.38862 0.00051 

4 0.72360 0.99237 0.43836 0.21585 0.43814 0.00022 

5 0.77360 0.99972 0.48820 0.24396 0.48827 0.00007 

6 0.82360 0.99708 0.53816 0.26751 0.53852 0.00036 

7 0.87360 0.98448 0.58774 0.28482 0.58838 0.00064 

8 0.92360 0.96204 0.63645 0.29453 0.63736 0.00091 

9 0.97360 0.92999 0.68379 0.29570 0.68495 0.00116 

10 1.02360 0.88865 0.72929 0.28796 0.73159 0.00230 
 

 

 

 

 

Example 2.   

 

  0
2
 yxy                         

2

1
0,10  yy     [2]

 

Exact solution:  

Table 2: Results and errors of problem 2 for K=2 

K=2 

N X F YEXT F' YLAG |YEXT-YLAG| 

0 0.00000 0.50000 1.00000 0.00000 1.00000 0.00000 

1 0.05000 0.47561 1.02501 0.01131 1.02501 0.00001 

2 0.10000 0.45238 1.05004 0.02046 1.04881 0.00123 

3 0.15000 0.43023 1.07514 0.02777 1.07269 0.00245 

4 0.20000 0.40909 1.10034 0.03347 1.09669 0.00364 

5 0.25000 0.38889 1.12566 0.03781 1.12084 0.00482 

6 0.30000 0.36957 1.15114 0.04097 1.14515 0.00599 

7 0.35000 0.35106 1.17682 0.04314 1.16967 0.00715 

8 0.40000 0.33333 1.20273 0.04444 1.19443 0.00830 

9 0.45000 0.31633 1.22892 0.04503 1.21946 0.00946 

10 0.50000 0.30000 1.25541 0.04500 1.24494 0.01047 
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CONCLUSION 

  In this paper, a class of implicit block collocation scheme for the 

direct solution of initial value problems of general second order 

ordinary differential equations was developed using Laguerre 

Collocation approach. The collocation technique yielded a 

consistent and zero stable implicit block multi-step methods with 

continuous coefficients and the method is implemented without the 

need for developing correctors. The derived modified Laguerre 

block scheme was used to solve some second order ordinary 

differential equation given in the table as YLAG which is Laguerre 

solution of Y and the exact solution of the ODEs given as YEXT., 

this was done in order to show their validity and accuracy of the 

derived scheme .The numerical results obtained shows that the 

proposed methods are efficient in solving second order ordinary 

differential equations.  
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