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ABSTRACT 

We study the pair interaction of chemically isotropic active colloidal particles in an externally imposed 

chemical gradient. Colloid particles migrate in response to a gradient of chemical solutes (i.e., via the 

diffusiophoresis mechanism). The particles motion induces fluid flow and distort locally the background 

chemical concentration field. Using the methods of images, we calculate the phoretic inter-particle interaction 

between two symmetric active colloids in the presence of an externally applied gradient. We highlight an 

interesting colloidal dipole that would arise from tuning the surface and chemical activity of the colloids. The 

colloidal phoretic dipoles share similar properties to the electrostatic dipoles. The inter-particle interaction we 

obtained is an important component for a large-scale simulation of the active colloid suspension. It may also 

help towards better understanding of the active systems’ emergent phenomena.  
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INTRODUCTION 

Active (or “Living") matter systems have attracted the 

attention of the scientific community in recent years (S. J. 

Ebbens & Howse, 2010; Golestanian et al., 2007; Howse et 

al., 2007; Kreuter et al., 2013; Moran & Posner, 2017; Palacci 

et al., 2013; Paxton et al., 2005). These active matter systems 

are usually far from equilibrium and they consume energy at 

the level of individual particles rather than driven by energy 

supplied through a boundary. Active matter systems are 

composed of mesoscopic active particles which self-propel 

(or self-rotate) at the individual particle level. Natural 

examples include flock of fish, microscopic living organisms 

such bacteria and other motile single cell organisms. One of 

the widely studied artificial active particles is the half-coated 

platinum polystyrene beads that self-propels in a hydrogen 

peroxide solution (S. Ebbens et al., 2014; Howse et al., 2007; 

Kreuter et al., 2013; Moran et al., 2010; Paxton et al., 2005). 

These systems, both natural and artificial, exhibit interesting 

emergent phenomena such as dynamic cluster formation 

(Buttinoni et al., 2013; Navarro & Fielding, 2015; Theurkauff 

et al., 2012) and motility-induced phase separation (Cates & 

Tailleur, 2015) among others (Eze & Joseph, 2018). 

Experimentally, (Theurkauff et al., 2012) explored the 

behaviour of a two-dimensional dense suspension of 

artificially fabricated active colloids. (Theurkauff et al., 2012) 

half-coated micron sized gold bead with platinum. The 

authors observed emergence of a novel dynamic cluster 

phase, with fluctuating cluster size when the colloids were 

suspended in a hydrogen peroxide (H2O2 ) solution. The 

authors attribute the observed phenomenon to 

diffusiophoretic interaction between the active colloids. An 

interested reader can find a comprehensive review on both 

experiments and theory of such systems by (Bialké et al., 

2015). 

(Soto & Golestanian, 2014) performed extensive molecular 

dynamics simulation of isotropic active colloid particles. The 

authors predicted dynamic self-assembling "molecules" that 

could exhibit novel interaction pattern which breaks the 

action-reaction symmetry we are familiar with from 

equilibrium dynamics. Recent theoretical work in this 

direction continue to further our understanding of these novel 

active materials (Jewell et al., 2016; Negro et al., 2022; 

Wagner et al., 2021). 

Most of the experimentally studied active colloid systems are 

powered by a chemical reaction. Thus, it’s expected that self-

diffusiophoresis could be the dominant propulsion 

mechanism for these systems. Self-diffusiophoresis is the 

migration of a chemically active colloid due to self-generated 

chemical concentration gradient (J. Anderson et al., 1982; J. 

L. Anderson, 1989; Prieve et al., 1984, 1984). Therefore, self-

generated concentration gradient of near-by particles could 

affect an active colloid’s migration apart from hydrodynamic 

interactions. This interaction, originating from the active 

colloid’s chemical concentration profile distortion, is the so-

called phoretic interaction and could be the dominant 

interaction between the active colloids depending on the 

particle’s geometry and surface activity (Ibrahim & 

Liverpool, 2016; Soto & Golestanian, 2014; Uspal et al., 

2015). 

The behaviour of active particles not powered by a chemical 

concentration gradient (e.g., bacteria) are well predicted by 

the squirmer model (Berke et al., 2008; Spagnolie & Lauga, 

2012). The squirmer model is a purely hydrodynamic model 

of an active particle experiencing no body force (i.e., zero net 

force). The model was first introduced by (Lighthill, 1952) 

and later used by (Blake, 1971) to describe the flow field 

generated by a beating cilia of paramecium. Even though the 

squirmer model was successful in describing the behaviour of 

non-chemically powered active particles, it’s rather 

inadequate for describing the behaviour of chemically 

powered active colloids. The interactions between the latter 

are mediated by both hydrodynamic as well as chemical 

concentration gradients. Chemically powered active particles 

pair interactions as well as interaction with bounding surfaces 

are well understood (Ibrahim & Liverpool, 2015, 2016; 

Liebchen & Löwen, 2019; Liebchen & Mukhopadhyay, 

2021; Uspal et al., 2015). 

However, it’s not clear from the literature how the presence 

of an externally imposed macroscopic chemical concentration 

gradient will affect the active colloids pair interactions. 

Therefore, we performed far-field analytical calculations, 

using method of images/reflections techniques, to obtain the 

effects of an external gradient on the active colloid’s pair 

interactions. 

Our main contribution in this work is that: (1.) we found an 

explicit expression for the interaction of the active colloids 

pair and (2.) we found a stable stationary configuration of the 
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active colloids at a fixed separation and orientation relative to 

the direction of the imposed gradient. 

In the next section, we introduce the problem setup and the 

mathematical model. We thereafter describe the method of 

reflections methodology. Finally, we present the results, 

discuss the results implications, and then conclude. 

 

 
Figure 1: The active colloids sketch 

 

THE MODEL 

We consider spherical colloid particles with radius 𝒂𝟏  and 

𝒂𝟐, isotropic chemical activity 𝑨𝟏 and 𝑨𝟐, mobility 𝝁𝟏 and 

𝝁𝟐  suspended in an aqueous solution (see the pair setup 

sketch in Fig. 1). We also assume the solution viscosity is 

~𝟏𝟎−𝟑 𝑷𝒂 ∙ 𝒔 and density ~𝟏𝒌𝒈/𝒎𝟑. Typical size of these 

colloids is ~𝟏 𝝁𝒎 and move with a characteristic speed of 

~𝟏 𝝁𝒎/𝒔. Thus, viscous forces dominate in this regime since 

the Reynolds number (Re) is negligible, Re  ~ 𝟏𝟎−𝟑  ≪ 𝟏. 

Therefore, we model the colloid particles as mesoscopic 

particles immersed in a fluid with dissolved chemical 

molecules. Therefore, we write the continuum conservation 

equations for both mass (reaction-diffusion equations) and 

momentum (Stokes equations) (J. L. Anderson, 1989; Happel 

& Brenner, 1973; Kim & Karilla, 1991). 

Mass conservation: The solute concentration field 𝐜(𝐫) 
satisfy the Laplace equation  

(1.)    𝛻2𝑐(𝑟) = 0 , 
where c(r)  is the chemical concentration profile. The 

chemical activities 𝐴1  particle 1 and 𝐴2  for particle 2 

engenders the boundary conditions 

(2.)  

 
−𝐷 �̂�1 ⋅ 𝛻𝑐 = 𝐴1 at 𝑟1 = 𝑎1 ,
−𝐷 �̂�2 ⋅ 𝛻𝑐 = 𝐴2 at 𝑟2 = 𝑎2 ,

 

on each particle. We note that throughout this article, we 

consider homogeneous surface chemical activities (i.e., 

𝐴1, 𝐴2  are constants). We define the position vectors with 

origins at the particles centre: r1 = r − r01 for particle 1 and 

r2 = r − r02  for particle 2. Also, an imposed macroscopic 

gradient A∞ along the direction êx (see Fig. 1) gives rise to 

the far-field condition 

(3.)   c(r) → c∞ + (A∞/D) êx ⋅
r as r → ∞ . 
Stokes’s flow: The flow field 𝐯(𝐫)   satisfy the stokes 

equations (J. L. Anderson, 1989; Happel & Brenner, 1973) 

(4.)   η ∇2v − ∇p = 0 ,  ∇ ⋅ v =
0 , 
where p(r)  is the pressure field and η  is the dynamic 

viscosity of the fluid. At the surface of the particles, the flow 

field satisfy the boundary conditions 

(5.) 

 
v = U1 + a1n̂1 × Ω1 + v1

s , at r1 = a1 ,

v = U2 + a2n̂1 × Ω2 + v2
s  , at r2 = a2 ,

 

where a1  is the radius of the particle 1, U1  and Ω1  are the 

rigid body linear and angular velocities respectively. The slip 

velocities v1,2
s  are defined v1,2

s = μ1,2(𝟙 − n̂1,2⊗ n̂1,2) ⋅ ∇c 

with μ1,2  being the mobilities for particle 1  and particle 2 

respectively. In addition, the fluid is quiescent far from the 

particles, i.e. 

(6.)  v → 0 , as r1, r2 → ∞ . 
The system of equations (1-6) is not closed because the rigid 

body velocities U1,2 and Ω1,2 are not known, and in fact they 

are the subject of the analysis. Therefore, to close the system 

of equations we note that the net force and torque on the 

particles vanishes (J. L. Anderson, 1989): 

(7.) 

 
Fk = ∯Π ⋅ n̂k dSk = 0 , k = 1,2 ,

Ωk = ∯a1n̂1 × (Π ⋅ n̂k) dSk = 0 , k = 1,2 .
 

Note that ∯  is a particle surface integral and Π  is the 

Newtonian stress tensor for incompressible fluid defined as 

(8.)  Π = −p𝟙 +
η

2
(∇ ⊗ v + (∇⊗ v)T) , 

where 𝟙 is the 3 × 3 unit matrix and ⊗ is the tensor product. 

 

THE METHOD OF REFLECTIONS 

The goal of the analysis is to obtain equations of motion for 

the colloid particles. Dynamical behaviour of the particles 

could then be deduced by solving the resulting dynamical 

system. Therefore, the equations of motion are obtained from 

the approximate solution of the mass and momentum 

conservation equations using the method of 

reflections/images. 

We briefly describe the method of images/reflections in this 

section. Interested reader may find the detailed derivation and 

discussion of the singularity solutions for the flow field in 

(Ibrahim & Liverpool, 2016; Spagnolie & Lauga, 2012). 

Also, extensive discussion on the image singularities for the 

chemical concentration field could be found in (Ibrahim & 

Liverpool, 2015, 2016), which are articles co-authored by one 

of the authors here. 

It’s noteworthy that both the mass conservation equation (1) 

and the stokes equations (4) for the momentum conservation 

are linear. We can therefore employ the method of reflections 
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to obtain approximate solution to the equations (1) and (4). 

This method has its origin in solving electrodynamics 

problems, but now adopted for hydrodynamic problems 

(Andelman, 2004; Ibrahim & Liverpool, 2015). 

Now, to simplify the presentation, we describe the procedure 

of obtaining the flow and chemical concentration fields from 

particle 1. However, similar procedure applies for particle 2. 

Therefore, since both the mass and momentum conservation 

equations are linear, let’s then assume that the concentration 

and the flow fields can be written as the superposition of 

fields that each solves a simple sub-problem together with its 

associated boundary condition. i.e. 

(9.)  
c(r) = c(0)(r) + c(1)(r) + ⋯ 

v(r) = v(0)(r) + v(1)(r) +⋯  ,
 

where c(0)(r) consist of a sum of singularity solutions that 

satisfy independently the boundary conditions on the surface 

of the particles and the imposed concentration gradient (eqn. 

3).  equation for  c(0)(r) is then solved for particle 1, together 

with the corresponding boundary condition on the particle 1 

in isolation. Then, this chemical field emanating from particle 

1 will not satisfy the boundary condition on particle 2. To 

correct for this, another singularity solution, c(1)(r) , 

satisfying the Laplace equation is placed at the centre of 

particle 2. The procedure is repeated, swapping particle 1 with 

particle 2. We report the resulting solution of this procedure 

from both particles 1 and 2 in the next section. 

 

RESULTS 

In this section, we highlight the main results of our analysis. 

First, we present the approximate solutions for both the mass 

and momentum conservation equations and then 

subsequently present the resulting rigid body dynamical 

equations for the particles. 

Concentration field: To obtain the concentration profile, we 

solve the coupled diffusion equations (1) subject to the 

boundary condition on both the particles surfaces (eqns. 2 and 

5) and the far-field condition (eqn. 3). Using the method of 

images/reflections (briefly described above), we obtain the 

leading order chemical concentration field to be 

(10.)  c(r) = c∞ +
A∞

D
êx ⋅ r +

A1a1
2

D r1
+
A2a2

2

D r2
+

a1
3

2D r1
2w2 ⋅ r̂1 −

a2
3

2D r2
2w1 ⋅ r̂2 , 

where we define w1 = A∞ êx − (A1a1
2/L2)L̂  and w2 =

A∞ êx + (A2a2
2/L2)L̂. A dimensionless plot of the chemical 

field above for 𝐴∞/𝐴0  = 1 can be found in Fig. 4. 

Flow field: Similarly, the Stokes equations (4) are linear, and 

we can also iteratively solve an amenable set of simple 

problems; each solution satisfying a boundary condition on 

an active particle surface (see the brief description of the 

method of reflections above). Combining the leading order 

multipole solutions gives the fluid flow field due to the 

chemical concentration gradient 

(11.)  v(r) =
1

2
(3

r1⊗r1

r1
5 −

𝟙

r1
3) ⋅ U1 +

1

2
(3

r2⊗r2

r2
5 −

𝟙

r2
3) ⋅ U2 

where we note that ⊗  is the tensor product. A two-

dimensional slice of the streamlines of this flow field for 

𝐴∞/𝐴0  = 1 has been plotted in Fig. 2 (masking particle 2) 

and Fig. 3 (for both the particles). 

 
Figure 2: Active colloid (single) particle flow field 
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Figure 3: Active colloids dipole flow field, v(r) 

 
Figure 4: Active colloid dipole concentration field, c(r) 

   

Rigid body motion 

Substituting the chemical concentration field (eqn. 10) and 

the flow field (eqn. 11) into the force and torque balance 

equations (eqn. 7), we obtain the rigid body motion 

(𝑼𝟏, 𝛀𝟏, 𝑼𝟐, 𝛀𝟐)  of the active colloids. In the laboratory 

frame of reference, the origin 𝑂  in the sketch (Fig. 1) is 

stationary and the rigid body velocities for the two active 

colloid particles are 

(12.)  
U1 = −

𝜇1

3𝐷
(𝐴∞ �̂�𝑥 +

𝐴2𝑎2
2

𝐿2
�̂�)  ,

U2 = −
𝜇2

3𝐷
(𝐴∞ �̂�𝑥 −

𝐴1𝑎1
2

𝐿2
�̂�)  .
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Figure 5: Active colloids pair separation with external field strength. 

 

Here, due to the active colloid’s symmetry, chemical activity 

homogeneity (constant 𝑨) and mobility isotropy (constant 𝝁) 

of the particles, the angular velocities vanish, i.e., 𝛀𝟏 =
𝟎 ,  𝛀𝟐 = 𝟎 . Note that, neglecting Brownian motion, a 

chemically isotropic active colloid is stationary (immobile) if 

it’s isolated from any other particle and no external chemical 

gradient. That is, these particles, unlike half-coated Janus 

particles with chemical anisotropy on their surfaces, do no 

self-propel, but rather becomes mobile only in response to 

chemical gradients generated by other particles and/or 

external potential gradients. 

 

Pair centre of mass and relative position evolution 
We define the displacement between the two active colloids 

as 𝐋 (see the sketch in Fig. 1). Therefore, the pair separation 

𝐋 = 𝐫02 − 𝐫01  and the center of mass Rcm = 𝐫02 + 𝐫01 

evolves according to the equations 

(13.)  
𝑑

𝑑𝑡
𝐋 = U2 − U1 and 

𝑑

𝑑𝑡
Rcm = U2 +

U1 . 
From the above equations (12 and 13) we obtain the main 

contribution of this paper: 

(14.) 

 
𝑑

𝑑𝑡
L =

(𝜇1−𝜇2)

3𝐷
𝐴∞ �̂�𝑥 +

(𝜇1𝐴2𝑎2
2+𝜇2𝐴1𝑎1

2)

3𝐷𝐿2
L̂ . 

This equation gives an inter-particle interaction between the 

colloid particles that could then be used in molecular 

dynamics simulations. Therefore, the main parameters 

controlling this pair interaction are the active colloid’s surface 

chemical activity 𝐴1,2, mobilities 𝜇1,2 and sizes 𝑎1,2. Note the 

quadratic dependence of the interaction with the pair sizes. 

This is reminiscent of the high surface-to-volume ratio of 

these active colloids with microscopic dimensions. 

Henceforth, we consider particles with their chemical 

activities 𝐴1 = 𝐴2 =  𝐴0 (a constant), radius 𝑎1 = 𝑎2 = 𝑎 (a 

constant) and their mobilities |𝜇1| = |𝜇2| = 𝜇0 > 0  (a 

constant). Now, we have a natural length scale in the system, 

the particle radius 𝑎. Then, the dimensionless inter-particle 

separation is 𝓵 = 𝐋/𝑎 while the dimensionless speed is 𝑈∗ =
(𝜇0𝐴0/3𝐷)  such that 𝒰1 = 𝐔1/𝑈

∗ , 𝒰2 = 𝐔2/𝑈
∗  and the 

dimensionless time 𝜏 = 𝑎/𝑈∗. Therefore, the evolution of the 

pair of particles separation 𝓵  can be computed from the 

dynamical equations 

(15.)  

𝑑ℓ

𝑑𝜏
= �̂� ⋅ (𝒰2 −𝒰1) ,

𝑑�̂�

𝑑𝜏
= (𝟙 − �̂� �̂�) ⋅ (𝒰2 −𝒰1) .

 

In the same vein, we define the pair centre of mass as ℛcm =
𝐫01 + 𝐫02 and therefore evolves according to the dynamical 

equations 

(16.)  
𝑑

𝑑𝜏
ℛcm = 𝒰1 +𝒰2 . 

Therefore, we can write the dimensionless equations for the 

inter-particle separation, 𝓵, the pair center of mass, ℛcm and 

the relative rotation of the two particles as follows: 

(17.)  
𝑑

𝑑𝜏
ℛcm = 𝟎 , 

for the centre of mass. This implies that two particles will 

Defining �̂� = (cos𝜃,sin𝜃, 0), 

(18.)  

𝑑ℓ

𝑑𝜏
= 2�̃�∞ �̂�𝑥 ⋅ �̂� −

2

ℓ2
 ,

𝑑𝜃

𝑑𝜏
= −2

𝐴∞

ℓ
sin𝜃 .

 

where �̃�∞ = 𝐴∞/𝐴0 . Note that we ignore the Brownian 

random fluctuation contribution in the equation above. This 

is to allow us to study, in isolation, the competing effects of 

the external chemical gradient and the phoretic interaction 

effects. In the steady state, the time derivatives vanish, and 

the particles relative position and orientation are fixed and 

given by 

(19.)  (ℓ∗, 𝜃∗) =

{
 

 (√�̃�∞ ,  0)  , if �̃�∞ > 0

(√−�̃�∞ ,  𝜋)  , if �̃�∞ < 0

 . 

This implies the pair will form a dipole with a fixed separation 

ℓ∗ . Linear stability analysis shows that this fixed point is 

stable. 

 

DISCUSSION 

We have calculated the interaction of chemically isotropic 

active colloid particles in an external chemical concentration 

gradient. Further analysis of the resulting dynamical system 

(eqn. 18) shows that a stable configuration of the pair of active 

colloids is formed for a chosen combination of the particles 

physico-chemical parameters. To isolate the effects of the 

chemical gradient and the hydrodynamic flow fields, we 

neglect the background Brownian motion of the particles in 

the dynamical equations (18). 

This interesting result comes from the balance of different 

competing effects. First, we have the hydrodynamic 

interaction that, to the leading order, decays as 1/𝑟3 source-

dipole singularity field (see eqn. 11) (Ibrahim & Liverpool, 

2016; Spagnolie & Lauga, 2012). Secondly, the phoretic 
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interaction between the pair of particles decays much slowly 

as 1/𝑟2 via the surface slip velocity on each of the particles 

(see eqn. 5). The last contribution comes from the 𝑂(1) 
external chemical gradient induced migration of the active 

colloids (see eqn. 12). 

These competing effects leads to the formation of the stable 

dipole configuration of the pair of active colloids (eqn. 19). It 

is important to note that this behaviour is beyond the scope of 

the simple hydrodynamic squirmer model since the phoretic 

interaction is a distinct physical mechanism. This highlights, 

once again, the importance of accounting for the phoretic 

interaction for these active systems. Another noteworthy 

observation is the fact that in the absence of the externally 

imposed chemical gradient, the active colloids will either 

coalesce or disperse depending on the physico-chemical of 

the particles (Buttinoni et al., 2013; Soto & Golestanian, 

2014). 

(Soto & Golestanian, 2014) performed extensive molecular 

dynamics simulations for a large collection of similar active 

colloids to the model system we study in this article without 

the external chemical gradient. The authors predicted, 

depending on the properties of the active colloids, the 

formation of self-assembling colloidal ‘molecules’ that 

dynamically merge, break, rotate and sometimes shows 

persistent linear motion in addition to the Brownian random 

motion. Thus, this articles’ prediction of active colloids 

dipole formation could expand the range of possible emergent 

structures that may arise from a large of such particles. The 

multitude of emergent dynamic structures arising the 

competition between the hydrodynamic and phoretic effects 

points to the potential role that chemically powered active 

colloids might play in the future design of smart materials.  

The calculated inter-particle interaction between the two 

active colloids with respective mobility μ1,2 , chemical 

activity A1,2 and radii a1,2 (see Figure 1) could be employed 

in a molecular dynamics simulation for understanding the 

collective behaviour of novel active colloids suspension. 

Carefully chosen physico-chemical properties of the active 

colloids, we predict a formation of a stable dipole of pair of 

active colloids having fixed separation and orientation 

relative to an external chemical gradient (see eqn.  19 and Fig. 

5). This could provide an additional chemical control 

mechanism for artificially synthesised active matter systems. 

 

CONCLUSION 

We have studied the interactions of chemically active colloid 

particles in the presence of an externally imposed gradient. 

We obtained explicit inter-particle interactions for the active 

colloids. Choosing a combination of the colloids’ physico-

chemical properties, we found that a pair of chemically active 

colloids could form a stable dipole with a separation that can 

be controlled with the strength of the external chemical 

gradient. This, perhaps, could be a plausible route to control 

a self-assembling smart material composed of chemically 

active colloids. In addition, these results could help in 

understanding emergent phenomena of the active colloid 

systems. In future work, it will be interesting to investigate 

the complex behaviour of a large collection of such active 

colloids in the presence of the external chemical gradient via 

molecular dynamics simulation. 
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