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ABSTRACT 

The classical definition of magic square of order 𝑁 is a square array of consecutive natural numbers from 1 to 

𝑁2 such that the raw, column and diagonal sum add up to the same number. When the magic square entries 

are considered as an array of masses of a rigid body, it is established that its moment of inertia is a function of 

𝑁. This work consider a more general magic array of masses of a rigid body to establish its inertial moment as 

a function of the magic sum and the central entry of the array. The paper further discusses the advantage of 

this development.  
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INTRODUCTION 

Magic square is a square matrix array of numbers consisting 

of a distinct positive consecutive integers 1,2,3,……  𝑁2 , 

arranged such that the sum of the numbers in any horizontal, 

vertical,or main diagonal line is always the same number, 

(Martin, 2014). Magic squares are categorised in to five major 

types: Normal magic square, Even/Odd Order magic square, 

Doubly Even magic squares, Singly even magic squares, 

Pandiagonal magic squares, Regular magic squares 

(Pickover, 2002).  

 

Figure 1:  A magic square array of consecutive natural 

numbers with magic sum 15. 

 

Magic squares of order N having entries 1,2, … , 𝑁2 such that 

the sum of all entries along the raws, columns and main 

diagonals are equal to the magic constant of the square, where 

studied as an array of masses by Loly, (2004). This 

communication extends the work of Loly, (2004) to consider 

a more general magic squares (Ward, 1980) of order 3 with 

entries  from a set of real numbers that is 𝑎𝑖𝑗𝜖 𝑅 . The 

littereture on magic square array of real numbers were mostly 

develop to establish a vector space for a general collection of 

magic square arrays (Cross, 1966; Eperson, 1962; Holmes, 

1970; Mayoral, 1996; Ward, 1980). Moment of inertia was 

instrumentally incorporated in mathematical derivation of 

Rayleigh beam with damping coefficient in the work of 

Usman et al., (2020). 

Consequently, the magic array was interpreted in this work to 

have entries as masses of a rigid body proportional to real 

numbers that form a magic square array.  Thus, we derived 

the moment of inertia about the centre of the magic square 

which is the axis of rotation of the magic array of masses as 

function of the magic sum and the central entry of the magic 

array. The scalar moment of inertia 𝐼𝑠 is found by summing 

mr2 for each entry of the real number in the magic square 

where m is the mass of the real number and r is the distance 

of the real number from the axis of rotation (centre of the 

magic square). The result of this research work provides a 

great example of the properties of the inertia tensor in the field 

of classical mechanics and extend the real life application of 

magic square other than its conventional recreational 

purposes. 

 

METHOD AND MATERIALS 

In this section, we introduce the principal concepts that are 

necessary in the derivation of the result presented and more 

elaborate analysis on the consequence of the result. 

 

Kinetic Energy (K.E.) 

An object's kinetic energy is the energy it possesses as a result 

of its motion(Jain, 2012). In this case the work required to 

accelerate a given mass body from rest to its stated velocity. 

Unless the body's speed changes, it retains its kinetic energy 

after gaining it during acceleration. 

 

Moment of Inertia of Rotational Kinetic Energy 

 Moment of inertia refers to a measure of a body's propensity 

to resist angular acceleration is the sum of the products of the 

masses of all of its constituent particles and their squares of 

distance from the axis of rotation (Marion & Thornton, 1995). 

Consider a rigid body rotating about a fixed axis O and made 

up of masses 𝑚1, 𝑚2, … , 𝑚𝑛  each having distances 

𝑟1, 𝑟2, … , 𝑟𝑛  respectively from axis of rotation (Fig. 2. ) 

(Kashimbila, 2003). 
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Figure 2:   Rigid body rotating about an axis O 

 

The kinetic energy (K.E) for each mass is respectively given by 

𝐾𝐸1 =
1

2
𝑚1𝑣1

2,  

 𝐾𝐸2 =
1

2
𝑚2𝑣2

2, 

 .  

.  

., 

 𝐾𝐸𝑛 =
1

2
𝑚𝑛𝑣𝑛

2 

where, 𝑚1,𝑚2, … , 𝑚𝑛 are masses that made up the rigid body and   𝑣1, 𝑣2, … , 𝑣𝑛  as their linear velocities respectively. 

The total kinetic energy 𝐾𝐸𝑇 of the rigid body is given by 
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But, 𝑣 = 𝑟𝜔, where, 𝑣  is the linear velocity and 𝜔 is angular velocity. So, 
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 where 𝐼  is the moment of inertia, with 

 
    𝐼 = ∑ 𝑚𝑖𝑟𝑖

2
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(2) 

Magic Square 

A classic definition of magic square of order N as a square 

array of numbers consisting of the distinct positive integers 

(1,2,3,  …. N2) arranged such that the sum of the  ‘N’ numbers 

in any horizontal, vertical, main diagonal and anti-diagonal  

line is always the same number (Martin, 2014). In a more 

elaborate mathematical form, magic square in its perfect form 

refers to a square array of 𝑁2  boxes (cells) filled with 

consecutive numbers from 1 to 𝑁2 such that the row sums, 

column sums and diagonal sums of the entries are all equal to 

the same number called magic sum 𝑆. 
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Figure 3: A) Magic square with natural number entries and B) A magic square array of masses as entries. 

 

RESULTS AND ANALYSIS 

Moment of Inertia of Magic Square 

The moment of inertia of a magic square of order 3 with magic 

sum S and entries 𝑚𝑖,𝑗 ∈ 𝑅,  (𝑖, 𝑗 = 1,2,3) can be described 

using the illustration in fig2. The axis of rotation is cantered 

at the central cell of the magic square with mass 𝑚22 of 0 unit 

radius away from the centre. The perpendicular cells with 

masses 𝑚12, 𝑚21, 𝑚23 and 𝑚32 respectively positioned at the 

centre of their corresponding cells were 1unit radii away from 

the centre of the magic square. The diagonal cells with masses 

𝑚11, 𝑚13, 𝑚31 and 𝑚33 which are respectively positioned at 

the centre of the cells were all √2units radii away from the 

centre of the magic square.  The 1unit radii 𝑟𝑝  were 

represented with straight lines of fig.3 while √2units radii 𝑟𝑑 

were represented with broken lines of fig.3. The diagonal 

distance of √2units is arrived at using a Pythagoras theorem 

that relates the blue and the red lines.  
 

Figure 4: Description of magic square array of masses, m,ij , 

i,j=1,2,3 and respective distances away from center. 

 

Now, if we rotate the magic square array of masses around its axis of rotation (centre of the magic square), then the moment 

of inertia of a magic square is given by 

Theorem 1.0: Let the entries of order 3 magic square be an array of masses 𝑚𝑖𝑗 with their respective distances as describe in 

Figure 4. Then the moment of inertia of order 3 magic  square array of masses is given by 𝐼𝑠 = 5𝑆 − 3𝑚22, where S is the 

magic sum and 𝑚22 is the central mass in the magic array of masses. 

 Proof: 

  Relating the array in Figure 4 and derivation of general moment of inertia in 

  Equation (1), we can define moment of inertia of the array as follows. 
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 = (𝑆 − 𝑚22) + 𝑆 + 𝑆 + (𝑆 − 𝑚22) + (𝑆 − 𝑚22) 

 = 5𝑆 − 3𝑚22 
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Hence, the moment of inertia of order three magic square array of masses is five times  the magic sum 𝑆 minus 3 times the 

central mass 𝑚22. This is mathematically given  by. 

 𝐼𝑠 = 5𝑆 − 3𝑚22 (2) 

Discussion of Result 

The result in Theorem 1.0 simplifies the computational 

requirement of estimating a moment of inertia of a magic 

array of masses from computational requirement of the series 

estimator in Equation (1) to a simplified version of estimator 

in our result of equation (2) which require a linear 

combination of magic sum S and the central entry of the array. 

To this note, we can as well observe the following real-life 

application of the magic square array of masses and the 

proposed estimator of its inertial moment. 

 

Figure 5: Particles and springs system of a 3 x 3 magic square array of masses 

 

Application in a System of Particles and Springs. 

Suppose we have 𝑛2 discrete array of masses and 2(𝑛2 − 1) 

identical springs vibrating system which construct a system of 

particles of magic squares array of masses. In particular, for 

the system in Figure 5, we have 9 masses which connect to 

each other by 16 springs for the first step. The initially 

conditions for these oscillators can be describe as follows, 

(i) The two-dimensional coordinates. 

(ii) Masses form an array mass of magic squares. 

(iii) The given springs constant are K. 

(iv) Center of mass along with geometrical center of the 

system coincide and are constant. 

(v) The viscous or frictional forces effects or external 

gravitational fields are negligible. 

If the system is magic square array of order 3, we then have a 

system with 3 constants of the motion in minimum, namely, 

the vertical and horizontal linear momentums and also the 

angular momentum. In this case the three of the frequencies 

vanish from 18 modes of oscillation. To illustrate, these three 

zeroes result from symmetry on shift and transference in two 

directions at the system's plane and symmetry on rotation 

about the plane's perpendicular axis. The inertial moment of 

the system can be derived from the magic sum of 15 units and 

central mass of 5 units using Theorem 1.0 of our result giving 

by  

𝐼𝑠 = 5𝑆 +  𝑚22 = 5 × 15 + 5 = 80 

However, a specific physical application of a magic square 

array described above can be seen in a clutching system such 

that the clutch plate (disc) which is arranged in such a way 

that the springs form an array of objects positioned at equal 

distances from one another. The clutch serves as a mechanical 

link between the engine and transmission, disconnecting or 

separating the engine from the transmission system for a brief 

period of time. When the clutch pedal is depressed, the drive 

wheels are disconnected, allowing the driver to change gears 

smoothly. In a torque controlled drill, for example, one shaft 

is driven by a motor and the other by a drill chuck. A clutch 

connects the two shafts, allowing them to be locked together 

and spin at the same speed (engaged), locked together but 

spinning at different speeds (slipping), or unlocked and 

spinning at different speeds (disengaged). 

CONCLUSION  

In this paper an expression of moment of inertia for a magic 

square array of masses was derived. We first consider 

transforming non-unit entities of numbers to masses in a 3 x 

3 magic square. Then the magic array of masses was assumed 

to be that of a rigid body rotating about a fixed axis. 

Consequently, the derived expression has simplified the 

computational requirement of finding the moment of inertia 

of a rigid body with magic array of masses by simply using 

the magic sum S and the central mass m22 located at the centre 

of the body. The formulation has provided a great example of 

the properties of the inertia tensor in the field of classical 

mechanics and extend the real life application of magic square 
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other than its conventional recreational purposes. 

Generalization of the formulation for order n magic square 

array of masses of a rigid body will be an interesting future 

research to consider. 
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