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ABSTRACT 

Geospatial analysis of road traffic crashes seeks to identify or detect areas of road safety concerns. This paper 

adopted the number of fatalities per crash to mine for any underlying patterns in road traffic fatality rates in 

states in Nigeria for the period 2005 – 2018. Four temporal periods were used for the study: 2005-2018, 2005-

2009, 2010-2014 and 2015-2018. These data sets were analyzed using the Moran’s I and Getis-Ord statistics. 

The global Moran’s I results showed that the periods 2005-2018, 2005-2009 and 2015-2018 had a cluster of  

fatality rates in Nigeria. Spatial distribution of rates for 2010-2014 were however random. Getis-Ord General 

G statistics also found cluster in 2005-2018 and 2015-2018 distributions but 2005-2009 and 2010-2014 had 

random distributions. Anselin’s Moran’s I statistics indicated significant positive spatial autocorrelation for 

road traffic fatality rates for Kwara and Kogi states (2005-2009), Yobe and Jigawa (2010-2014) and Katsina, 

Kano, Bauchi and Rivers (2005-2018) while Delta state showed significant negative spatial autocorrelation 

(2015-2018). Getis-Ord Gi* results detected that the region of significant fatality rates was in the northern states 

especially of Katsina, Yobe, Jigawa, Kano and Bauchi, which show up more frequently in the study periods. 

Rivers and Abia states showed up as cold spots. The results generate several opportunities for closer scrutiny 

of road traffic crash data, for policy and legislation formulation to mitigate road traffic fatalities.  
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INTRODUCTION 

Road traffic crashes (RTC) are among the world’s leading 

causes of death. The World Health Organization (WHO, 

2018) reported that approximately 1.35 million people die 

annually from RTC globally. Most of these people, 

invariably, are in developing countries of the world. 

According to WHO (2015) the less developed countries of 

South Asia, Africa and Latin America collectively accounted 

for more than 90% of global road traffic fatalities. Nigeria has 

one of the highest rates of road traffic fatalities (RTF) in the 

world, about 1,042 fatalities for every 100,000 vehicles 

compared to 15 and 17 deaths per 100,000 vehicles for United 

States and Britain, respectively (Onyemaechi & Ufoma, 

2017). Records released by the Federal Road Safety Corps 

showed that between 1960 and 2017, Nigeria recorded 

1,134,760 crashes which resulted in 356,082 deaths. This is 

unacceptably high.  

Over the years, researchers have mined road traffic data to 

gain better insight and understanding into the nature of the 

road traffic crashes problem in Nigeria. Such insights would 

provide informed and firm bases for developing strategies 

that would be effective to address the problem. There is 

increasing evidence to show that many current RTC 

researchers favour the employment of geospatial techniques 

to examine the different ramifications of the RTC problem. 

This approach generally utilizes spatial and temporal 

dimensions of the crashes to discern hidden patterns in the 

data.  

It is clear that road traffic crashes are spatial and temporal 

phenomena (Whitelegg, 1987). Spatially, each crash occurs at 

a given location, which may or may not (i.e., the location) 

have contributed to the crash itself. For example, it is 

common knowledge that road characteristics, such as 

sinuosity, curvature or grade are responsible for many road 

crashes and fatalities. These factors are location specific and 

therefore may be part of the spatial contributors to crashes. 

This forms the basis for the identification of crash blackspots 

or hot spots. Secondly, all crashes occur at a particular time. 

Time could be measured in terms of the hour of the day, the 

day of the week, week of the month, month of the year and/or 

season of the year or even a group of years as well. Both 

spatial and temporal dimensions therefore are important, 

which increases the appeal of the geospatial methodology. 

There are two basic thrusts to the geospatial methodology: the 

employment of disaggregated or aggregated methods 

(Sengupta, Gayah & Donnell, 2021). When point-specific 

data on crash locations are available, disaggregated 

techniques may be employed to decipher any patterns in the 

distribution of crash locations. One of the most popular of 

these techniques is detection of crash blackspots (Erdogan, 

2009). In the absence of such data, however, several forms of 

aggregation may be used including street or route level 

(Bombom & Edino, 2009), or an area unit such as states 

(Osayomi & Areola, 2015). The disaggregated method allows 

for local or location-based remedial measures to be deployed, 

while the aggregation method provides opportunities for 

much larger and holistic action to be taken in identified road 

safety-deficient areas. Some of these may include policy and 

legislation reformation. Another advantage of the areal unit 

analysis is the capacity to study regional differences that may 

be hidden in the data. It is necessary for devising preventive 

and remedial measures at a larger scale, with the potential for 

large scale reductions in road traffic crashes and fatalities. 

This study explores the road traffic crash data for significant 

disparities in fatalities in Nigeria using GIS capabilities. Most 

geospatial analyses of traffic crash data employ the traditional 

crash rates that use population or vehicle miles or number of 

registered vehicles as a standardization factor (Erdogan, 

2009; Osayomi & Areola, 2015). This paper adopts the 

number of fatalities per recorded crash as road traffic fatality 

rate. This fatality rate has the potentials to highlight 

significant road safety deficit areas that require attention and 

shed new light, insight and perspective on the scandalously 
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high RTF statistics in Nigeria, and what the implications are 

for road safety in Nigeria. 

 

METHODS 

Study design 

Road traffic crash data were obtained from the Federal Road 

Safety Corps (FRSC) Headquarters, Abuja. The data were 

already spatially aggregated based on the thirty six states of 

Nigeria and the Federal Capital Territory, Abuja for the 

period 2005 to 2018. The state level is the most common 

spatial level of aggregation for RTC in Nigeria. Information 

provided include total number of crashes, number of fatal, 

serious and minor road crashes, number of persons killed 

(RTF) and injured (RTI), total number of casualty and 

number of people involved in the RTC.   

 

   
   Figure 1: States of Nigeria and the FCT   Figure 2: Total Number of Crashes 2005-2018 

 

Though some studies have employed frequency data on RTC, 

RTF and RTI to analyze spatial patterns (Erdogan, 2008; 

Osayomi & Areola, 2015; Wang, Yi, Chen, Zhang and Qiang, 

2021), many others use some forms of rates of RTC, RTF and 

RTI. This requires that the frequencies be normalized by 

some standard factor, the most popular being population, 

number of vehicle miles travelled (VMT) and number of 

registered vehicles (usually the rate is measured per 100,000 

units of the standard factor, e.g. number of deaths per 100,000 

persons or VMT). To calculate such a road traffic fatality rate, 

the following formula is used (Erdogan, 2009): 

𝑅𝑇𝐹 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑏𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) =
(100,000∗𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛ℎ𝑎𝑏𝑖𝑡𝑎𝑛𝑡𝑠 
                       (1) 

This is a necessary step to normalize the frequencies by some 

standardized factor that would allow for comparisons 

between units of analysis, which have disparate 

characteristics.  

Erdogan (2009), however, noted that the aforementioned 

commonly used rates are not true rates. For example, 

normalizing the frequency of RTC by population does not 

account for the fact that not all people that make up the 

population have the same exposure to RTC. While many 

people travel long distances every day to work and for other 

purposes, others travel very short distances or not all. Cars 

registered in one state may not even be used in that state, 

which means that the number of cars registered in a given 

state is not a true reflection of the number of cars in use in 

that state at any given time. Despite this concession, there is 

a general agreement that crash rates provide clear insights into 

hidden patterns inherent in RTC data and may resolve an 

important question as to whether the number of crashes 

recorded are ‘inflated’ or ‘deflated’ values based on other 

parameters of exposure to RTC risks.  

This study adopts the number of RTC as the risk factor to 

normalize or standardize frequency of RTF in Nigeria. In 

each state, the frequency of RTF is divided by the number of 

RTC. First, this is a true rate. It measures the rate (and 

therefore risk) of death for every RTC recorded in the state, 

which is important because RTF only occurs when there is a 

RTC. Secondly, in more developed countries of the world, the 

RTF to RTC ratio is very low compared to those of 

developing countries such as Nigeria. This means that a 

higher frequency of RTC does not necessarily translate to a 

higher frequency of RTF. This may point to other 

contributory factors of RTF, such as the health of the vehicles, 

driving behavior and availability as well as accessibility to 

transportation and health infrastructure. Additionally, 

normalizing RTF by RTC is a simple but effective measure to 

explore any patterns of RTF at an aggregated level. This 

would allow for new perspectives to be developed, new 

hypotheses to be formulated and new insights into the 

relationship between RTC and RTF. All these are important 

to further the cause of prevention or mitigation of RTC and 

RTF in Nigeria. 
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 Figure 3: Number of Fatalities, 2005 – 2018     Figure 4: Fatality per Crash, 2005-2018 

 

The study analyzed the data for the time period 2005 – 2018. 

It then decomposed the data into three temporal periods: 2005 

– 2009; 2010 – 2014; and 2015 – 2018. ArcGIS 10.3 was the 

medium of data analysis. There are two groups of methods in 

ArcGIS to determine and measure strength of spatial 

clustering of aggregate areal data. These are global and local 

spatial autocorrelation methods.  

Spatial autocorrelation 

Spatial autocorrelation examines the extent to which a 

variable is correlated with itself. It is the concept captured as 

the First Law of Geography: ‘Everything is related to 

everything else but near things are more related than distant 

things’ (Tobler, 1970). If any systematic patterns of 

distribution exist for a given variable, it is said to be spatially 

autocorrelated. Neighboring areas with similar values of the 

variable are said to exhibit positive spatial autocorrelation 

irrespective of whether the values are positive or negative. 

Negative spatial autocorrelation therefore exists when an area 

of high or low values is surrounded by neighbors of dissimilar 

values. Random patterns show no spatial autocorrelations.  

Spatial autocorrelation is important because crashes are not 

independent occurrences (Levine, Kim & Nitz, 1995; 

O’Sullivan & Unwin, 2003). Crashes are known to cluster 

along road segments and even in areas based on zonal 

characteristics, such as density of roads and cars, socio-

economic activities, and population sizes among others. 

These characteristics exert a lot of influence on traffic 

generation and attraction, without which crashes would 

hardly occur. 

There are several methods for calculating spatial 

autocorrelation. The Moran’s Index and the Getis-Ord Index 

are two commonly used methods to analyze crash data 

(Erdogan, 2009; Osayomi and Areola, 2015). They are similar 

in many respects but have a fundamental difference. Both 

indices detect the presence of clusters of crashes (or other 

variables) in the distribution. Each polygon, referred to as a 

feature, has a value of the variable of interest (here, rate of 

fatalities). Each feature is surrounded by other features that 

share boundaries with it. Collectively, these features 

constitute a neighbourhood. The indices both calculate the 

average of the neighbourhood of each feature and assigns the 

value to it. Whereas Getis-Ord index computes the average 

based on the values of all features in the neighbourhood 

including the reference feature, the Moran’s I index excludes 

the reference or core feature from the computation of the 

average of values of its neighbourhood. The identity of a 

feature as a hot spot therefore does not necessarily mean it has 

the highest values of the incident since it represents a 

neighbourhood rather than the feature alone and which 

differentiates the neighbourhood from others in the study 

area. 

There are two basic forms of these models: global and local. 

The global model computes and returns only a single value, 

which determines whether the distribution of incidents is 

clustered. It is unable to identify the areas or locations where 

the variables are clustered or where spatial autocorrelation is 

significant (Nicholson, 1999). The global index is therefore 

limited in its output.  

 The global Moran’s I global index is represented as: 

𝐼 =
𝑁 ∑ ∑ 𝑤𝑖𝑗(𝑋𝑖−�̅�)𝑁

𝑗=1 (𝑋𝑗−�̅�)𝑁
𝑖=1

(∑ ∑ 𝑤𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖≠1 )(∑ (𝑋𝑖−�̅�)2

𝑖=1 )
                                            (2) 

It has a range of values between -1 and +1 with -1 being 

perfect negative spatial autocorrelation and +1 representing 

the opposite extreme end of the spectrum, perfect positive 

spatial autocorrelation. Values around zero are indicative of 

random occurrences of incidents.   

The Getis-Ord General G statistics, the global form of the 

model is represented as: 

                        𝐺 =
∑ ∑ 𝑤𝑖𝑗(𝑋𝑖𝑋𝑗)𝑗𝑖

∑ ∑ (𝑋𝑖𝑋𝑗)𝑗𝑖
                                                    (3) 

When high values are clustered together, the General G 

statistics returns a high value, while low values indicate no 

clustering.  

To detect location of clusters of values, measures of local 

spatial autocorrelation are developed. The major strength of 

local statistics lies in their flexibility and micro-level focus, 

which aid identification of the existence and nature of 

clustering and makes possible the delimitation and definition 

of objects (Getis & Ord, 1996). 

For the Moran’s model, the local indicator of spatial 

association (LISA) was developed by Anselin (1995). The 

mathematical form of the LISA is: 

𝐼𝑖 =
(𝑋𝑖−�̅�)

𝑆2
∑ 𝑤𝑖𝑗(𝑋𝑗 − 𝑋)𝑗                                        (4) 

LISA identifies four scenarios of clusters: first is high-high 

areas, which have areas of high values surrounded by 

neighbours of high values (positive spatial autocorrelation); 

high-low, which has an area of high value, surrounded by 

areas of low values (negative spatial autocorrelation); low-

low, which has areas of low values surrounded by areas of 

low values as well (positive spatial autocorrelation); and  low-

high values, which means areas of low values are surrounded 

by neighbours with high values (negative spatial 

autocorrelation). Areas of negative spatial autocorrelation are 

referred to as outliers, while those of positive spatial 

autocorrelation are clusters. 

Similarly, the Getis-Ord local model (Gi*) detects areas of 

spatial dependence. High values of Gi* show areas with 

clusters of high values. Which devate the most from a random 
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istribution of the incidents, while low Gi* values identify 

areas with a cluster of low values. The Gi* is represented in 

the following formula: 

𝐺𝑖
∗ =

∑ 𝑤𝑖𝑗𝑗 (𝑑)𝑋𝑗

∑ 𝑋𝑗𝑗
                                                     (5) 

The Gi* model returns Z Scores and p-Values, which indicate 

whether to reject or not reject the null hypothesis on a unit by 

unit basis. A high positive Z-Score and significant p-value 

shows that there is a spatial clustering of high values (hot 

spot), while a low negative Z-score value with a significant p-

value means that there is a spatial clustering of low values 

(cold spot). The intensity of clustering is measured by the size 

of the Z-Score value. A higher positive or lower negative Z-

Score value means a more intense level of clustering. When 

the Z-Score value approximates zero (0), there is no apparent 

spatial clustering of values involved.  

 

RESULTS  

Road traffic crashes (RTC) and fatalities (RTF) 

The total number of RTC from 2005 – 2018 was 133,412. 

That is an average of 9,530 crashes per year. Lagos and the 

Federal Capital Territory, Abuja posted the largest number of 

RTC in Nigeria, within the study period. Abuja had the worst 

case of RTC, with a total of 12,503. Lagos trailed second with 

10,128 cases. States with large numbers of RTC (at least 

5,000 or more each), in descending order are Kaduna (8,322) 

Ogun (6,671), Nasarawa (6,654), Ondo (5,733), Kano (5,459) 

and Niger (5,256). The states that registered the least number 

of RTC (less than 2,000 each), in descending order were 

Kebbi (1,824), Ekiti, Cross River, Rivers, Taraba, Bayelsa, 

Sokoto, Yobe, Abia and Borno (1,296) (Figure 2).  

The total number of fatalities recorded within this 14 year 

period was 124,599; a mean rate of 8900 deaths every year. 

Kaduna State (9,840) and the FCT Abuja (9,070) had the 

largest numbers of RTF. Other states with more than 5000 

deaths in the study period were Kano (6,320), Ogun (6,109), 

Nasarawa (6,058), Lagos (5,270), Kogi (5,211), Niger (5,207) 

and Oyo (5,032). The states that recorded less than 2000 

deaths, in descending order of magnitude, were Adamawa 

(1,989), Kebbi, Ebonyi, Sokoto, Cross River, Abia, Taraba, 

Rivers, Ekiti, Akwa Ibom, Bayelsa (938) and Borno (911) 

(Figure 3). 

It is noted that Kogi and Oyo states were not among the states 

considered as having high RTC (those with 5,000 or more) 

but they recorded more than 5,000 deaths within the same 

period. Lagos state had the second highest number of RTC 

but came a distant seventh in number of RTF. This 

demonstrates that the number of crashes alone does not tell 

the entire story. The rates of deaths per crashes is important 

to determine the risk of fatality and detect any patterns that 

may underlie the crash data in this regard.  

Figure 5 shows the distribution of fatalities per crash for the 

states. The data shows that Yobe state, which neither had high 

RTC nor RTF had the highest rate of fatalities per crash. It 

recorded at least 1.48 deaths for every crash that was 

recorded. Other states with high rates of fatalities include Oyo 

(1.3), Katsina (1.3), Bauchi (1.22) and Osun (1.2). The 

implication of these statistics is that at least one person is 

likely to die in a crash in these states. Of the sixteen states that 

recorded at least one fatality per crash, 12 of them are in the 

northern part of Nigeria. Interestingly, Lagos state had the 

least rate and therefore risk of fatality (0.52) per crash. Others 

are Akwa Ibom (0.53) and Adamawa (0.55) states.

 

      

 

 

 

 

 

 

 

 

       Figure 5: Fatality per Crash 2005-2018                  Figure 6: Fatality per Crash 2005-2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Fatality per Crash 2010-2014                  Figure 8: Fatality per Crash 2015-2018 
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The distribution of RTF rates shows a steady increase through 

the years. Between 2005 and 2018, there was an average of 

0.95 fatalities per crash. In essence there was approximately 

one death for every crash. This is a dismal statistics for a 

country. Lagos (0.52) and Yobe (1.48) had the lowest and 

highest fatality rates. Between 2005 and 2009, there were 

0.57 fatalities per crash with Lagos (0.28) and Kwara (0.89) 

recording the lowest and highest rates. On average the fatality 

rate increased to 0.62 fatalities per crash between 2010 and 

2014. Bayelsa (0.23) and Yobe (1.66) had the lowest and 

highest rates. The 2015 - 2018 distribution had a sharp 

increase to 1.91 fatality per crash with Bayelsa (1.16) and 

Yobe (3.18) being the lowest and highest rates once again. 

These distributions, however, do not identify areas and levels 

of clustering of road traffic fatality rates. These are 

determined using spatial autocorrelation statistics.  

 

Spatial clustering of rates of RTF (global) 

Table 1 presents the results of Moran’s I global statistics for 

rates of RTF. 

 

Table 1: Moran’s I Results 

Time Period Moran's I Z Scores P-Value Remarks 

2005 - 2009 0.187249 2.175218 0.029576 Clustered 

2010 - 2014 0.211777 2.677416 0.007419 Clustered 

2015 - 2018 -0.017553 0.104756 0.916569 Random 

2005 - 2018 0.214571 2.44188 0.014611 Clustered 

 

The global Moran’s I results show that distributions of rates 

of RTF between 2005 and 2009, 2010 and 2014, and 2005 

and 2018 were clustered. The period between 2015 and 2018, 

however, shows that any cluster of rate of RTF in the 

distribution was by chance.  

The Getis-Ord General G statistics results are similar to the 

Moran’s I except for the period between 2010 and 2014, 

which also indicated randomness along with rates of RTF 

distribution of 2015 – 2018. In these two time periods, rates 

of RTF did not exhibit spatial dependence. Table 2 presents 

the results of the General G statistics. 

 

Table 2: Getis-Ord General G Results 

Time Period G Values Z Scores P-Value Remarks 

2005 - 2009 0.137534 2.039123 0.041438 Clustered 

2010 - 2014 0.13303 0.5682 0.569899 Random 

2015 - 2018 0.133278 1.087591 0.276776 Random 

2005 - 2018 0.1391 2.405846 0.016135 Clustered 

 

There are two immediate implications of these results. First, 

attention needs to be paid to the distributions found to be 

clustered. There is need for a closer scrutiny and deeper 

investigation of these distributions because they have the 

promise of interesting findings. Secondly, distributions with 

a global randomness do not necessarily translate to an 

assumption that they would contain no local clusters. It 

merely indicates that the entire distribution does not conform 

to a clustered pattern. 

 

Spatial clustering of rates of RTF (local) 

The local indicators of spatial autocorrelation (LISA) test and 

the Getis-Ord Gi* tests are therefore computed to detect 

where clusters exist in the distributions and whether the 

random distributions may have any pockets of clustered 

incidents. Table 3 shows the results of the Anselin’s LISA. 

             

 Table 3: Anselin’s LISA Results 

Time Period State LMiIndex LMiZScore LMiPValue* Remarks 

2005 - 2009 Kwara 6.305521 3.123235 0.001789 High-High 

 Kogi 7.057187 2.73135 0.006308 High-High 

2010 - 2014 Yobe 7.85904 4.631316 0.000004 High-High 

 Jigawa 4.888417 2.905139 0.003671 High-High 

2015 - 2018 Delta -5.27154 -2.513458 0.011955 High-Low 

2005 - 2018 Katsina 4.773803 2.597763 0.009383 High-High 

 Kano 3.650183 2.000237 0.045475 High-High 

 Bauchi 4.540158 1.995163 0.046015 High-High 

  Rivers 5.176451 2.39289 0.016716 Low-Low 

 

For the period between 2005 and 2018, Katsina, Kano, 

Bauchi and Rivers states exhibited significant positive spatial 

autocorrelation. States with RTF rates of similar values are 

clustered together. The three northern states of Katsina, Kano 
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and Bauchi formed a cluster of high RTF rates. Rivers State 

has low rate of RTF and is surrounded by neighbouring states 

with low values as well. Figure 5 shows that Rivers state is 

surrounded by neighbours (Edo, Bayelsa, Akwa Ibom, Abia, 

Imo, Anambra and Delta), which had low values of RTF rates, 

except for Delta.  

Figures 9 and 10 show the LISA results of RTF distribution 

for the 2005 – 2018 and 2005 – 2009 periods. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 9: LISA: RTF, 2005 – 2018                         Figure 10: LISA: RTF, 2005 - 2009 

 

Between 2005 and 2009, Kwara and Kogi displayed a high-

high cluster of RTF rates. Kwara states had one of the highest 

numbers of RTF rates. It is bordered by five states, two (Kogi 

and Osun) had high values and the remaining three (Oyo, 

Ekiti and Niger) had average rates. Kogi also had high rates 

of RTF and is surrounded by ten states, two (Ondo and Ekiti) 

registered low rates, two others (FCT and Niger) had average 

rates, one (Kwara) registered very high rates and the 

remaining five had similar high rates to Kogi.   

Between 2010 and 2014, Jigawa and Yobe were the states 

with a high-high cluster, while only Delta state showed 

significantly high value of RTF in the 2015 – 2018 

distribution. Since it is surrounded by neighbouring states 

with low RTF values consequently, it exhibits negative spatial 

autocorrelation (Figures 11 and 12). 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Figure 11: LISA: RTF, 2010 – 2014                           Figure 12: LISA: RTF, 2015 - 2018 

 

Except for Delta state, which shows a high cluster of RTF rate 

in the 2015-2018 distribution, all the states with high RTF rate 

clusters are from the North of Nigeria (Katsina, Kano, Yobe, 

Jigawa and Bauchi). Interestingly, no single state is consistent 

through the study periods. The Delta state scenario is the only 

negative spatial autocorrelation in the distributions, while 

Rivers state is the only state with low values that is 

surrounded by neighbours with low values. 

The Getis-Ord Gi* determines local areas of spatial 

clustering. It measures whether an area unit of analysis has 

values that are higher (hot spot) or lower (cold spot) than 

expected.  

Table 4 shows that all the hot spots of RTF rates between 

2005 and 2018 are northern states. Except for Kebbi state, 

which is only significant at 0.10, the remaining four states 

have significant clusters of RTF rates. Jigawa state is 

significant at 0.01 level. 

Table 4 presents the results of the Gi* analysis. 
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Table 4: Gi* Results 

Time Period State GiZScore GiPValue Remarks 

2005 - 2009 Kwara 2.248102 0.02457* Hot Spot 

 Kogi 2.430587 0.012753* Hot Spot 

 Oyo 2.21708 0.026618* Hot Spot 

 Ekiti 2.099474 0.035775* Hot Spot 

 Osun 1.678811 0.093189 Hot Spot 

 Adamawa -1.80005 0.071853 Cold Spot 

 Gombe -1.1267 0.054017 Cold Spot 

2010 - 2014 Kano 1.83615 0.066336 Hot Spot 

 Borno 1.721256 0.085204 Hot Spot 

 Jigawa 3.593644 0.000326* Hot Spot 

 Yobe 2.894426 0.003799* Hot Spot 

 Bauchi 1.984624 0.047186* Hot Spot 

 Rivers -2.22643 0.025986* Cold Spot 

 Imo -1.64928 0.09909 Cold Spot 

 Abia -1.87604 0.06065 Cold Spot 

2015 - 2018 Katsina 2.116781 0.034278* Hot Spot 

 Jigawa 2.495323 0.012567* Hot Spot 

 Bauchi 1.674032 0.094125 Hot Spot 

2005 - 2018 Jigawa 2.984941 0.002836* Hot Spot 

 Kano 2.376441 0.017481* Hot Spot 

 Katsina 2.254741 0.02415* Hot Spot 

 Bauchi 2.029068 0.042451* Hot Spot 

 Kebbi 1.873609 0.060984 Hot Spot 

 Rivers -2.26573 0.023468* Cold Spot 

 Abia -1.84515 0.065016 Cold Spot 

  Akwa Ibom -1.8372 0.066181 Cold Spot 

*Values significant at 0.05 level. The remaining are significant only at 0.10 level. 

 

Inversely, three states in the South exhibited lower than 

expected rates of RTF and therefore showed up as cold spots. 

Rivers is significant at 0.05 while Abia and Akwa Ibom are 

only significant at 0.10. Figures 13 and 14 display the results 

for 2005 – 2018 and 2005 – 2009 distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

             Figure 13: Gi*: RTF, 2005 – 2018                          Figure 14: Gi*: RTF, 2005 - 2009 
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Between 2005 and 2009, two states in north-central and three 

in the southwest showed high clusters of RTF rates. Two 

states in the northeast, however, were cold spots. In the 

overall model (2005 – 2018), none of the states showing high 

rates of RTF clusters at the decomposed 2005 – 2009 

distribution, is significant. It is different at the 2010 and 2014, 

and 2015 – 2018 distributions. Many of the states that show 

significant clusters at the 2005 – 2018 are also prominent 

clusters at the decomposed levels (Figures 15 and 16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 15: Gi*, 2010 – 2014                                  Figure 16: Gi*, 2015 - 2018 

 

The hot spot and cold spot distributions for 2010 and 2014 are 

largely identical with that of the 2005 – 2018: Jigawa, Bauchi 

and Kano are also hot spots while Rivers and Abia are cold 

spots. While the 2005 – 2018 distribution had the hot spots 

leaning northwest, the 2010 – 2014 distribution leaned 

northeast, with the addition of Yobe and Borno among the 

RTF hot spot states. Kano and Borno are significant hot spots 

only at 0.10 level. Instead of Akwa Ibom, Imo joined the cold 

spots in the south, but along with Abia, is only significant at 

the 0.10 level. 

There appears to be a dichotomy between the northern and 

southern states in regards to rates of RTF. Most of the hot 

spots are found in the north, while most of the cold spots are 

in the south. The states of Katsina, Jigawa and Bauchi appear 

to be at the heart of the hot spots.  

According to Osayomi and Areola (2015), spatial 

autocorrelation of crash data between 2002 and 2007 revealed 

a southwest belt of high road traffic crashes, injuries and 

deaths. The analysis was based on crash, injury and death 

rates computed per 100,000 of the population. Ukoji (2016) 

used a similar rate (death per 100,000 persons) to examine 

road traffic fatalities in Nigeria between 2006 and 2014. The 

data used, however, was from a website, Nigeria Watch, 

based on reported crash data sourced from news media. The 

author acknowledged the inadequacy in this source of data. 

The analysis, however, showed that southern Nigeria had 

more fatalities and rates of deaths than northern states.  

Though this study found differently, it is important to point 

out that the rate of fatality measured in this study was fatality 

per crash not fatality per 100,000 persons as was the case with 

the other studies, which makes it difficult to compare the 

results directly. The rate of fatality per crash provides an 

insight into the likelihood of a fatality occurring in a crash 

incident, in which the northern states showed up much worse 

than the southern states. Many factors may be responsible for 

this established pattern. The northern states have relatively 

low levels of population densities, car ownership and road 

infrastructural density. This is in addition to the fact that 

Nigerian roads are poorly constructed and maintained. 

Topographically, the roads in Northern Nigeria are relatively 

flat because of the natural terrain of many northern states. In 

regards to size, the northern states are disproportionately 

larger than the southern states, with dispersed settlements, 

which require long distance travel between towns. These 

characteristics favour high speed of driving.  

In many parts of Africa, over-speeding and reckless driving 

behaviours are the major causes of RTC (Boateng, 2021).  

The Nigerian National Bureau of Statistics (NBS) (2020) 

reported that speed violation was responsible for 48% of all 

crashes in the second quarter of 2020 and is the major cause 

of RTC in Nigeria. Yero, Ahmed and Hainin (2015) stated 

that speed violations by drivers, coupled with bad road 

conditions was responsible for the high rates of crashes and 

fatalities along the Maiduguri-Potiskum highway section of 

the North-East Highway. Yunus and Abdulkarim (2021) 

asserted that drivers’ violations of speed limits was the major 

cause of road traffic crashes and fatalities in Kano state. 

Yahaya, Yusuf, Musa, Ma’aji, Bambale, Oscar, Bawa and 

Onuawaka (2021) found similarly in Kaduna state. This 

scenario is common in almost all parts of Nigeria. In the 

northern states, however, there appears to be an added 

consequence. With relatively fewer motor vehicles on 

roadways that are flat, most drivers are tempted to drive at 

high speed in road unworthy vehicles. A crash in such 

conditions would mostly likely result into a fatality.  

Richards (2010) concluded that the risk of fatality increases 

with higher driving speeds. According to the Institute for 

Road Safety Research (2012), the higher the driven speeds of 

vehicles the higher and greater the crash rate and injuries 

severity. The US National Highway Transportation Safety 

Administration (NHTSA) (2021) stated that (over) speeding 

remains the number one factor in more than 25% of fatal 

crashes every year in the USand is recognized as the leading 

cause of crashes and deaths. 

According to Ackaah and Salifu (2011) and Hu, Li, Liu and 

Adanu (2021) roads with grades or curves were associated 

with less frequent crashes compared to straight and flat roads, 

especially along rural highways. Ackaah and Salifu (2011) 

further indicated that about 70% of road traffic fatalities in 

Ghana were accounted for by rural crashes.  

Many of the roads in northern Nigeria are relatively flat and 

straight because of the terrain, rural and with low traffic 

density, which allow for high driving speeds. With a large 

number of vehicles not being road worthy and poor road 
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surfaces and conditions, high driving speeds attract crashes 

and high degrees of fatalities. 

 

CONCLUSION 

First, the study analyzed the spatial autocorrelation of road 

traffic fatalities in Nigeria using the rate of fatalities per crash 

and demonstrated that it is an effective rate to measure and 

investigate road traffic fatalities in Nigeria. Second the study 

revealed that contrary to many earlier studies and 

expectations, northern Nigeria appears to be a core hot spot 

of concern for road traffic crash fatality. The study found that 

there appears to be a higher likelihood of death occurring in a 

road traffic crash in the northern states of Nigeria than in the 

south. There is, therefore, an urgent need to examine these hot 

spots of crash fatalities. Third, the study raised questions as 

to the cause of these hot spots region in the north and 

proposed a hypothesis that is centred on road geometry and 

traffic and driving behavior rather than the zonal 

characteristics of the region, including population and socio-

economic attributes of the hot spot region, which are the more 

popular variables generally considered. However, the study 

also noted that a major problem, which continuously plagues 

aggregate data analysis is the aggregation bins problem. 

There is always the potential to obtain different results from 

the same data when different spatial and/or temporal 

aggregation levels are used. These are commonly referred to 

as the modifiable area unit problem (MAUP) and the 

modifiable temporal unit problem (MTUP). It is therefore 

necessary to analyze aggregate data at different spatial and 

temporal scales and attempt to identify any trends or patterns 

in them that would be useful to selecting an optimum 

aggregation band. In the Nigerian context, with the level of 

technology available, it is high time that crash incidents data 

be collected and made available to researchers at precise 

location specificity using GPS technology. This would 

guarantee a more detailed level of data analysis.  
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