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ABSTRACT 

Quasi-general models of membrane computing have been designed by means of rules which represent the 

processes taking place in a biological cell without explicitly specifying the specialties of the rules, viz: their 

mixture, chemical or physical characteristics as is obtainable in a biological cell. In this paper, an attempt to 

model a variant of membrane computing called specialization P system is made. It is capable of simulating 

biological activities at cellular level, and as the name implies, in a specialized manner. It is shown that with 

only one membrane and three rules, a deterministic cooperative specialization P system under catalysis is able 

to characterize the family of recursively enumerable languages.  
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INTRODUCTION 

Membrane computing is a distributed and parallel computing 

model introduced in Păun (2000) which aims to abstract 

computing ideas from the activities taking place in living cells 

and the way the cells interact with one another or with their 

environment in a hierarchy of membranes called membrane 

structure.Multisets of objects are placed in the regions of a 

typical membrane structure and are processed by rules which 

act upon them. 

The ability of the system to evolve by the action of the rules 

on the objects give rise to a computing device called P system. 

P systems are powerful and efficient Păun (2010). Of the 

several variants that have emerged in the literature we present 

an improvement of the P system working in the accepting 

mode introduced in Freund and Păun (2003) where an input 

is provided in the form of a number and the system accepts 

this number or not, provided that a halting computation exists 

starting from the initial configuration. The input is introduced 

into the system in the form of the multiplicity of a specified 

object at the initial configuration in a pre-specified input 

membrane. 

An important characteristic that gave rise to the variant of P 

system is the way in which the tasks of the rules arecarried 

out. Much as the biochemical activities within a living cell 

may be classified into their respective chemical, physical and 

mixture forms, the rules representing these biological 

activities are dedicated to separately carry out their functions 

in these forms. Thus, one can say that the P system introduced 

is of specialized type. 

In the regions delimited by the membranes are placed rules 

representing chemical process, physical process and mixture. 

The objects, which are also placed in the regions represent 

chemical compounds. As is typical of most variants of P 

system, these objects are said to evolve – they can be 

transformed from one object to another and can combine to 

form another object. (See Păun (2000), Păun (2002) and Păun 

(2006) for details on P systems). 

It is observed that with only three rules adeterministic 

specialization P systemhas computational completeness –

itcan characterize the recursively enumerable sets of natural 

numbers. It is interesting to note that very simple membrane 

structures are enough –only onemembranesuffices. The 

method usedto determine computational completenessis 

similar to that of the accepting P system provided in Freund 

and Păun (2003), only that this time the rules are fewer in 

number. 

 

BIOCHEMICAL INTERPRETATION OF THE RULES 

We shall use the arrow symbol → for composition among 

chemical substancesin the sense that 𝑎 → 𝑏  means a 

substance 𝑏  is composed of a substance 𝑎 . Thus, if 𝑏 

chemically combines with 𝑐 to produce 𝑎, we write 𝑏 + 𝑐 →
𝑎, meaning that 𝑎 is composed of the substances 𝑏 and 𝑐. 
The idea is to present a model of the biochemical processes 

taking place in the cell by means of multisets of objects. The 

changes in the substances involve chemical properties for 

chemical change as well as for physical change. The 

processes to consider include mixture, reversible chemical 

reaction, physical change, catalytic reaction andderived 

reaction. In modelling the rules, the alphabets (Greek or 

English) represent the chemical substances, the binary 

operation ‘+’ represents the process of “combining” in a 

chemical reaction or a physical change as the case may be. 

The arrow ‘→’ points to the result of the reaction or change 

process, while the arrow ‘⟹’ is used where such changes do 

not take place. Moreover, the use of the symbol ‘∅ ’ is 

essential and is interpreted to mean that there exists a 

particular substance which has not reacted with another 

substance after they have been combined – a case of mixture, 

hence its use in conjunction with ‘⟹’. 

 

Mixture 

One would think of representing mixture by 𝛼 + 𝛽 ⟹ 𝛽 + 𝛼. 

The thought of such a representation is probably with the 

intention that mixing two substances would render 

thesubstances as they were (without any form of reaction 

taking place). This however, is crude and inappropriate to our 

model. The idea is to model the process in reaction terms 

which should reflect in the notation as in 𝛼 + ∅ ⟹
𝛽.Itrepresent a more logical concept of the representation of 

mixture. It means ‘nothing’ has reacted with 𝛼 and we can 

still obtain 𝛽 . Moreover, 𝛼  cannot change to 𝛽  unless a 

second element (or energy) is involved. Hence, the symbol ∅ 

denotes the absence or lack of such substance. Furthermore, 

∅ cannot be omitted to avoid the impression that 𝛼 underwent 
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a unilateral change or reaction to the substance 𝛽 which is not 

a property of a biochemical process. 

 

Catalytic reaction 

We consider a catalytic case 𝛼 + 𝜉 → 𝛽 + 𝜉of the chemical 

reaction, where 𝜉 is a catalyst. We do not lay emphasis on the 

other element which reacts with 𝛼 for which 𝜉 is catalyst to 

the reaction of such element and 𝛼. The model is so since by 

the end of the reaction at least a new substance is produced – 

not minding the number of substances used. In other words, 

the state of the catalyst is the focus for the catalytic case – it 

is not consumed in the process. 

 

Physical change 

Physical change is modelled by 𝛼 + 𝛽 → 𝛼. This captures the 

idea that 𝛼 and 𝛽 combine via the change process ‘+’ which 

leaves the chemical properties of 𝛼  unchanged, much as 

water transforms into water vapor by heating. Thus, again the 

notation is in terms of the chemical properties of the 

substance – leaving the chemical properties unchanged. This 

process is reversible and the reverse is 𝛼 → 𝛼 + 𝛽, similar to 

separating heat from water vapor to produce heat and water. 

 

Reversible chemical reaction 

Chemical reaction is modelled by 𝛼 + 𝛽
𝑟𝑒𝑣
→ 𝛾, meaning that 

two substances 𝛼  and 𝛽  react to produce the resultant 

substance 𝛾 . The process can be reversed under certain 

conditions as indicated by the 𝑟𝑒𝑣 below the arrow. Unlike in 

the physical change, not all chemical change is reversible, 

hence the need to include the notation 𝑟𝑒𝑣. 

 

Incomparability in reactions 

It is possible that two substances cannot undergo any of the 

processes described above. In such a scenario, we insert # 

between the objects representing the substances as in 𝛼 # 𝛽 

for the substances represented by the objects 𝛼 and 𝛽. We say 

the 𝛼 and 𝛽 are incomparable.. 

 

Derived reactions 

It is possible to derive other reaction types in terms of a 

combination of some of the reactions already mentioned. A 

typical example of a derivedreaction is the resultant reaction 

that converts the initial substance to the final substance in a 

series of reactions. That is, if for instance, a substance 𝑎 

changes to 𝑏 by a reaction 𝑎 → 𝑏 and 𝑏 changes to 𝑐 by 𝑏 →
𝑐 then the derived reaction that changes 𝑎 to 𝑐 is 𝑎 → 𝑐. In 

particular, by the use of reversible chemical reactions, 

catalytic reactions and physical change we derive a typical 

reaction which is of interest to the model of P system under 

investigation in the following proposition. 

 

Proposition 1 Given a reversible chemical reaction 𝑓1 + 𝑎

𝑟𝑒𝑣
→ 𝑓, its catalytic form 𝑓1 + 𝑎 → 𝑓 + 𝑎 and its physical form 

𝑓1 + 𝑎 → 𝑓1, there exists a derived reaction of the form 𝑓1 →
𝑓 + 𝑎 under catalysis. 

 

Proof 

Consider the catalytic form𝑓1 + 𝑎 → 𝑓 + 𝑎and the physical 

change 𝑓1 + 𝑎 → 𝑓1 . One of four cases must hold. That is, 

either𝑓 with 𝑎 is incomparable with 𝑓1(i. e. , 𝑓1 # 𝑓 + 𝑎 )  or 

𝑓  reacts with 𝑎  to produce 𝑓1(i. e., 𝑓 + 𝑎 → 𝑓1 )  or 𝑓1 

produces 𝑓  with 𝑎(i. e. , 𝑓1 → 𝑓 + 𝑎)  or 𝑓1  is not different 

from 𝑓  with 𝑎(i. e. , 𝑓1 = 𝑓 + 𝑎 ) . Suppose 𝑓1 = 𝑓 + 𝑎 

thenthe two are identical and are both a product of the 

catalytic chemical form and the physical form. This is a 

contradiction of real life situation. Since 𝑎 cannot react with 

𝑓  to produce 𝑓1  which it reacts with to produce 𝑓  by the 

hypothesis, then 𝑓 + 𝑎
𝑟𝑒𝑣
→ 𝑓1 also contradicts real life 

situation.Since every physical change is reversible, consider 

extending the reverse 𝑓1 → 𝑓1 + 𝑎  of 𝑓1 + 𝑎 → 𝑓1  with the 

catalytic form𝑓1 + 𝑎 → 𝑓 + 𝑎  (or applying catalyst to the 

reverse of the physical change). Thus, we see that 𝑓1 → 𝑓 +
𝑎 is a derived reaction. Hence, 𝑓1  and 𝑓 + 𝑎  are not 

incomparable under catalysis.          □ 

 

TURING COMPUTABILITY 

Classical computability can be presented in various 

equivalent mathematical formalisms such as Turing 

machines, register machines, Chomsky type-zero grammars, 

partial recursive functions and so on (Soare, 2016). In this 

paper, we exploit the mechanism of a register machine. It is a 

device that consists of a given number of registers each of 

which can hold an arbitrarily large non-negative integers and 

a sequence of labeled instructions called program. The 

instructions determine how the integers in the registers can 

change and which instructions should be executed next after 

another. Formally, a typicalregister machine is a device 𝑀 =
(𝑚, 𝐵, 𝑙0, 𝑙ℎ, 𝑅), where 𝑚 ≥ 1 is the number of registers, 𝐵 is 

the set of instruction labels, 𝑙0  is the intial label, 𝑙ℎ  is the 

halting label and 𝑅  is the set of instructions labeled by 

elements from 𝐵  ( 𝑅  is also called the program of the 

machine). The labeled instructions are of the following forms: 

𝑙1 ∶ (ADD(𝑟), 𝑙2) (add 1 to register 𝑟 and go to the instruction 

with label 𝑙2), 

𝑙1 ∶ (SUB(𝑟), 𝑙2, 𝑙3) (if register 𝑟 is not empty, then subtract 1 

from it and go to the instruction with label 𝑙2, otherwise go to 

the instruction with label 𝑙3), 

𝑙ℎ ∶ HALT (the halt instruction which can only have the label 

𝑙ℎ). 

A register machine is used to recognize a number in the 

following manner: starting with all registers being empty, a 

number is introduced in a distinguished register (say, the first 

register), computation is made starting with the instruction 

labeled 𝑙0; a number is inputted, say 𝑛 in this register while 

all other registers hold the value 0. If the computation reaches 

the instruction labeled by 𝑙ℎ: HALT (that is, it halts), then the 

number is recognized, otherwise it is not recognized. The set 

of all numbers recognized by 𝑀 is denoted by 𝑁(𝑀). It is 

known (see Freund and Oswald (2002) and Minsky (1967)) 

that register machines (with three registers only, recognize 

exactly the family NRE, of Turing computable numbers.  

 

THE DETERMINISTIC COOPERATIVE 

SPECIALIZATION P SYSTEM AND ITS 

COMPUTATIONAL POWER 

We introduce a class of membrane system considered in this 

paper. We show universality for the (cell-like) P system, in 

the accepting mode using symbol objects, processed by some 

specialized rules. For now, we consider a system with only 

one membrane and obtain universality by means of a register 

machine. In general, aspecialization P system (of degree 𝑚 ≥
1)is a construct of the form 

𝛱 = (𝑂 ∪ 𝐻, 𝜇, 𝑤1, … , 𝑤𝑚 , 𝑅1, … , 𝑅𝑛) 
where 𝑂 is a finite alphabet, called objects. 𝐻 = {ℎ1, … , ℎ𝑛} 
is a set of labels of the membranes in 𝛱, 𝜇 is a membrane 

structure of degree 𝑚, 𝑤𝑖 is a string over 𝑂 representing the 

multiset of objects present in region 𝑖  of the membrane 

system, where 1 ≤ 𝑖 ≤ 𝑚 and 𝑅𝑗 is the set of rules which act 

in the region of membrane 𝑗  such that 1 ≤ 𝑗 ≤ 𝑛. For this 

work in particular, the form of the rules are as follows: 

i. Rulesimulating reversible chemical reaction are of the 

form 𝑢 + 𝑣
𝑟𝑒𝑣
→ 𝑤. 
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ii. Rule simulating derived reaction are of the form 𝑢 →
𝑣 + 𝑤. 

iii. Rule simulating mixture are of the form  𝑢 + ∅ ⟹ 𝑤. 

 

We denote by 𝑁𝑆𝑃𝑃1(𝑐𝑜𝑜)  the family of sets 𝑁(𝛱)  of 

numbers computed by a deterministic cooperative 

specializationP system with single membrane. 

 

Theorem 1𝑁𝑆𝑃𝑃1(𝑐𝑜𝑜) = 𝑁𝑅𝐸 

Proof 

Consider a register machine 𝑀 = (𝑚, 𝐵, 𝑙𝑜, 𝑙ℎ, 𝑃) and the set 

of alphabets 𝑈 = {𝑎1, 𝑎2, … , 𝑎𝑚}  where a symbol 𝑎𝑖  is 

associated with register 𝑖 . The content of the register is 

represented by the number of occurrence of 𝑎𝑖 in the P system 

being constructed. An accepting P system of degree 1 under 

catalysis is a construct of the form 

 

Π = (𝑂, [1]1, 𝑙𝑜, 𝐸, 𝑅1) 
where 

𝑂 = 𝑈 ∪ {𝑙1, 𝑙2, 𝑙3} 
𝑅1 = {(𝑙1 → 𝑎𝑟 + 𝑙2)| for𝑙1 ∶ (ADD(𝑟), 𝑙2) ∈ 𝑅} 

           ∪ {(𝑙1 + 𝑎𝑟
𝑟𝑒𝑣
→ 𝑙2) , (𝑙1 + ∅⟹ 𝑙3) | for𝑙1

∶ (SUB(𝑟), 𝑙2, 𝑙3) ∈ 𝑅} 

 

Assume that we introduce 𝑛  copies of the object 𝑎  in the 

system of Π just like starting the work of the register machine 

𝑀 where 𝑛 is in the first register. We show that Π simulates 

the work of the register machine when analyzing the input 𝑛. 

Each of the ADD instructions of 𝑀 is simulated by the rule 

𝑙1 → 𝑎𝑟 + 𝑙2 . It introduces an object 𝑎𝑟  together with the 

instruction label 𝑙2 erasing the instruction label 𝑙1. The SUB 

instruction is simulated by the two rules 𝑙1 + 𝑎𝑟
𝑟𝑒𝑣
→ 𝑙2  and 

𝑙1 + ∅⟹ 𝑙3. In the first case if there exists an object 𝑎𝑟 in 

the system then the reaction erases both the object 𝑎𝑟 and the 

label instruction 𝑙1 while introducing the label instruction 𝑙2. 

If, on the other hand, no element 𝑎𝑟 exists in the system, then 

the rule 𝑙1 + ∅⟹ 𝑙3  is executed. It transforms the label 

instruction 𝑙1  to the label instruction 𝑙3 . We continue to 

simulate the instructions of 𝑀 in this way. In the event where 

the register machine halts, that is, it reaches the label 𝑙ℎ then 

the computation for Π  halts as well, and conversely. 

Therefore, 𝑁(Π) = 𝑁(𝑀).    □ 

 

 

 

 

CONCLUSION 

The model of P system presented with only three rules has 

been shown to generate all recursively enumerable sets of 

natural numbers by simulating a register machine. Moreover, 

such rules simulate chemical, biological, physical and other 

cellular activities in a specialized manner, hence, better 

simulating the activities of the cell. It is also necessary to state 

that the model of P system is an improvement to its symport 

and antiport counterpart presented in Freund and Păun (2003) 

having minimal rules and no more than one membrane. 
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