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ABSTRACT 

This study analyzes the unsteady MHD flow of non-Newtonian fluid in horizontal channel. The upper plate is 

oscillating and moving while the bottom plate is stationary. Solutions for momentum, energy and concentration 

equation are obtained by the He-Laplace scheme. The effect of various flow parameters controlling the physical 

situation is discussed with the aid of graphs. Significant results from this study, shows that velocity and 

concentric fields decrease with the increase in chemical reaction parameter.  
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INTRODUCTION 

Non-Newtonian fluid is a type that is capable of describing 

shear thinning and shear thickening effects (examples are 

ketchup, blood, paint, cream, nail polish, etc). 

Over time researches on   non – Newtonian fluids, have 

resulted into the discovery of many empirical and semi-

empirical non-Newtonian models or constitutive equations 

have been proposed. Rehan et al. (2010) considered the 

steady flow of a fourth grade fluid, between two parallel 

plates. They analyzed four types of flows: Couette flow, plug 

flow, Poiseuille flow and generalized Couette flow. The 

nonlinear differential equation describing the velocity field 

was solved by optimal homotopy asymptotic method 

(OHAM). They observed that the OHAM was more efficient 

and flexible than the perturbation and Homotopy analyses 

method. Islam et al. (2011) considered the steady flow of a 

non-Newtonian fluid with slippage between the plate and the 

fluid. The constitutive equations of the fluids were modelled 

for fourth-grade non-Newtonian fluid with partial slip. They 

employed homotopy perturbation and optimal homotopy 

asymptotic methods to solve the non-linear differential 

equation (Islam et al., 2011). Shehzad et al. (2018) reported 

the electro-osmotic Couette-Poiseuille flow of power law 

Al2O3- PVC nanofluid through a channel, in which upper 

wall is moving with constant velocity. The influences of 

magnetic field, mixed convection, joule heating, and viscous 

dissipation were also incorporated. The flow was generated 

because of constant pressure gradient in axial direction. The 

resulting flow problem was coupled nonlinear ordinary 

differential equations, which were at first modeled and then 

transform into dimensionless form through appropriate 

transformation. Analytical solution of the governing equation 

was carried out.  

Khan et al. (2018) discussed the unsteady flow of non- 

Newtonian fluid with the properties of heat/sink in the 

presence of thermal radiation through a binary mixture 

embedded in a porous. Santhosha et al. (2017) studied the 

radiation and chemical combined effects on MHD free 

convective heat and mass transfer flow of viscous, 

incompressible, conducting elastic fluid through porous 

medium finite by a porous plate within the presence of heat 

generation. The momentum, energy and mass diffusion 

equation were coupled non-linear partial differential 

equations. They employed two term perturbation method.  

Taza et al. (2016) studied the unsteady thin film flow of a 

fourth grade fluid over a moving and oscillating vertical belt. 

They employed adomian decomposition method (ADM) and 

optimal homotopy asymptotic method (OHAM) to find the 

solution of the non- linear differential equations that governed 

the flow. Hayat et al. (2007) presented the exact solution four 

four types of flows between two parallel plates, viz. Couette 

flow, plug flow, Poiseuille flow and generalized Couette 

flow. The nonlinear second-order differential equation for the 

velocity field was solved exactly in each case. The nonlinear 

differential equation describing the velocity field was solved 

by optimal homotopy asymptotic method (OHAM). They 

observed that the OHAM is more efficient and flexible than 

the perturbation and Homotopy analyses method. 

Arifuzzaman et al. (2018) analysed heat and mass transfer 

characteristics of naturally corrective hydro-magnetic flows 

of fourth grade radiative fluid resulting from vertical porous 

plate. They considered non-linear order chemical reaction and 

heat generation with thermal diffusion. The complete 

fundamental equations were transformed into dimensionless 

equations by implementing finite difference scheme 

explicitly. 

Idowu and Sani (2019) carried out an analysis for unsteady 

magnetohydrodynamic (MHD) flow of a generalized third 

grade fluid between two parallel plates. The fluid flow was as 

a result of the plate oscillating, moving and pressure gradient. 

Three flow problems were investigated, namely: Couette, 

Poiseuille and Couette-Poiseuille flows and a number of 

nonlinear partial differential equations were obtained which 

were solved using the He-Laplace method. Expressions for 

the velocity field, temperature and concentration fields were 

given for each case and finally, effects of physical parameters 

on the fluid motion, temperature and concentration were 

plotted and discussed. They found that an increase in the 

thermal radiation parameter increases the temperature of the 

fluid and hence reduces the viscosity of the fluid while the 

concentration of the fluid reduces as the chemical reaction 

parameter increases. 

Joseph et al. (2021) investigated the unsteady MHD flow of 

fourth-grade fluid in horizontal parallel plates channel. The 

upper plate was oscillating and moving while the bottom plate 

remained stationary. Solutions for momentum, energy and 

concentration equation were obtained by the He-Laplace 

scheme. The effect of various flow parameters controlling the 

physical situation is discussed with the aid of graphs. 

Significant results from this study, showed that velocity and 

temperature fields increase with the increase in thermal 

radiation parameter, while the velocity and concentric fields 

decrease with increase in chemical reaction parameter. 
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Furthermore, velocity, temperature and concentric fields 

decrease with the increase in suction parameter. 

 

MATERIALS AND METHOD 

Formulation of the Problem 

We consider the unsteady flow of an electrically conducting 

incompressible fourth grade fluid between two horizontal 

parallel plates channel as shown in figure 1. The fluid is 

subjected to a uniform transverse magnetic field. We assumed 

the bottom plate is fixed (stationary) and the top plates is 

moving with constant velocity. The nomenclature used is 

expressed in table1.

 

 

 
Figure 1: Physical Schematic of the Flow Configuration  

 

Table 1: Nomenclature 

𝐵0 External magnetic field. 

𝐶 Species concentration 

𝑢 Fluid velocity 

𝑆 Suction parameter 

𝐻𝑎 Hartmann number 

𝐾𝑟 Chemical reaction parameter 

𝑆𝑐 Schmidt number 

𝐶𝑤 Concentration at the surface 

𝐶∞ Concentration as 𝑦 → ∞ 

𝑥, 𝑦 Cartesian coordinates 

 

Greek Symbols 

𝜇 Coefficient of shear viscosity 

𝛼 Second grade parameter 

𝛽𝑎 , 𝛽𝑏  Third grade parameters 

𝛾𝑎, 𝛾𝑏   Fourth grade parameters 

𝛽𝑐  Concentration expansion coefficient 

 Stefan – Boltzmann constant 

𝜌 Density of the fluid 

𝜈 Kinematic viscosity 

 

The chemically reactive flow is heading 𝑥 – direction along infinite porous plate with heat generation. Here, 𝑈0 is the uniform 

velocity and 𝐶∞ is the species concentration. 

Under the above consideration, the equations that described the physical circumstances are 

 
𝜕v

𝜕𝑦
= 0            (1) 

𝜕𝑢

𝜕𝑡
+ v

𝜕𝑢

𝜕𝑦
=-

𝜕𝑝

𝜕𝑥
+ν

𝜕2𝑢

𝜕𝑦2 +
𝛼1𝜈

𝜌

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+

𝛽1𝜈2

𝜌

𝜕4𝑢

𝜕𝑦2𝜕𝑡2 +
6(𝛽2+𝛽3)

𝜌
(

𝜕𝑢

𝜕𝑦
)

2 𝜕2𝑢

𝜕𝑦2 +
𝛾1𝜈3

𝜌

𝜕5𝑢

𝜕𝑦2𝜕𝑡3 +
2ν(3𝛾2+𝛾3+𝛾4+𝛾5+𝛾7+𝛾8)

𝜌𝐶𝑝
[2

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2

𝜕2𝑢

𝜕𝑡𝜕𝑦
+

(
𝜕𝑢

𝜕𝑦
)

2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] −

𝜎𝐵0
2

𝜌𝐶𝑝
𝑢 + 𝑔𝛽𝐶(𝐶 − 𝐶∞) −

𝜈

𝑘
𝑢 (2) 

𝜕𝐶

𝜕𝑡
+ v

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2 − 𝐾𝑐(𝐶 − 𝐶∞)         (3) 

The initial and boundary conditions are 

𝑢 = 𝑈0𝑒−𝑦ℎ, 𝐶 = 𝐶0 + (𝐶𝑤 − 𝐶∞)𝑒−𝑦ℎ  𝑎𝑡 𝑡 = 0 𝑓𝑜𝑟  0 ≤ 𝑦 ≥ ℎ

𝑢(𝑦, 𝑡) = 𝑈, , 𝐶(𝑦, 𝑡) = 𝐶𝑤 𝑎𝑡 𝑦 = ℎ 𝑓𝑜𝑟 𝑡 ≥ 0

𝑢(𝑦, 𝑡) → ∞, 𝐶(𝑦, 𝑡) → ∞ 𝑎𝑠 𝑦 → ∞ 𝑓𝑜𝑟 𝑡 > 0

}      (4) 

Where 𝑢 is the fluid velocity and 𝐶 is the species concentration equation, 𝜌 is the density of the fluid, 𝐶𝑝 is the heat capacity, 

𝐵0 is the external magnetic field. 

In order to transform equations (1) – (4), we use the following dimensionless parameters 
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𝑢∗ =
𝑢

𝑈0
,  𝑝∗ =

𝑝

𝜇𝑈0
2 , 𝑡∗ =

𝑡𝑈0
2

𝜈
, 𝐺𝑐 =

𝑔𝛽𝐶(𝐶𝑤−𝐶∞)𝜈

𝑈0
3 , 𝐻𝑎2 =

𝜎𝐵0
2𝜈

𝜌𝑈0
2 , 𝐷𝑎 =

𝐾𝑈0
2

ℎ2 , 𝑆𝑐 =
𝐷

𝜈
, 𝑦∗ =

𝑦𝑈0

𝜈
, 𝑥∗ =

𝑥

ℎ
, ℎ =

𝑈0

𝜈
 , 𝑆 =

v0

𝑈0
, v =

v

𝑈0
, 𝐶∗ =

𝐶−𝐶0

𝐶𝑤−𝐶∞
, 𝛼 =

𝛼1𝑈0
2

𝜌𝜈2 , 𝛽𝑎 =
𝛽1𝑈0

4

𝜌𝜈3 , 𝛽𝑏 =
(𝛽2+𝛽3)𝑈0

4

𝜌𝜈3 , 𝛾𝑎 =
𝛾1𝑈0

6

𝜌𝜈3 , 𝛾𝑏 =
2(3𝛾2+𝛾3+𝛾4+𝛾5+3𝛾7+𝛾8)𝑈0

6

𝜌𝜈4 , 𝐷𝑎 =
𝑘𝑈0

2

𝜈2 , 𝐾𝑟 =
𝐾𝑐𝜈

𝑈0
2  

            

            

 (5) 

Substituting equation (5) into equations (1) – (4) and by dropping the asterisks, we have the following: 
𝜕𝑣

𝜕𝑦
=0 ⇒ v = −v0           (6) 

𝜕𝑢

𝜕𝑡
− 𝑆

𝜕𝑢

𝜕𝑦
=-

𝜕𝑝

𝜕𝑥
+

𝜕2𝑢

𝜕𝑦2 + 𝛼
𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽𝑎

𝜕4𝑢

𝜕𝑦2𝜕𝑡2 + 𝛽𝑏 (
𝜕𝑢

𝜕𝑦
)

2 𝜕2𝑢

𝜕𝑦2 + 𝛾𝑎
𝜕5𝑢

𝜕𝑦2𝜕𝑡3 + 𝛾𝑏 [2
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2

𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)

2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − (𝐻𝑎 +

1

𝐷𝑎
) 𝑢 +

𝐺𝑐𝐶            (7) 
𝜕𝐶

𝜕𝑡
− 𝑆

𝜕𝐶

𝜕𝑦
=

1

𝑆𝑐

𝜕2𝐶

𝜕𝑦2
− 𝐾𝑟𝐶          (8) 

And the initial and boundary conditions becomes 

𝑢(𝑦, 𝑡) = 𝑒−𝑦 , 𝐶(𝑦, 𝑡) = 𝑒−𝑦 𝑎𝑡 𝑡 = 0 𝑓𝑜𝑟 0 ≤ 𝑦 ≥ 1

𝑢(𝑦, 𝑡) = 1, 𝐶(𝑦, 𝑡) = 1 𝑎𝑡 𝑦 = 1 𝑓𝑜𝑟 𝑡 ≥ 0

𝑢(𝑦, 𝑡) → ∞, 𝐶(𝑦, 𝑡) → ∞ 𝑎𝑠 𝑦 → ∞ 𝑓𝑜𝑟 𝑡 > 0

}       (9) 

Solution of the Problem 

Here, we employed the He – Laplace scheme to solve equations (6) to (8) subjects to the initial and boundary conditions (9). 

Since equation (7) is a coupled non – linear partial differential equation, we have to solve equation (8) first. 

Now applying Laplace transform on equation (8), we have; 

𝐿 {
𝜕𝐶

𝜕𝑡
} − 𝑆𝐿 {

𝜕𝐶

𝜕𝑦
} =

1

𝑆𝑐
𝐿 {

𝜕2𝐶

𝜕𝑦2
} − 𝐿{𝐾𝑟𝐶}         (10) 

Applying the initial condition and dividing through by 𝑠 and rearranging, we obtain; 

𝐿{𝐶(𝑦, 𝑡)} =
𝑒−𝑦

𝑠
+

1

𝑠
{

1

𝑆𝑐
𝐿 {

𝜕2𝐶

𝜕𝑦2
} + 𝑆𝐿 {

𝜕𝐶

𝜕𝑦
} − 𝐿{𝐾𝑟𝐶}}       (11) 

Taking the inverse Laplace transform of both sides of equation (21), gives; 

𝐶(𝑦, 𝑡) = 𝑒−𝑦 + 𝐿−1 [
1

𝑠
{

1

𝑆𝑐
𝐿 {

𝜕2𝐶

𝜕𝑦2} + 𝑆𝐿 {
𝜕𝐶

𝜕𝑦
} − 𝐿{𝐾𝑟𝐶}}]       (12) 

Applying the Homotopy perturbation technique, equation (12) yields 

 

 
2

1

2
0

1 1
( , )n y

n r

n c

C
P C y t e P L L L K C

s S y


 



      
       

       


    (13) 

Comparing the coefficients of the like powers of ′𝑃′, the following approximations were obtained; 

𝑃0: 𝐶0(𝑦, 𝑡) = 𝑒−𝑦       (14) 

𝑃1: 𝐶1(𝑦, 𝑡) = 𝐿−1 [
1

𝑠
{

1

𝑆𝑐
𝐿 {

𝜕2𝐶0

𝜕𝑦2 } + 𝑆𝐿 {
𝜕𝐶0

𝜕𝑦
} − 𝐿{𝐾𝑟𝐶0}}] = 𝐿−1 {

1

𝑆𝑐
(

𝑒−𝑦

𝑠2 ) − 𝑆 (
𝑒−𝑦

𝑠2 ) − 𝐾𝑟 (
𝑒−𝑦

𝑠2 )} 

= (
𝑒−𝑦

𝑆𝑐
− 𝑆𝑒−𝑦 − 𝐾𝑟𝑒−𝑦) 𝑡          (15) 

𝑃2: 𝐶2(𝑦, 𝑡) = 𝐿−1 [
1

𝑠
{

1

𝑆𝑐
𝐿 {

𝜕2𝐶1

𝜕𝑦2 } + 𝑆𝐿 {
𝜕𝐶1

𝜕𝑦
} − 𝐿{𝐾𝑟𝐶1}}] 

= 𝐿−1 [
1

𝑠
{

1

𝑆𝑐
𝐿 {(

𝑒−𝑦

𝑆𝑐
− 𝑆𝑒−𝑦 − 𝐾𝑟𝑒−𝑦) 𝑡} + 𝑆𝐿 {(𝑆𝑒−𝑦 −

𝑒−𝑦

𝑆𝑐
+ 𝐾𝑟𝑒−𝑦) 𝑡} − 𝐿 {𝐾𝑟 (

𝑒−𝑦

𝑆𝑐
− 𝑆𝑒−𝑦 − 𝐾𝑟𝑒−𝑦) 𝑡}}] 

= (
𝑒−𝑦

𝑆𝑐
2 −

2𝑆𝑒−𝑦

𝑆𝑐
−

2𝐾𝑟𝑒−𝑦

𝑆𝑐
+ +2𝐾𝑟𝑆𝑒−𝑦 + 𝑆2𝑒−𝑦 + 𝐾𝑟

2𝑒−𝑦)
𝑡2

2!
      (16) 

Therefore, in view of equations (14), (15), (16), the solution is, 

𝐶(𝑦, 𝑡) = 𝐶0(𝑦, 𝑡) + 𝐶1(𝑦, 𝑡) + 𝐶2(𝑦, 𝑡) + 𝐶3(𝑦, 𝑡) ⋯    

𝐶(𝑦, 𝑡) = 𝑒−𝑦 + (
𝑒−𝑦

𝑆𝑐
− 𝑆𝑒−𝑦 − 𝐾𝑟𝑒−𝑦) 𝑡 + (

𝑒−𝑦

𝑆𝑐
2 −

2𝑆𝑒−𝑦

𝑆𝑐
−

2𝐾𝑟𝑒−𝑦

𝑆𝑐
+ +2𝐾𝑟𝑆𝑒−𝑦 + 𝑆2𝑒−𝑦 + 𝐾𝑟

2𝑒−𝑦)
𝑡2

2!
  

            (17) 

Finally, we now solve equation (7), which is rearranged to give 
𝜕𝑢

𝜕𝑡
− 𝑆

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+

𝜕2𝑢

𝜕𝑦2 + 𝛼
𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽𝑎

𝜕4𝑢

𝜕𝑦2𝜕𝑡2 + 𝛽𝑏 (
𝜕𝑢

𝜕𝑦
)

2 𝜕2𝑢

𝜕𝑦2 + 𝛾𝑎
𝜕5𝑢

𝜕𝑦2𝜕𝑡3 + 𝛾𝑏 [2
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2

𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)

2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − 𝑙2𝑢 + 𝐺𝑐𝐶 

where, 𝐻𝑎 +
1

𝐷𝑎
= 𝑙2          (17i) 

Applying the Laplace transform on both sides of equation (17i) gives 

𝐿 {
𝜕𝑢

𝜕𝑡
} − 𝐿 {𝑆

𝜕𝑢

𝜕𝑦
} = 𝐿 {−

𝜕𝑝

𝜕𝑥
+

𝜕2𝑢

𝜕𝑦2 + 𝛼
𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽𝑎

𝜕4𝑢

𝜕𝑦2𝜕𝑡2 + 𝛽𝑏 (
𝜕𝑢

𝜕𝑦
)

2 𝜕2𝑢

𝜕𝑦2 + 𝛾𝑎
𝜕5𝑢

𝜕𝑦2𝜕𝑡3 + 𝛾𝑏 [2
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2

𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)

2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] −

𝑙2𝑢 + 𝐺𝑐𝐶}           (18) 

𝐿{𝑢(𝑦, 𝑡)} =
𝑢(𝑦,0)

𝑠
+

1

𝑠
𝐿 {−

𝜕𝑝

𝜕𝑥
+ 𝑆

𝜕𝑢

𝜕𝑦
+

𝜕2𝑢

𝜕𝑦2 + 𝛼
𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽𝑎

𝜕4𝑢

𝜕𝑦2𝜕𝑡2 + 𝛽𝑏 (
𝜕𝑢

𝜕𝑦
)

2 𝜕2𝑢

𝜕𝑦2 + 𝛾𝑎
𝜕5𝑢

𝜕𝑦2𝜕𝑡3 + 𝛾𝑏 [2
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2

𝜕2𝑢

𝜕𝑡𝜕𝑦
+

(
𝜕𝑢

𝜕𝑦
)

2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − 𝑙2𝑢 + 𝐺𝑐𝐶}          (19) 
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Taking the inverse Laplace transform of both sides of equation (19), we have; 

𝐿−1{𝐿{𝑢(𝑦, 𝑡)}} = 𝐿−1 {
𝑢(𝑦,0)

𝑠
−

𝜕𝑝

𝜕𝑥
+

1

𝑠
𝐿 {+𝑆

𝜕𝑢

𝜕𝑦
+

𝜕2𝑢

𝜕𝑦2
+ α

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽a

𝜕4𝑢

𝜕𝑦2𝜕𝑡2
+ 𝛽𝑏 (

𝜕𝑢

𝜕𝑦
)

2 𝜕2𝑢

𝜕𝑦2
+ 𝛾a

𝜕5𝑢

𝜕𝑦2𝜕𝑡3
+

𝛾𝑏 [2
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2

𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)

2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − 𝑙2𝑢 +

𝐺𝑐

𝑠
(𝑒−𝑦 + (

𝑒−𝑦

𝑆𝑐
− 𝑆𝑒−𝑦 − 𝐾𝑟𝑒−𝑦) 𝑡 + (

𝑒−𝑦

𝑆𝑐
2 −

2𝑆𝑒−𝑦

𝑆𝑐
−

2𝐾𝑟𝑒−𝑦

𝑆𝑐
+ +2𝐾𝑟𝑆𝑒−𝑦 +

𝑆2𝑒−𝑦 + 𝐾𝑟
2𝑒−𝑦)

𝑡2

2!
)}}          (20) 

Or,  

𝑢(𝑦, 𝑡) = 𝜆 + 𝑒−𝑦 + (𝐺𝑐𝑒−𝑦)𝑡 + (𝑙1𝑒−𝑦 +
𝑒−𝑦

𝑆𝑐
− 𝐾𝑟𝑒−𝑦)

𝑡2

2!
+ (

𝑒−𝑦

𝑆𝑐
2 −

2𝑆𝑒−𝑦

𝑆𝑐
−

2𝐾𝑟𝑒−𝑦

𝑆𝑐
+ 2𝐾𝑟𝑆𝑒−𝑦 + 𝐾𝑟

2𝑒−𝑦)
𝑡3

3!
+

+𝐿−1 {
1

𝑠
𝐿 {+𝑆

𝜕𝑢

𝜕𝑦
+

𝜕2𝑢

𝜕𝑦2 + α
𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽𝑎

𝜕4𝑢

𝜕𝑦2𝜕𝑡2 + 𝛽𝑏 (
𝜕𝑢

𝜕𝑦
)

2 𝜕2𝑢

𝜕𝑦2 + 𝛾a
𝜕5𝑢

𝜕𝑦2𝜕𝑡3 + 𝛾𝑏 [2
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2

𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)

2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − 𝑙2𝑢}} 

            (21) 

Applying the Homotopy perturbation method to equation (21), gives 

0

( , )n

n

n

P u y t





𝜆 + 𝑒−𝑦 + (𝐺𝑐𝑒−𝑦)𝑡 + (𝑙1𝑒−𝑦 +

𝑒−𝑦

𝑆𝑐
− 𝐾𝑟𝑒−𝑦)

𝑡2

2!
+ (𝑙1

2𝑒−𝑦 +
𝑒−𝑦

𝑆𝑐
2 −

2𝑆𝑒−𝑦

𝑆𝑐
−

2𝐾𝑟𝑒−𝑦

𝑆𝑐
+ 2𝐾𝑟𝑆𝑒−𝑦 +

𝐾𝑟
2𝑒−𝑦)

𝑡3

3!
+ +𝑃 (𝐿−1 {

1

𝑠
𝐿 {𝑆

𝜕𝑢

𝜕𝑦
+

𝜕2𝑢

𝜕𝑦2 + α
𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽a

𝜕4𝑢

𝜕𝑦2𝜕𝑡2 + 𝛽𝑏𝐻𝑎(𝑢𝑛) + 𝛾1
𝜕5𝑢

𝜕𝑦2𝜕𝑡3 + 𝛾𝑏 [2𝐻𝑏(𝑢𝑛) +

𝐻𝑐(𝑢𝑛)
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2

𝜕2𝑢

𝜕𝑡𝜕𝑦
+ (

𝜕𝑢

𝜕𝑦
)

2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
] − 𝑙2𝑢}})        (22) 

Where, 𝐻𝑎(𝑢𝑛), 𝐻𝑏(𝑢𝑛) and 𝐻𝑐(𝑢𝑛) are the He’s polynomials for (
𝜕𝑢

𝜕𝑦
)

2
,

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2

𝜕2𝑢

𝜕𝑡𝜕𝑦
 and (

𝜕𝑢

𝜕𝑦
)

2 𝜕3𝑢

𝜕𝑦2𝜕𝑡
 respectively. 

Now, comparing the like powers of "𝑃" in equation (44) and equating their coefficients gives 

𝑃0; 𝑢0(𝑦, 𝑡) = 𝜆 + 𝑒−𝑦 + (𝐺𝑐𝑒−𝑦)𝑡 + (𝑙1𝑒−𝑦 +
𝑒−𝑦

𝑆𝑐
− 𝐾𝑟𝑒−𝑦)

𝑡2

2!
+ (𝑙1

2𝑒−𝑦 +
𝑒−𝑦

𝑆𝑐
2 −

2𝑆𝑒−𝑦

𝑆𝑐
−

2𝐾𝑟𝑒−𝑦

𝑆𝑐
+ 2𝐾𝑟𝑆𝑒−𝑦 + 𝐾𝑟

2𝑒−𝑦)
𝑡3

3!

            (23) 

𝑃1; 𝑢1(𝑦, 𝑡) = 𝐿−1 {
1

𝑠
𝐿 {𝑆

𝜕𝑢0

𝜕𝑦
+

𝜕2𝑢0

𝜕𝑦2 + α
𝜕3𝑢0

𝜕𝑦2𝜕𝑡
+ 𝛽𝑎

𝜕4𝑢0

𝜕𝑦2𝜕𝑡2 + 𝛽𝑏(𝑢0
′ )2(𝑢0

′′) + 𝛾𝑎
𝜕5𝑢0

𝜕𝑦2𝜕𝑡3 + 𝛾𝑏[2𝑢0
′′′𝑢′0𝑡

′ + (𝑢0
′ )2(𝑢0

′′𝑢0𝑡
′ )] −

𝑙2𝑢0}}            (24) 

Or, 

 

𝑢1(𝑦, 𝑡) = (𝑒−𝑦 − 𝑆𝑒−𝑦 + 𝛼𝐺𝑐𝑒−𝑦 +
𝛽𝑎𝑒−𝑦

𝑆𝑐
− 𝛽𝑎𝐾𝑟𝑒−𝑦 − 𝛽𝑏𝑒−𝑦 +

𝛾𝑎𝑒−𝑦

𝑆𝑐
3 −

2𝛾𝑎𝑆𝑒−𝑦

𝑆𝑐
−

2𝛾𝑎𝐾𝑟𝑒−𝑦

𝑆𝑐
+ 2𝛾𝑎𝐾𝑟𝑆𝑒−𝑦 + 𝛾𝑎𝐾𝑟

2𝑒−𝑦 +

𝛾𝑎𝑙1
2𝑒−𝑦 − 2𝛾𝑎𝐺𝑐𝑒−2𝑦 + 𝛾𝑏𝐺𝑐𝑒−3𝑦 − 𝑙2𝑒−𝑦 − 𝜆𝑙2) 𝑡 + (𝐺𝑐𝑒−𝑦 − 𝐺𝑐𝑆𝑒−𝑦 +

𝛼𝑒−𝑦

𝑆𝑐
− 2𝛼𝑆𝑒−𝑦 + 𝛼𝑙1𝑒−𝑦 +

𝛽𝑎𝑒−𝑦

𝑆𝑐
2 −

2𝛽𝑎𝑆𝑒−𝑦

𝑆𝑐
−

2𝛽𝑎𝐾𝑟𝑒−𝑦

𝑆𝑐
+ 2𝛽𝑎𝐾𝑟𝑆𝑒−𝑦 + 𝛽𝑎𝐾𝑟

2𝑒−𝑦+𝛽𝑎𝑙1
2𝑒−𝑦 + 3𝛽𝑏𝐺𝑐𝑒−3𝑦 +

𝛾𝑎𝑒−𝑦

𝑆𝑐
3 −

3𝛾𝑎𝑒−𝑦

𝑆𝑐
2 −

6𝛾𝑎𝐾𝑟𝑆𝑒−𝑦

𝑆𝑐
+

6𝛾𝑎𝑆2𝑒−𝑦

𝑆𝑐
− 6𝛾𝑎𝐾𝑟𝑆2𝑒−𝑦 −

3𝛾𝑎𝐾𝑟
2𝑆𝑒−𝑦 − 𝛾𝑎𝐾𝑟

3𝑒−𝑦 − 𝛾𝑎𝑙1
2𝑆𝑒−𝑦 − 𝛾𝑎𝑙1𝑆2𝑒−𝑦 + 𝛾𝑎𝑙1

3𝑒−𝑦 − 2𝛾𝑏𝐺𝑐
2𝑒−3𝑦 − 3𝛾𝑏𝐺𝑟

2𝑒−3𝑦 − 4𝛾𝑏𝐺𝐶𝐺𝑟𝑒−3𝑦 − 𝑙2𝐺𝑐𝑒−𝑦 −

𝑙2𝐺𝑟𝑒−𝑦)
𝑡2

2!
+ (

𝑒−𝑦

𝑆𝑐
− 𝐾𝑟𝑒−𝑦 +

𝑒−𝑦

𝑃𝑟
+ 𝑙1𝑒−𝑦 −

𝑆𝑒−𝑦

𝑆𝑐
+ 𝐾𝑟𝑆𝑒−𝑦 −

𝑆𝑒−𝑦

𝑃𝑟
+ 𝑆𝑙1𝑒−𝑦 +

𝛼𝑒−𝑦

𝑆𝑐
2 −

2𝛼𝑆𝑒−𝑦

𝑆𝑐
−

2𝛼𝐾𝑟𝑒−𝑦

𝑆𝑐
+ 2𝛼𝐾𝑟𝑆𝑒−𝑦 +

𝛼𝐾𝑟
2𝑒−𝑦 +

𝛼𝑒−𝑦

𝑃𝑟
2 +

2𝛼𝑙1𝑒−𝑦

𝑃𝑟
+ 𝛼𝑙1

2𝑒−𝑦 +
𝛽𝑎𝑒−𝑦

𝑆𝑐
3 −

3𝛽𝑎𝑆𝑒−𝑦

𝑆𝑐
2 −

2𝛽𝑎𝐾𝑟𝑒−𝑦

𝑆𝑐
2 +

6𝛽𝑎𝐾𝑟𝑆𝑒−𝑦

𝑆𝑐
+

3𝛽𝑎𝑆2𝑒−𝑦

𝑆𝑐
+

3𝛽𝑎𝐾𝑟
2𝑒−𝑦

𝑆𝑐
−

𝛽𝑎𝐾𝑟𝑒−𝑦

𝑆𝑐
−

3𝛽𝑎𝐾𝑟𝑆2𝑒−𝑦 − 3𝛽𝑎𝐾𝑟
2𝑆𝑒−𝑦 − 𝛽𝑎𝐾𝑟

3𝑒−𝑦 − 𝛽𝑎𝑙1
2𝑆𝑒−𝑦 − 𝛽𝑎𝑙1𝑆2𝑒−𝑦 + 𝛽𝑎𝑙1

3𝑒−𝑦 + 𝛽𝑎𝑆3𝑒−𝑦 − 6𝛽𝑏𝐺𝑐
2𝑒−3𝑦 −

𝑙1𝑒−𝑦

𝑆𝑐
+

𝑙2𝐾𝑟𝑒−𝑦 + 2𝛾𝑏𝐺𝑐
3𝑒−3𝑦 − 𝑙1𝑙2𝑒−𝑦)

𝑡3

3!
         (25) 

Therefore, the solution to equation (7) is; 

𝑢(𝑦, 𝑡) = 𝑢0(𝑦, 𝑡) + 𝑢1(𝑦, 𝑡) + ⋯         (26) 

Where, 𝑢0(𝑦, 𝑡) and 𝑢1(𝑦, 𝑡) are defined in equations (23) and (25) respectively. 

 

RESULTS AND DISCUSSION 

Theoretical work on unsteady MHD flow of non-Newtonian 

fluid in horizontal channel with mass transfer has been 

analyzed. The impact of thermal radiation, chemical reaction, 

suction, third and fourth-grade parameters along with other 

pertinent flow parameters are plotted graphically on different 

flow fields. The default values for the pertinent flow 

parameters are taken as (Arifuzzaman et al., 2018)),  𝜆 =

0.30, 𝛼 = 0.20, 𝛽𝑎 = 0.005, 𝛽𝑏 = 0.005, 𝛾𝑎 = 0.05, 𝛾𝑏 =
0.0.05, 𝑆𝑐 = 0.50, 𝐺𝑐 = 3, 𝑃𝑟 = 0.71, 𝐻𝑎 = 0.50, 𝐷𝑎 =
1.00, 𝐾𝑟 = 0.50. 

The effect of chemical reaction parameter (𝐾𝑟) on velocity 

and concentration profiles are depicted in figs. 2 and 3 

respectively. Increase in chemical reaction parameter(𝐾𝑟), 

the velocity field and the concentration field both decreases.  
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Figure 2. Effect of 𝐾𝑟 on Velocity profile 𝑢 

 
Figure 3. Effect of 𝐾𝑟 on Concentration distribution Type equation here. 

 

Figure 4 illustrates the drag force effect on fluid flow. The velocity profile decreases with the increment of Hartmann number. 

 

 
Figure 4. Effect of 𝐻𝑎 on Velocity profile 𝑢 

 

The impact of suction parameter 𝑆 on velocity and concentration profiles are depicted in figs. 5 and 6 respectively. It is clearly 

seen that velocity and concentration profiles diminish with the increase of 𝑆. This is due to the porosity of plates. 

 
Figure 5. Effect of 𝑆 on Velocity profile 𝑢 
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Figure 6. Effect of 𝑆 on Concentration distribution 𝜃 

 

 

CONCLUSION  

Unsteady MHD flow of non- Newtonian fluid has been 

analyzed. The solution for the nonlinear partial differential 

equations are obtained by He-Laplace scheme. The effects of 

flow parameters on velocity and concentration profiles are 

depicted in figures and discussed. From the results obtained, 

the findings are: 

(i) For increasing values of chemical reaction, velocity and 

concentration fields diminish. 

(ii) Velocity and concentration fields diminish due to the 

increment of suction parameter. 

(iii) Velocity and skin friction fields decline due to the 

increment of magnetic parameter. 
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