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ABSTRACT 

Bulk solids have a microstructure that differs significantly from nanoscale materials. In modern era, new 

devices are always produced at nano-scale level and existing ones are quantized to fit the global demand. To 

achieve this, there is a need to understand the behaviour of materials at atomic level. As a result, examining the 

properties of nanoparticles can help in understanding the nature of small-scale material behavior. The cohesive 

energy and lattice constant are essential physical quantities that can be used to predict other material properties. 

In this research, the equilibrium cohesive energies and its corresponding lattice constants of three nanosized 

crystals (Al, Cu and Ni), were investigated using molecular dynamics simulation method with a semi-empirical 

embedded atom model (EAM) potential function. The simulated results reveal that the three nanocrystals’ 

lattice constant match the experimental data. Besides, Al, Cu and Ni have cohesive energies of -3.40 eV, -3.55 

eV, -4.44 eV respectively. Cu’s cohesive energy differs from experimental data unlike Al and Ni. The findings 

in the current research are in good agreement with those obtained utilizing the First principle calculation 

method.  
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INTRODUCTION 
It is common knowledge that all material qualities are 

dependent on the structure of the material, therefore it is 

important to understand the properties before deciding on its 

technological applications. Under constant temperature and 

pressure, the majority of bulk material properties, such as 

optical, electrical, and thermal, remain constant. However, in 

the case of a nanosized crystal, the size of the material will 

have a significant effect on these properties (Ouyang et al., 

2009; Wang & Yang, 2005; Xia  2003). Finding these 

properties through experimental techniques is nearly 

impossible and expensive at the nanoscale, and it is 

sometimes impossible to predict. The cohesive energy of a 

solid, which equals the energy required to break all bonds and 

separate the solid into isolated atoms, is an essential physical 

quantity that accounts for bond strength. Cohesive energy is 

also a fundamental quantity in material thermodynamics, 

from which we can derive almost all thermodynamic 

properties. As a significant coupling physical quantity, 

cohesive energy can be utilized to predict other physical 

qualities such as melting point (Goswami & Nanda, 2010; 

Safaei et al., 2008), diffusion activation and vacancy 

formation energies (Safaei, 2010a), evaporation temperature 

(Safaei, 2010b) and Curie temperature (Yang & Li, 2007).  

The thermodynamic performance of a substance is 

determined by its atomic cohesive energy, which changes 

depending on the environment of atomic coordination. The 

nanoscopic thermodynamics are determined by the cohesive 

energy disparity between the core and the shell. 

Experimentally, the heat of sublimation can be used to 

determine a solid's cohesive energy. Kim et al., (2002), were 

able to obtained experimental data of cohesive energies.  In 

the experiments, the cohesive energy of nanostructures was 

found to be highly dependent on their size. Unlike the bulk 

solid, the cohesive energy of nanoparticles is difficult to 

quantify experimentally. As a result, numerous theoretical 

models concentrating on size dependence to determine the 

cohesive energy of nanostructures have been developed, such 

as the broken bond model (Yang & Li, 2007; Yin, Palmer, & 

Guo, 2006), the bond-OLS model (Wang, Zhu, & Jiang, 

2008), the latent heat model (Verma, Sarkar, & Jindal, 2010), 

the thermodynamics model (Safaei et al., 2008) and the liquid 

drop model (Safaei et al., 2008). However, because several 

parameters used in calculations are not easy to estimate, most 

theoretical calculations of cohesive energy are inconvenient.  

Computational modeling of cohesive energy at the nanoscale 

has received a lot of attention as a result of the foregoing. In 

order to use nanoparticles in optoelectronic and 

microelectronic systems, they must sometimes be embedded 

in a heterogeneous matrix.  Although it has been reported that 

the cohesive energy of a free nanoparticle lowers as its size 

decreases (Weihong, Wang, 2002), it has not been 

investigated in experiments whether the cohesive energy of 

nanoparticles embed in a heterogeneous matrix increases or 

decreases relative to its bulk material. Meanwhile, just a few 

theoretical models focus on the effects of the additional 

material on the nanoparticles embedded in it (Xie et al., 2005; 

Xie, Wang, & Qi, 2004). The physical mechanism behind the 

cohesive energy of embedded nanoparticles has not been well 

understood so far. In this paper, an embedded atom model 

potential function was used to perform molecular dynamic 

simulation calculation of equilibrium cohesive energy and its 

corresponding lattice parameters of some nanocrystal (Al, Cu 

and Ni). Studying the characteristics of embedded 

nanoparticles might thus aid in the selection of appropriate 

materials and the development of integrated devices.   

 

THEORETICAL MODEL 

The energy required to divide atoms into discrete atomic 

species is defined as the cohesive energy of a solid. The 

cohesive energy is calculated using the overall energy of the 

solid as well as the isolated atoms. The energy difference 

between isolated atoms and the solid is equal to the cohesive 

energy of the solid (Li, 2014): 
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𝐸𝑐𝑜ℎ = 𝐸𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 − 𝐸𝑠𝑜𝑙𝑖𝑑                                                       (1) 

The cohesive energy of bulk material A can be expressed as  

 

𝐸𝐵𝑢𝑙𝑘𝑐𝑜ℎ = 𝐸𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 − 𝐸𝐵𝑢𝑙𝑘
𝐴                                                  (2) 

 

Similarly, a nanoparticle of material A's cohesive energy is 

described as  

 

𝐸𝑁𝑃𝑐𝑜ℎ 
𝐴 = 𝐸𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 − 𝐸𝑁𝑃

𝐴                                                        (3) 

 

If the number of atoms in equation (2) equals the number in 

equation (3), then the cohesive energy of a free nanoparticle 

can be expressed as 

 

𝐸𝑁𝑃𝑐𝑜ℎ 
𝐴 = 𝐸𝐵𝑢𝑙𝑘𝑐𝑜ℎ

𝐴 − (𝐸𝑁𝑃
𝐴 − 𝐸𝐵𝑢𝑙𝑘

𝐴 )                                   (4) 

 

𝐸𝐵𝑢𝑙𝑘
𝐴 , the energy of a bulk solid, can be compared to the 

energy of an ideal nanoparticle squeezed from its host bulk 

material. As a result, (𝐸𝑁𝑃
𝐴  −  𝐸𝐵𝑢𝑙𝑘

𝐴 )  denotes the energy 

difference between a free nanoparticle and its bulk version, 

which is formed by disrupting the bonding between the 

nanoparticle's surface atoms. Atoms on the surface have more 

energy than those in the bulk substance in solid-state physics. 

The surplus energy at a material's surface in relation to the 

main substance is known as surface energy. The surface 

energy of a nanoparticle should be equal to the excess energy 

of the nanoparticle as compared to its bulk state. 

 

Potential Function 
In this study, Molecular Dynamics (MD) simulations were 

carried out using the embedded atom method (EAM) 

potential function.  The EAM formalism describes the total 

potential energy of a system of atoms in the following way 

(Daw & Baskes, 1983) 

𝐸𝑡𝑜𝑡  = ∑ 𝐹𝑖(𝜙)

𝑖

+ 
1

2
∑ ∑ 𝜑𝑖𝑗

𝑗≠𝑖

(𝑟𝑖𝑗)

𝑖

                            (5) 

Fi is a function of the effective electron density at atom i as 

seen in the equation above. The energy required to embed 

atom i into an effective electron density as a result of the 

surrounding atoms is defined by the many-body term i. The 

term 𝜑𝑖𝑗(𝑟𝑖𝑗) is a simple pair potential typically attributed to 

electrostatic interactions. It can be shown that the form of 

EAM can be deduced using density functional theory (DFT) 

arguments (Murray, et al., 1992). Furthermore, in order to 

obtain particular parameters for the embedding energy, 

effective electron density, and pair potential, these potentials 

often require experimental data or ab-initio calculations 

where 𝑚𝑖 is mass of particle, 𝐹𝑖  is the interatomic force acting 

on that particle, ri is its position vector, and is the overall 

system's interatomic potential energy.  

After the potential function is determined, it has been seen 

that, atoms are always intend to go towards equilibrium 

position, and the magnitude of molecules force 𝐹𝑖𝑗 that is 

pushes them towards its position is given by derivative of the 

potential energy (Scott, 2018). 

𝐹𝑖𝑗 =  −
𝜕𝑈(𝑟𝑖𝑗)

𝜕𝑟𝑖𝑗
                                                     (6)      

 

Computational Details 
The molecular dynamics technique depicts the atomic 

motions of material constituents by assuming that classical 

mechanics concepts still hold true at the atomic scale (Frenkel 

& Smit, 2002). MD simulations were run in the conventional 

ensemble with the total number of particles N, volume V, and 

temperature T set using the velocity Verlet technique in this 

work. The atomic position and velocity were calculated using 

the Verlet numerical integration algorithm. The simulation's 

time steps were set to 1 second. The x, y, and z coordinate 

axes represent the [100], [010], and [001] lattice directions, 

respectively. To initialize the simulation, a relaxation state is 

defined and the atoms are left freely with a random velocity 

using NVT. To ensure a good statistical averaging result 

following the equilibrium process, simulations were run for 

1106 time steps (500 ps) to ensure credible results for particle 

properties. The bulk system, with 4000 atoms in the cube, was 

also simulated and the cohesive energy and lattice constant 

calculated under constant temperature and constant volume 

(NVT) conditions with periodic boundary conditions for 

comparison.  

 

RESULTS AND DISCUSSION 

The calculated cohesive energy of the three nanocrystals (Al, 

Cu and Ni) are as shown in Fig. 1 (a), (b) and (c). The results 

show that the values of cohesive energy decrease with 

increase in lattice constant until it reached an equilibrium (a 

minimum), and then increase with increase in lattice constant 

for all the nano-metals. The equilibrium values are presented 

in table 1. A comparison of the simulated results with 

experimental results showed a discrepancy of 0.99% for the 

lattice constant of aluminum while there exist discrepancies 

of -% and -% for the lattice constants of Cu and Ni 

respectively.  Comparing the equilibrium cohesive energies 

of the simulated results, discrepancies of -%, 1.69% and -% 

were observed for Al, Cu and Ni respectively. These 

observations shown that, simulated results are in concurrent 

with the experiment, since the observed values of 

discrepancies for both lattice constant and cohesive energy 

are less than 2%  (Fitraina et al., 2019; Qi, 2016). The 

cohesive energy in the embedded model utilized in this study 

is controlled not only by the nanoparticle's surface energy, but 

also by the adhesion energy between the embedded particle 

and its adjacent atoms. 
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Figure 1 (a): Graph of cohesive energy against lattice constant for Aluminium 

 
Figure 1 (b): Graph of cohesive energy against lattice constant for Copper 

3 3.5 4 4.5 5
-4

-3

-2

-1

0

1

2

3
Al

Lattice constant (Å)

C
oh

es
iv

e 
en

er
gy

 (
eV

)

3 3.5 4 4.5 5
-4

-3.5

-3

-2.5

-2

-1.5

-1
Cu

Lattice constant (Å)

C
oh

es
iv

e 
en

er
gy

 (
eV

)



MOLECULAR DYNAMICS SIMULATION OF… Batsari et al., FJS 
 

FUDMA Journal of Sciences (FJS) Vol. 6 No. 2, April, 2022, pp 175 - 179 
178 

 
Figure 1 (C): Graph of cohesive energy against lattice constant for Nickel 

 

 Equilibrium lattice constant (Å) Equilibrium cohesive energy (eV) 

Element Calculated experiment calculated Experiment 

Aluminum 4.00 4.04 -3.40 -3.40 

Copper 3.62 3.62 -3.55 -3.49 

Nickel 3.50 3.52 -4.44 -4.44 

 

CONCLUSION 

Molecular dynamics has been used successfully to calculate 

the cohesive energy of nano-crystalline aluminum, copper 

and nickel. The embedded atom model (EAM) potential 

function was used to optimize cohesive energy as a function 

of lattice constant. It is found that the cohesive energy 

decreases with increase in lattice constant until it reached an 

equilibrium (a minimum), and then increase as lattice 

constant increase. The calculated results show a discrepancy 

of 0.1% for aluminum with no difference for Cu and Ni. The 

present modeling results are reasonably consistent with the 

corresponding experimental values and other existing 

theoretical models. 
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