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ABSTRACT 

This paper presents some cardiac electrophysiological models. Proper mathematical analysis was done on the 

proposed models. In the cause of the analysis, several assumptions were made which helped in providing a 

parallel platform for making qualitative solutions so as to reduce any form of bias. Graphical analysis was 

adopted in solving the cardiac electrophysiological models using conservation and dispersions equations. The 

results obtained were derived from computer simulation by observing ring lengths on a valid restitution curve. 

The restitution curves helps us to subject three different turns of ring lengths and certain observations were 

made on the behavior of the three ring lengths. An increase in ring length will cause a corresponding increase 

in blood circulation and vice versa. It was suggested that 2D or 3D computer simulation should be adopted for 

better performance and yield of the models.  
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INTRODUCTION 
The heart is a muscular pump responsible for the 

transportation of blood and nutrients through blood vessels 

and arteries. This function of the heart makes it a very vital 

organ in the human body system. Once the heart stops 

working, it results in cardiac arrest. A great number of sudden 

deaths that occur in recent times is traceable to cardiac arrest, 

which is due to the cardiac electrical abnormalities preventing 

blood circulation to various compartments of the body. In 

view of this, we shall take a look at a thorough analysis of the 

electrical activities of the heart and deduce a mathematical 

analysis for the electrophysiological cardiac tissue membrane 

model. 

Cardiac electrophysiology is the study of the mechanisms, 

functions and performance of the electrical activities of the 

heart (Adebisi et al., 2012). The mechanical contraction of the 

heart muscles is activated by electrical depolarization of the 

cell membrane and coordinated by the distribution of 

depolarization through the tissue from the Sino Atrial Node 

(SA Node) to other regions of the heart.  

Researchers have studied the sequence of activities which 

cause depolarization and repolarization of the heart, which 

can be measured through electrodes and other many 

techniques like optical imaging (Efimov et., al 2004). It is in 

view of this that electrophysiological models were adopted, 

inspired by the pioneer work of (Hodgkin and Huxley 1952), 

which gave rise to many mathematical models (Fenton and 

Cherry 2008). (Nash and Panfilov 2004) presented a 

computational framework to couple a three-variable. 

Excitation-tension model to governing equations of 

nonlinear, stress equilibrium employing the 

electromechanical and mechano-electric feedback (FitzHugh 

1955). 

Unlike other cells in the human body, the cardiomyocytes 

responsible for the excitability of the heart cells obeys the 

“all-or-none” law, meaning that if the stimulus is above a 

suitable threshold, a complete action potential with peak 

value independent of the stimulus generated, otherwise no 

response is provided by the cell. Therefore, the cardiac 

muscles of the heart are arranged in inter-connected manner 

such that if one of the muscle cell is excited, the action 

potential will spread from cell to cell through its 

interconnection. The interconnected nature of the cardiac 

muscle fibres is called syncytium (Praveen et., al 2016). This 

paper seeks to identify some cardiac electro-physiological 

models in (Henriquez, C.S and Papazogou, AA 1996), 

Arrhythmogenesis, (Clayton, R.H. and Panfilov, A.V. 2008), 

(Nash et., al 2006), (Niederer, S.A and Smith, N.P 2007) and 

provide a mathematical analysis for cardiac 

electrophysiological models. The mathematical analysis of 

this model will be useful to determine the diagnostic 

information about the heart. 

 

MODELS OF CARDIAC ELECTROPHYSIOLOGY 

A model helps us to understand relationships between 

physical phenomena. It helps us to represent real situations 

using symbols and relationships. We shall be looking at some 

cardiac electrophysiological models to help us better describe 

relationship between variables in cardiac electrophysiology. 

The heart is enhanced by a special system for generating 

rhythmical electrical impulses to cause rhythmical 

contraction of the heart muscles and conducting these 

impulses rapidly through the heart is the Sino Atrial Node 

(SA), the Atrio-Ventricular Node (AV), AV Bundle, Right 

and Left Bundle Branches. Purkinje Fibres are the main 

components of the conducting system in the heart (Guyton 

and Hall 1996). The electrical impulses induce intracellular 

calcium cycling which in turn causes heart muscles to 

contract which is known as the excitation-contraction 

coupling (ECC) 

 

Hodgkin Huxley Model 

This model is the basis for the cardiac electrophysiological 

models. In this work of (Hodgkin and Huxley 1952), the 

Beeler-Reuter (BR) model describes the trans membrane 

voltage in a single cell as follows 
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𝜕𝑣𝑚

𝜕𝑡
= −

𝐼𝑖𝑜𝑛

𝐶𝑚
    (1) 

Where, 𝑣𝑚 represents transmembrane voltage, 𝐶𝑚 represents 

membrane capacity and the total current is described as: 

𝐼𝑚 = 𝐶𝑚
𝜕𝑣𝑚

𝜕𝑡
+ 𝐼𝑁𝑎 + 𝐼𝐾 + 𝐼𝐿 − 𝐼𝑎𝑝𝑝  (2) 

Where 𝐼𝑁𝑎 = Voltage-gated Na current 

𝐼𝐾 = Voltage-gated K current 

𝐼𝐿 = Voltage-gated Leaked current 

𝐼𝑎𝑝𝑝 =  Applied stimulus current 

The electrical characteristics of excitable cell such as cardiac 

myocytes and hence, it is a continuous time model 

 
Figure 1: Intracellular Medium 

 

Hodgkin – Huxley Model of Action Potential 

The movement of each of these currents (Sodium (Na), 

Potassium (K), and Leaked (L) current) is proportional to the 

conductance times the driving force [3]. Hence  

𝐼𝑁𝑎 = 𝑔𝑁𝑎(𝑉𝑚 − 𝑉𝑁𝑎)   (3) 

𝐼𝐾 = 𝑔𝐾(𝑉𝑚 − 𝑉𝐾)    (4) 

𝐼𝐿 = 𝑔𝐿(𝑉𝑚 − 𝑉𝐿)    (5) 

From equation (1), if 𝐼𝑒𝑥𝑡  is the externally applied current, 

then  

𝐼𝑒𝑥𝑡 = 𝐶𝑚
𝜕𝑣𝑚

𝜕𝑡
+ 𝐼𝑖𝑜𝑛   (6) 

Therefore, combining equations (3), (4) and (5) into equation 

(2), we obtain 

𝐼𝑚 = 𝐶𝑚
𝜕𝑣𝑚

𝜕𝑡
+ 𝑔𝑁𝑎(𝑉𝑚 − 𝑉𝑁𝑎) + 𝑔𝐾(𝑉𝑚 − 𝑉𝐾) + 𝑔𝐿(𝑉𝑚 −

𝑉𝐿) − 𝐼𝑎𝑝𝑝    (7) 

This is the Hodgin-Huxley Method of the action potential. 

 

The Cable Model 

One dimensional fibre is considered as an extended 

cylindrical cell membrane. The relationship will be 

considered as valid if the gap junction resistance is negligible. 

In this model, charge carriers are assumed to move in only one 

dimension inside and outside of the cell. To better visualize 

the behavior of ionic current across the cell membrane, we 

need a model of electrical behavior of the cells in terms of 

action potential. Lord Kelvin developed the cable model to 

demonstrate the cardiac cell which is considered as a 

cylindrical membrane which separates internal conducting 

medium from extracellular conduction medium from 

extracellular conduction medium as shown in Figure 2 below: 

 
Figure 2: Schematic representation of an extended excitable cell 

 

The cell membrane act as a relative insulator with properties described in (Boyett et., al 1997) and the potential depends only 

on the length variable and on time as shown in figure 3 
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Figure 3: Schematic representation of cell membrane 

 

M = Lumped properties of the membrane over a length ∆𝑥 

𝑟𝑖 = intracellular conductors resistance per unit length 

𝑟𝑒 = extracellular conductors resistance per unit length 

𝐼𝑚 = membrane current 

𝑉𝑚 = membrane potential       

 𝑉𝑚 = 𝑉𝑖 − 𝑉𝑒 

𝑉𝑖= intracellular potential 

𝑉𝑒= Extracellular potential 

𝐼𝑖= Current flowing inside the call 

𝐼𝑒 = Current flowing outside the cell 

 

According to Newton’s law, action and reaction are equal and 

opposite. Thus, applying the Ohm’s law at inner conductor. 

𝐼𝑖𝑟𝑖∆𝑥 = −𝑉𝑖    (8) 

In the limit ∆𝑥 tends to zero, this becomes;  

 
𝜕𝑉𝑖

𝜕𝑥
= −𝐼𝑖𝑟𝑖    (9) 

𝜕𝑉𝑒

𝜕𝑥
= −𝐼𝑒𝑟𝑒 = 𝐼𝑖𝑟𝑒     

     (10) 

Applying the cardiac computational limit at any node, we 

obtain 

∆𝐼𝑖 = −𝐼𝑚∆𝑥; that is 
𝜕𝐼𝑖

𝜕𝑥
= −𝐼𝑚    (11) 

According to the definition of 𝑉𝑚 
𝜕𝑉𝑚

𝜕𝑥
= −𝐼𝑖(𝑟𝑖 + 𝑟𝑒)    (12) 

Differentiating equation (12) and substitute in (11), we obtain 

𝜕2𝑉𝑚

𝜕𝑥2 = 𝐼𝑚(𝑟𝑖 + 𝑟𝑒)    (13) 

Making 𝐼𝑚, the subject of (13), we get 

𝐼𝑚 =
1

(𝑟𝑖+𝑟𝑒)

𝜕2𝑉𝑚

𝜕𝑥2     (14) 

The membrane current per unit length is 

 𝐼𝑚 = 𝐶𝑚
𝜕𝑉𝑚

𝜕𝑡
+

𝑉𝑚

𝑟𝑚
    (15) 

Where 𝐶𝑚 = membrane capacitance per unit length 

𝑟𝑚 =  membrane resistance per unit length substituting 

equation (15) into (14), we have  

𝜕2𝑉𝑚

𝜕𝑥2
(𝑥, 𝑡) = (𝑟𝑖 + 𝑟𝑒) (𝐶𝑚

𝜕𝑉𝑚

𝜕𝑡
+

𝑉𝑚

𝑟𝑚
)  (16) 

The equation (16) represents the one dimensional cable 

equation. 

 

Bidomain Model 

The bidomain model is a mathematical model for the 

electrical propagation of the cardiac muscle that takes into 

account the anisotropy of both intracellular and extracellular 

spaces (Praveen et., al 2016). The model is the generalization 

of one dimensional cable theory (Boyett et., al 1997) and it is 

also known as continuum models. Every muscles of the 

myocardium lies in the intracellular and the extracellular 

domains (Belhamadia 2010) and (Keener and Sneydb 1998). 

This model takes into consideration the different electrical 

conductivities of the Intracellular and Extracellular spaces 

using the myocardial fibre as a reference point, their 

conductivities in the direction parallel to this fibre are always 

in the perpendicular direction to the myocardial fibres. The 

variation in anisotropy ratios of the intracellular and 

extracellular cells accounts for the assumptions of the 

bidomain models. This model has two nonlinear partial 

differential equations coupled to a system of ordinary 

differential equations. 

Considering the generality that conductivities of extra and 

intra-cellular fluid show anisotropy along the fibre axis x. 

Then ge(x) and gi(x) are given functions of x. 

By definition 𝑉𝑚 = 𝑉 + 𝑉𝑒 . According to ohm’s law; 
𝜕𝑉𝑖

𝜕𝑥
= −𝑟𝑖𝐼𝑖, 

𝜕𝑉𝑒

𝜕𝑥
= −𝑟𝑒𝐼𝑒 

As defined in equations (9) and (10). According to Kirchoff’s 

law the loss of longitudinal current (per unit length) must 

precisely equal the transmembrane current. 
𝜕𝐼𝑚

𝜕𝑥
= −𝐼𝑚, 

𝜕𝐼𝑒

𝜕𝑥
= −𝐼𝑚 + 𝐼𝑎   (17) 

Where 𝐼𝑎= externally current applied to external domain and 

resembling defibrillation shock applied to tissues of higher 

dimensions. 

And 𝐼𝑚 = 𝐶𝑚
𝜕𝑉𝑚

𝜕𝑡
+

𝑉𝑚

𝑟𝑚
 as in equation (15) 

Using equations (9), (10) and (17), we obtain two basic 

equations for bidomain one-dimensional tissue representation 
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𝜕𝑉𝑚

𝜕𝑡
=

1

𝐶𝑚
[

𝜕

𝜕𝑥
(

1

𝑟𝑖(𝑥)

𝜕𝑉𝑚

𝜕𝑥
) +

𝜕

𝜕𝑥
(

1

𝑟𝑖(𝑥)

𝜕𝑉𝑒

𝜕𝑥
)] −

1

𝐶𝑚
(𝐼𝑖𝑜𝑛 + 𝐼𝑎𝑝𝑝) 

         (18) 

And 
𝜕

𝜕𝑥
[(

1

𝑟𝑖(𝑥)
+

1

𝑟𝑒(𝑥)
)

𝜕𝑉𝑒

𝜕𝑡
] = −

𝜕

𝜕𝑥
[

1

𝑟𝑖(𝑥)

𝜕𝑉𝑚

𝜕𝑥
] − 𝐼𝑎      (19) 

If 𝑟𝑖  and 𝑟𝑒  do not change along the fibre axis x, equations 

(18) and (19) may be simplified 

𝜕𝑉𝑚

𝜕𝑡
=

1

𝐶𝑚𝑟𝑖
[

𝜕2𝑉𝑚

𝜕𝑥2
+

𝜕2𝑉𝑒

𝜕𝑥2
] −

1

𝐶𝑚

(∑ 𝐼𝑠 + 𝐼𝑠𝑡) (20) 

And (
1

𝑟𝑖
+

1

𝑟𝑒
)

𝜕2𝑉𝑒

𝜕𝑥2
=

−1

𝑟𝑖

𝜕2𝑉𝑚

𝜕𝑥2
− 𝐼𝑎  (21) 

Where 𝐼𝑠𝑡 = stimulated current 

And 𝐼𝑠 = excited current 

These two equations (20) and (21) can be reduced to one if we 

substitute the expression for 
𝜕2𝑉𝑒

𝜕𝑥2
 obtained from equation (21) 

into (20), we obtain 

𝜕𝑉𝑚

𝜕𝑡
=

1

𝐶𝑚𝑟𝑖

𝜕2𝑉𝑚

𝜕𝑥2
[

1
𝑟𝑒
𝑟𝑖

+1
] −

1

𝐶𝑚
[∑ 𝐼𝑠 + 𝐼𝑠𝑡 + 𝐼𝑎

1

1+
𝑟𝑖
𝑟𝑒

]     (22) 

 

Monodomain Model 

The monodomain model is a reduction of the bidomain model 

of the electrical propagation in the myocardial tissue. The 

assumption is that the Intra and extra-cellular domain have 

equal anisotropy ratios. It implies that the conductivities in the 

intracellular space is directly proportional to the extracellular 

space. 

From equation (22), we observe the presence of additional 

stimulus 

𝐼𝑎
1

1+
𝑟𝑖
𝑟𝑒

  originally applied to extra-cellular domain 

If we denote 
𝑟𝑖

𝑟𝑒
= 𝛿 . Then if the diffusion co-efficient for 

bidomain case is 𝐷’ and 𝐷 = 𝐼𝑎 then we can re-write 𝐼𝑎.
1

1+
𝑟𝑖
𝑟𝑒

   

as 𝐷’ so that  

𝐷’ =
𝐷

1+𝛿
  because 𝛿 > 0, 

𝐷’ < 𝐷 and when 𝛿 → 0 in equation (22), then we arrive at 

the monodomain models, given below 

1

𝑟𝑖𝐶𝑚

𝜕2𝑉𝑚

𝜕𝑥2 =
𝜕𝑉𝑚

𝜕𝑡
+

1

𝐶𝑚

∑ 𝐼𝑠 +
1

𝐶𝑚
𝐼𝑠𝑡  (23) 

Equations (23) is the monodomain model. 

 

RESULTS AND DISCUSSION 

To graphically analyse the electrophysiological models, we 

have to study the excitation wave propagation in a ring of 

cardiac tissue, which is subjected to significant practical and 

theoretical importance  (Karma et., al 1994), (Chialvo 1990) 

and (Ito  and Glass 1992). Circulation of a pulse around a ring-

shaped excitable tissue can be started by applying two stimuli 

at two approximately chosen points on a ring with a time 

delay. The circulation of the excitation in a ring is governed 

by two relationships. The first is conservation equation. 

𝑇𝐶𝐾 = 𝐴𝑃𝐷𝐾(𝐷𝐼𝑘−1) + 𝐷𝐼𝑘;  𝑇𝐶𝐾 =
𝐿

𝜃𝐾
  (24) 

The second is the dispersion equation 

𝜃𝐾 = 𝑓(𝐷𝐼𝑘−1)    (25) 

K = Subscript indicating the number of pulse turn in a ring. 

𝑇𝐶𝐾= time required for circulation of the pulse around the ring 

𝐴𝑃𝐷𝐾= action potential duration 

𝐷𝐼𝑘= diastolic interval 

𝜃𝐾 = velocity of pulse propagation  

For us to plot this graph, the following assumptions are 

necessary 

i. APD restitution curves measured on an isolated cell 

and on a cell in a ring are the same 

ii. The velocity of a pulse propagation in a ring is 

constant for the duration of a turn in circulation 

Equation (24) represents a straight line in the coordinates 

(APD, DI). The distance of this line from the centre of 

coordinates is proportional to the ring length L. the dependent 

variable in equation (25) is plotted under ADP restitution 

curve. Both curves in equation (24) and (25) are obtained by 

computer simulation of the simplified model (Kogan et., al 

1995). The first turn of pulse propagation in a ring is clarified 

in figure 3A and the other three in figure 3B are three cases 

with ring lengths 𝐿1 > 𝐿2 > 𝐿3 which corresponds to stable 

circulation of the border of instability and unstable circulation 

respectively for the main tissue formed with cell models 

without developed Ca dynamics. 

 

 

 

 

 

 

 

 

 

Figure 3A 

 

  

AP 

1        2        3        4      5 
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Figure 3B 

 

RESULTS 

To analyse the results obtained from the graph on fig 3A and 

fig 3B, we shall study the several turns of pulse circulations 

using this curves. In the conservation equation (24), we shall 

consider three cases: 

First Turn 

We initiate the excitation propagation in a ring when 1D fibre 

is at rest. Therefore, the APDi=APDimax and 𝜃1 = 𝜃1𝑚𝑎𝑥 

𝜆1 = 𝜃1𝑚𝑎𝑥𝐴𝑃𝐷1𝑚𝑎𝑥 

We assume that 𝐿1 > 𝜆1, so 𝐿1 − 𝜆1 = ∆𝐼1 and 𝐷𝐼1 =
∆𝐼1

𝜃1𝑚𝑎𝑥
 

Second Turn 

From APD restitution and dispersion curves (shown in fig 

3B), we find APD2 and 𝜃2. 𝜃2 < 𝜃1. 

Assuming that 𝜃2 is a constant on the second pulse turn, we 

obtain 𝑇𝑐2 > 𝑇𝑐1 and on the graph in figure 3B, the straight 

line L changes its position to 𝐿1. Using the obtained values of 

APD2 and 𝜃2 , we determine the corresponding wavelength 

and 𝐷𝐼2 for the second turn; 

𝜆2 = 𝜃2𝐴𝑃𝐷2 so 𝜆2 < 𝜆1 

𝐿1 − 𝜆2 = ∆𝐼2, so ∆𝐼2 > ∆𝐼1 and  

𝐷𝐼2 =
∆𝐼2

𝜃2
;  𝐷𝐼2 > 𝐷𝐼1 

Third Turn 

Using APD restitution and dispersion curves, we find 

𝐴𝑃𝐷3(𝐷𝐼2)  and 𝜃3(𝐷𝐼2) ;  𝜃3 = 𝜃1  but 𝜃3 > 𝜃2 . The third 

cycle time 𝑇𝑐3 =
𝐿1

𝜃3
= 𝑇𝑐1  and line 𝐿1′  return to the close 

vicinity of 𝐿1. The wavelength 𝜆3 = 𝜃3𝐴𝑃𝐷3. Since 𝐴𝑃𝐷3 >
𝐴𝑃𝐷2 and the diastolic interval on the third turn is  

𝐷𝐼3 =
∆𝐼3

𝜃3
, here ∆𝐼3 = 𝐿1 − 𝜆3 

Because ∆𝐼3 < ∆𝐼2 … 𝐷𝐼3 < 𝐷𝐼2 …  

The graphical analysis shows a corresponding relationship 

between the ring length L and the circulation of blood in the 

human cardiovascular system as modelled by cardiac 

electrophysiological model. For ring length 𝐿1 , the APD 

restitution curve shows a stable circulation, the ring length 𝐿2 

shows a border of stability in circulation while the ring length 

𝐿3 shows unstable circulation which leads to termination of 

circulation and could lead to sudden death since blood 

circulation ceases or paralysis of certain part of the human 

body system. 

 

CONCLUSION 

This paper reveals the mathematical analysis of 

electrophysiological models. It presents some of these models 

with a view of providing adequate information on the 

relationship between the cardiac functioning and its relevance 

to practical computer simulation. Some assumptions were 

made and the following conclusions were adopted for the 

advancement of knowledge in cardiac electrophysiological 

models. It was arrived at that as the ring length increases, there 

is an increase in blood circulation and a corresponding 

decrease in ring length will also result in reduction of blood 

circulation. It however suggested that other procedures such 

as 2D or 3D computer simulations should be adopted to 

produce a better result. 
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