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ABSTRACT 

In this paper, we adopt the general method of interpolation and collocation in Linear Multistep Methods in 

deriving some numerical schemes for solving second order ordinary differential equations. Different choices 

of the interpolating function in the form of shifted Legendre, shifted Chebyshev and Lucas polynomials with 

the same interpolation and collocation points are considered in order to establish uniformity or otherwise of the 

derived schemes for the various polynomials. Furthermore, probable disparities in the derived schemes for 

varied choices of interpolation and collocation points are also investigated. Results indicate that all the 

polynomials yield exactly the same schemes for the same choice of interpolation and collocation points but 

different schemes for different choices of interpolation and collocation points. However, numerical examples 

considered showed that all the derived schemes performed exactly in the same manner in terms of accuracy, 

regardless of the choices of interpolation or collocation points. Nevertheless, the derived schemes perform 

admirably better when compared with existing methods in literature. 
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INTRODUCTION 

In recent times, systematic solution algorithm for solving 

general forms of ordinary differential equations have been 

developed. The derivation of such algorithms are variably 

achieved with the modification of existing methodology in the 

literature. Approximating algorithms to differential equations 

came in various forms and derivation methodology such as B-

Spline Collocation Method, Finite Element Method, Finite 

Variation Method, Differential Transform Method, Laplace 

Transform Method, Fourier Transform Method, Linear 

Multistep Method, Adomian Decomposition Method as well 

as He’s Homotopy Perturbation. 

These aforementioned methods have been implemented 

simultaneously or modified successively, just as the case of 

linear multistep methods. Evidently, continuous research 

aimed at deriving solution methods with finer properties and 

better approximations led to the emergence of employing 

special polynomials as an approximant to solutions of 

differential equations.  

Diverse method(s) of obtaining approximate solution to 

general or special equations in the form of  
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0 0
yxy  )1(

0

)1(

0
)(...,   nn yxy   (1) 

have been derived for various classes of linear multistep 

methods. Amongst these are the methods of Fatunla (1988), 

Ayinde and Ibijola (2015), Onumanyi et al (1994), Butcher 

(1993), James et al (2012), Sunday et al (2012), Mohammed 

and Yahaya (2010), Skwame et al (2012), Ajileye et al 

(2018). Ogunride et al (2020), Isah et al (2012) and Salawu et 

al (2020), where (1) is of first order. Further development led 

to approximate solution to (1) where 𝑛 = 2, see ( Adesanya 

et al (2009), Awoyemi et al (2012), Awoyemi and Kayide 

(2005), D’Ambrosio et al (2009), Fatunla (1991), Fudziah et 

al (2009), Jator and Li (2009), Yahaya and Badmus (2009) 

and Adoghe and Omole (2018)). Similarly, extensions has 

been made to solving (1) with cases where 3n and 

,4n  see (Mohammed and Adeniyi (2014), Ogunware et 

al (2018), Yakubu et al (2011), Awoyemi et al (2014), Anake 

et al (2013), Adesanya et al (2012) and Adoghe and Omole 

(2019)) and (Adoghe and Omole (2019), Adeyeye and Omar 

(2019) and Luke et al (2020)) respectively. 

To achieve higher efficiency of derived methods of solution, 

it is expected that the approximating polynomial agrees with 

the solution of a given differential equation at good number 

of points within a finite interval within which the solution to 

such differential equation is being sort. To this end, 

researchers considered alternative polynomials, as a 

replacement to power series as an interpolating function. 

Solution to (1) was approximated by a method with a 

combination of Chebyshev polynomial and exponential 

function as in Ogunride et al (2020). Similarly, Isah et al 

(2012) and Salawu et al (2020) considered shifted Chebyshev 

and shifted Legendre polynomials respectively.  

Remarkable experimental outcome from the use of these 

oscillating polynomials as basis function for first and second 

order form of (1) suggested that such polynomials could be 

employed for higher order problems. As seen in Luke et al 

(2020), Lucas polynomial as basis function was considered, 

with finer numerical results. 

Following these developments, we wish to exploit the diverse 

possibilities of choices of these special classes of 

polynomials. We attempt to discover their meeting points, 

comparative performances and possible uniformity of results, 

with the aim of recommending the best polynomial for use as 

basis function when solving ordinary differential equations. 

The rest part of these research is outlined thus; derivation 

methodology, analysis of derived schemes based on choices 

of basis polynomials as well as interpolation and collocation 

points, numerical experiment, discussion of results and 

conclusion. 
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METHOD DERIVATION 

Derivation of a Block of Uniform Discrete Schemes. 

Consider a linear form of (1) with 2n , being a general second order ordinary differential equation, expressed as 

),',,('' yyxfy  ,)( 00 yxy  ,)(' '
0 0

yxy  nxxx 0      (2) 

The solution to (2) is assumed to exist, at least on the assumption that f is continuous. In addition, given some specified 

interval, we assume that the solution to (2) agrees with some polynomial given as  
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at finitely many points within the interval. 

(3) shall be considered for three cases of the function )(xi  

viz: 

1. When )(xi is of Lucas polynomial type 

2. When )(xi is of shifted Legendre polynomial type 

3. When )(xi is of shifted Chebyshev polynomial type 

where w  is a sum of interpolation points and collocation 

points less one for all cases.  

For the interpolation and collocation derivation technique so 

adopted, (3) is uniformly interpolated at points nx  and 

2nx  while the second derivative of (3) is collocated at the 

points 321 ,,,  nnnn xxxx  and 4nx , thus deriving a 

4-step block method. 

Interpolating and collocating the basis function (3) yields a 

system of 7 equations in 7 unknowns sai ' , the solution for 

the unknowns are substituted back into the basis function (3) 

to give the respective continuous formulation of the proposed 

4 step method for each of the cases in the general form of  
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where ),( hxj  and ),( hxj  are continuous in x . 

The first and second derivative of (4) with respect to x  is given as  
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For each of the cases specified above, the functions ),( hx and ),( hx in (4) are given as; 
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The proposed block of discrete schemes is obtained when (4) is evaluated at 4nx , 3nx  and 1nx  while (5) is evaluated 

at 321 ,,,  nnnn xxxx and 4nx , giving rise to uniform block of schemes for the cases 1, 2 and 3, which are expressed 

as 
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The derived block (8) is a simultaneous numerical integrator 

of second order initial value problems of special second order 

ordinary differential equations, which is same for either the 

choice of Lucas, Shifted Legendre or Shifted Chebyshev 

polynomial. 

Derivation of Uniform and Non-Uniform Order Block of 

Discrete Schemes 

For each case of orthogonal polynomial, (3) is considered 

with different choices of interpolation and collocation points;  

 

 

 

)(xi of Lucas Polynomial type 

In this case, (3) is of Lucas polynomial type with the choice 

of 31,  nn xx , 4nx as interpolation points and 

21,,  nnn xxx , 3nx as collocation points. A continuous 

formulation of a four-step method is obtained in the form of 

(4).  

A set of discrete schemes is derived when the continuous 

formulation, its first and second derivatives are evaluated at {

2, nn xx }, { 4321 ,,,,  nnnnn xxxxx } and {

4nx };the result is presented in (8). 
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)(xi of Shifted Chebyshev Polynomial type 

The choice of )(xi in (3) is of Shifted Chebyshev 

polynomial with the choice of nx  and 4nx as interpolation 

points, while the points 321 ,,,  nnnn xxxx  and 4nx  

are selected as collocation points.  

With this choices, a continuous scheme in the form of (4) is 

derived, such that the scheme and its first derivative are 

evaluated at { 321 ,,  nnn xxx } and {

4321 ,,,,  nnnnn xxxxx } respectivelyto generate a 

block of discrete schemes as presented in (9) 
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Furthermore, the choices of interpolation and collocation 

points are reviewed for this choice of polynomial. A 

continuous polynomial in the form of (4) is again derived with 

2, nn xx  and 3nx as interpolation points, while

321 ,,  nnn xxx  and 4nx are selected collocation 

points.  

Similarly, a simultaneous numerical integrator is derived 

when the continuous formulation, its first and second 

derivative are evaluated at { 4, nn xx }, {

4321 ,,,,  nnnnn xxxxx } and { nx } respectively as 

given in (10) 
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)(xi of Shifted Legendre Polynomial type 

Again, )(xi  in (3) is taken to be of Shifted Legendre 

polynomial, where the points  321 ,,  nnn xxx  and 

4nx are selected interpolation points with 21,  nn xx  

and 3nx  as collocation points. The continuous formulation 

of this approach in the form of (4), its first and second 

derivatives are also evaluated at { nx }, {

4321 ,,,,  nnnnn xxxxx } and { 4nx } respectively 

as in (11). 
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METHOD ANALYSIS 

Order and Error Constant 

Following [35], the local truncation error associated with the method is defined by  

   )()(]);([ 2 jhxfhjhxyhxyL njnj       (12) 

where )(xy is assumed to have continuous derivative of sufficiently high order. 

Thus expanding (12) by Taylor series, the co-efficient of the expansion is generalized recursively as  
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The method will be of order )2( q with error constant as the value of qc if 0... 11  qo ccc  and 0qc  

Hence, the discrete schemes of (7) are of non-uniform order  T5,5,5,5,5,5,5,6 and error constants   
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Similarly, the order and error constant of each of the discrete schemes of (8) is  T5,5,5,5,5,5,5,5 and
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respectively. 

As well, the discrete schemes of (9) is respectively of non-uniform order  T5,5,5,5,5,5,5,6  and of error constants 
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Again, (10) is found to be of uniform order  T5,5,5,5,5,5,5,5 with respective error constants
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The discrete schemes of (11) is also of non-uniform order  T5,5,5,5,5,5,5,6 and of error constant 
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respectively. 

Consistency and Zero Stability 

Since the derived block (7), (8), (9), (10) and (11) are of order 

greater than one, they are sufficiently consistent. 

The roots of the first characteristic polynomial of the derived 

blocks were found to have all their roots within the unit circle 

with the spurious roots being simple, hence the Zero stability 

of the derived methods (7), (8), (9), (10) and (11). 

Following the determination of the consistence and stability 

properties of the derived methods, we deduced that the 

derived blocks are convergent. 

 

RESULTS AND DISCUSSION 

Solution to test problems are approximated using each of the 

derived system of discrete schemes. The uniform 

performances of the various approaches (7), (8), (9), (10) and 

(11) are investigated. Comparative observation of the 

numerical results are discussed.
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Problem 1 

,12''  yy  ,1)0( y  ,0)0(' y  ,10  x  1.0h  

Exact Solution:  
2

1

4

3
)( 22   xx eexy  

The maximum error encountered within the interval of solution using each of the set of derived methods (7), (8), (9), (10) and 

(11) are tabulated below. 

Computations are performed iteratively on Maple 18 software. 

 

Table 1: Numerical Result for Problem 1, Comparing Maximum Error for  

Derived Methods 

S/N0 Method Max Error 

1 Block (7) 07-E 76502.87368920  

2 Block (8) 07-E 76552.87368920  

3 Block (9) 07-E 76542.87368920  

4 Block (10) 07-E 78362.87368920  

5 Block (11) 07-7894E2.87368920  

 

Table 1 clearly reveals that all varied choices of interpolation 

polynomial as well as variants of interpolation and collocation 

points lead to considerably the same result. 

It is apparent that, regardless of the choice of orthogonal 

polynomial chosen as an interpolating function for deriving a 

k-step method, even though the derived discrete schemes 

comprising the various block methods varies, exceptionally 

the same results will be obtained when implemented in 

solving a particular problem. 

It is also easily seen from (7) that uniform block of discrete 

schemes were obtained when the choices of interpolating 

function varied, but with the same choices of interpolation and 

collocation points. 

 

Problem 2 

,)cos(2'' xxy   ,0)0( y  ,1)0(' y  ,10  x  ,1.0h ,01.0 001.0  

Exact Solution: xx
x

xy  2)cos(2
6

)(
3

 

The maximum error encountered for each of the varied step sizes is presented in Table 2 

Table 2: Maximum Error for Variable Step  

Size Mode of Solution to Problem 2  

s/no step size h maximum error 

1 1.0  08103595.1   

2 01.0  15107297.9   

3 001.0  21105110.9   

 

Table 2 above shows conformity of the derived methods with 

necessary convergent criteria, that is, vanishing error as step 

size vanishes. Thus, it is concluded that the derived methods 

are consistent and convergent solvers. 

CONCLUSION 

Conclusively, it is established that whenever interpolation and 

collocation approach is employed as a derivation technique, 

the choices of interpolation or collocation points as well as 
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basis or interpolating function does not affect the final 

outcome in terms of performance of derived methods, when a 

k-step solution algorithm is derived. 

This idea is extended to multi step methods for higher order 

initial and boundary value problems of ordinary differential 

equations, it is however noteworthy to state that what may 

increase the performance of derived linear multistep methods 

over existing methods in terms of accuracy is if a higher step 

number method is derived. 

Further research points towards considering newer ideas of 

computation, especially for problems in the form of system of 

differential equation. Such methods may include multi-grid 

method and quantum computational methods.  
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