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ABSTRACT 

Models with bathtub-shaped failure rate function have been widely accepted in the field of reliability and 

medicine and are particularly useful in reliability related decision making and cost analysis. In this study, the 

additive Chen-Weibull (ACW) distribution with increasing and bathtub-shaped failure rates function is studied 

using Bayesian and non-Bayesian approach using two real data set. The Bayes estimator were obtained by 

assuming non-informative prior (Half-Cauchy) under square error loss function (SELF), the Laplace 

Approximation and Monte Carlo Markov Chain (MCMC) techniques conducted in R were used to approximate 

the posterior distribution of ACW model. In addition, the maximum product of spacing method (MPS) of 

estimation is also considered using mpsedist function in BMT package in R with good set of initial values of 

parameters. We compared the performance of the two difference estimation methods by using Kolmogorov-

Smirnov test. And the result showed that MPSEs method outperformed Bayesian approach 

 

Keywords: Bayes estimators, prior distribution, square error loss function, Chen Distribution, Weibull 

distribution

INTRODUCTION 

The techniques of proposing, generalized, modified or 

extended classes of distributions have pulled theoretical and 

applied statisticians due to their flexibility in modeling data in 

practice. The generalization, modifications and extensions of 

probability distribution makes it richer and more flexible for 

modeling data in practice. One way of generalizing, 

modifying and extension of probability distribution is by 

adding a new parameter to the base line model. Weibull 

distribution which was named after Swedish mathematician 

(Weibull, 1938), who described it in detail as it is a widely 

used life time distribution not only in reliability but also in 

many other fields. However, the failure rate function of the 

Weibull distribution can only be increasing, decreasing, or 

constant. But it fails to handle the life time data with bathtub-

shaped failure rate function. Therefore, many generalizations, 

extensions, and modifications of the Weibull distribution have 

been developed to meet the requirement. Example, (Xie and 

Lai, 1996) proposed an additive Weibull (addW) distribution 

by combining two Weibull distribution together with 

cumulative distribution function (CDF)  

 𝐹(𝑥) = 1 − 𝑒−𝛼𝑥𝜃−𝛽𝑥𝛾
, 𝑥 ≥ 0;  𝛼, 𝛽 ≥ 0, 𝜃 > 1, 0 < 𝛾 < 1.                                 (1) 

 

(Sarhan and Zaindin, 2000) Introduce a new three (3) parameter distribution called modified Weibull distribution by 

generalizing exponential, Rayleigh, linear failure and Weibull 

distributions. , it is observed that the MWD can have constant, 

increasing and decreasing hazard rate functions which are 

desirable for data analysis purposes. (Chen, 2000) Proposed a 

new two (2) parameter distribution with bathtub shaped or 

increasing hazard rate function called Chen distribution with 

positive parameter α and β. The cumulative distribution 

function (CDF) of Chen distribution is given by      

 

                   𝐹(𝑥) = 1 − 𝑒
𝜆(1−𝑒𝑥𝛽

)
, 𝑥 ≥ 0;  𝜆, 𝛽 > 0.                                          (2)                                                              

 

Neetu et al., (2012) Proposed a new five (5) parameter 

distribution called Beta generalized Weibull distribution The 

new distribution generalize BGE, BW, GW,GR, BE, GE, 

Weibull, Rayleigh and exponential distribution.. The new 

distribution can have monotone, Bathtub-shaped, unimodal 

failure rate for different parametric combinations. The new 

distribution showed that its density can be expressed as a 

mixture of GW densities. Bo He et al., (2016) Proposed a new 

five (5) parameter distribution called Additive modify 

Weibull distribution. The new distribution can have 

increasing, decreasing and bathtub-shaped hazard rate 

functions. Elgarhy et al., (2017) Proposed a new four 

parameter distribution called Exponentiated Weibull-

Exponential distribution (EWED). Eisa et al., (2018) 

introduced a new four parameter distribution called extended 

Exponentiated Weibull (EEW) distribution. The new 

distribution can have a decreasing, increasing, decreasing-

increasing-decreasing (DID), upside down bathtub 

(unimodal) and bathtub-shaped failure rate function. 

Mohammed et al., (2019) proposed a new five parameter 

generalization of the extended Weibull distribution called 

generalized extended Exponentiated Weibull (GExEW) 

distribution by adding one shape parameter to the base line 

distribution (ExEW). (Tien and Radim, 2020) Proposed and 

studied a new life time distribution called additive Chen-

Weibull distribution with four (shape and scale) parameters. 

The new distribution is a continuous life time distribution 

with increasing and bathtub-shaped failure rates proposed by 

combining the Chen and Weibull distribution in a series 

system with two independent components. This situation is of 
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particular interest in applications, where the failure times of a 

system with two or more failure modes must be modeled. One 

component, representing the first failure mode follows the 

Chen distribution and the other follows the Weibull 

distribution. Each component has a potential failure time 

associated with each failure mode. The ACW model is 

demonstrated to be better than many existing life time 

distribution when fitting to two real reliability data sets. The 

CDF of the additive Chen-Weibull (ACW) distribution with 

four parameters 𝜽 = (𝛼, 𝛽, 𝛾, 𝜆)′ is defined by  

      𝐹(𝑥) = 1 − 𝑒𝜆(1−𝑒𝑥𝛾)−(𝛼𝑥)𝛽
,         

Where 𝑥 ≥ 0, 𝛼, 𝛽, 𝛾 > 0, 𝜆 ≥ 0   

The probability density function (PDF) is defined by 

              𝑓(𝑥) = (𝜆𝛾𝑥𝛾−1𝑒𝑥𝛾𝛼𝛽(𝛼𝑥)𝛽−1)𝑒𝜆(1−𝑒𝑥𝛾)−(𝛼𝑥)𝛽 ,                         (3) 

Where 𝑥 ≥ 0. 
And the failure rate and reliability functions are respectively  

             ℎ(𝑥) = (𝜆𝛾𝑥𝛾−1𝑒𝑥𝛾 + 𝛼𝛽(𝛼𝑥)𝛽−1                                                  (4)                                                                               

And  

             𝑅(𝑥) = 𝑒𝜆(1−𝑒𝑥𝛾)−(𝛼𝑥)𝛽                                                                     (5)             

                                                              

As shown in the literature, the Bayesian approach is a widely 

used for the estimation of unknown parameters of any 

proposed probability distribution. Example, (Chris and Noor, 

2012) studied Bayesian analysis of the survival function and 

failure rate of Weibull distribution with censored data. The 

Bayes estimator are obtained under three different loss 

function. (Ahmad and Ahmad, 2013) considered the Bayesian 

approach for the estimation of the scale parameter of two 

parameter Weibull distribution with known shape. They 

obtained Bayes’ estimator of Weibull distribution by using 

Jeffery’s and extension of Jeffery’s prior under linear 

exponential loss function and symmetric loss function. (Al 

Omari, 2016) Studied Bayesian using MCMC of Gompertz 

distribution based on interval censored data with three loss 

functions. Vikas et al., (2017) discussed classical and 

Bayesian methods of estimation for power Lindley 

distribution with application to waiting time data. Kamran et 

al., (2019) studied a three-parameter Frechet distribution with 

medical application. The Bayesian estimators were obtained 

using LINEX and general entropy loss function by 

considering Gama and non-informative priors through 

Lindley’s approximation. (Tien and Radim, 2020) Used 

Bayesian assuming gamma prior under square error loss 

function (SELF) and maximum likelihood estimate (MLE) for 

the estimation of the four unknown parameters of ACW 

model.  

The main objectives of this article is to provide complete 

Bayesian analysis by considering half-Cauchy distribution 

prior under square error loos function (SELF) for the 

estimation of the four unknown parameters of the ACW 

model. The rest of the article is organized as follows. We 

derived the maximum product of spacing method of 

estimation (MPSE) for estimating the four unknown 

parameters of the ACW model. Bayes estimators by assuming 

half-Cauchy prior under square error loss function (SELF) has 

been provided. Application to two real reliability data sets and 

the comparison of the two estimation methods using 

Kolmogorov-Smirnov test statistics are also presented. And 

finally the conclusion is also provided. 

 

MATERIAL AND METHODS 

Estimation Using Maximum Product of Spacing Method  
We discussed the maximum product of spacing method for 

estimating the parameters of any probability distribution. In 

this section, the method of maximum product of spacing 

(MPS) introduced by (Chen and Amin, 1979) will be used to 

estimate the unknown parameters of additive Chen-Weibull 

(ACW) distribution. Let 𝑋1,   𝑋2, … . 𝑋𝑛  be i.i.d random 

variables from the additive chen-weibull distribution and let 

𝑋(1), 𝑋(2), … 𝑋(𝑛) be the corresponding order statistics.  

 

The cumulative distribution function (CDF) of additive Chen-Weibull (ACW) distribution with four parameters 𝜽 =
(𝛼, 𝛽, 𝛾, 𝜆)𝑇 is defined by 

𝐹(𝑥) = 1 − 𝑒𝜆(1−𝑒𝑥𝛾)−(𝛼𝑥)𝛽
,       𝑥 ≥ 0, 𝛼, 𝛽, 𝛾 > 0, 𝜆 ≥ 0                                (6) 

  Then, we define spacing as 

𝐷𝑖 = 𝐹(𝑋𝑖) =  1 − 𝑒𝜆(1−𝑒𝑥𝑖𝛾)−(𝛼𝑥)𝛽
                                                                   (7)                         

𝐷𝑛+𝑖 = 1 − 𝐹(𝑋𝑖) = 1 −  1 − 𝑒𝜆(1−𝑒𝑥𝑖𝛾)−(𝛼𝑥)𝛽
                       

And the general term of spacing is given by  

                𝐷𝑖 = 𝐹(𝑋𝑖) − 𝐹(𝑋(𝑖−1))                                                                                                        

       Such that ∑ 𝐷𝑖 = 1𝑛
𝑖         

In method of product spacing, we choose 𝜽 such that it maximizes the product of spacing or in other words it maximizes the 

geometric mean of spacing i.e.  

  𝑀 = ∏ 𝐷𝑖

1

𝑛+1𝑛+1
𝑖=1                                                                                                (8)                                                                        

We defined the term S which is obtained by taking log on both side of the equation (8) i.e Set  𝑆 = 𝑙𝑜𝑔𝑀  we get 

                            𝑆 =
1

(𝑛+1)
 ∑ 𝑙𝑜𝑔𝐷𝑖

𝑛+1
1=1                                                                            

𝑆 =  
1

(𝑛 + 1)
∑ log ( 1 − 𝑒𝜆(1−𝑒𝑥𝑖𝛾)−(𝛼𝑥𝑖)𝛽

−  1 − 𝑒𝜆(1−𝑒
𝑥(𝑖−1)𝛾

)−(𝛼𝑥(𝑖−1))𝛽

𝑛+1

𝑖=1

) 

       𝑆 =
1

(𝑛+1)
∑ 𝜆(1 − 𝑒𝑥𝑖𝛾) − (𝛼𝑥𝑖)𝛽 − 𝜆(1 − 𝑒(𝑥𝑖−1)𝛾𝑛+1

𝑖+1 )𝛼(𝑥𝑖−1)𝛽                 (9)                                                 
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To obtain the normal equations for the unknown parameters, we differentiate partially equation (9) with respect to the four (4) 

parameters (𝛼, 𝛽, 𝛾 and 𝜆) and equate them to zero. The estimators for 𝛼, 𝛽, 𝛾 and 𝜆 can be obtained by 

                  
𝑑𝑠

𝑑𝛼
= −

1

(𝑛+1)
∑ (𝑥𝑖)𝛽 + 𝜆 − 𝜆𝑒(𝑥𝑖−1)𝛾𝑛+1

𝑖=1 (𝑥𝑖−1)𝛽 = 0  

                         
𝑑𝑠

𝑑𝛽
 =   −

1

(𝑛+1)
∑ (𝛼𝑥𝑖)𝛽 − 𝜆 − 𝜆𝑒(𝑥𝑖−1)𝛾

𝛼(𝑥𝑖−1)𝛽−1  =  0𝑛+1
𝑖=1                     

  
𝑑𝑠

𝑑𝛾
= −

1

(𝑛+1)
∑ 𝑥𝑖𝜆𝑒𝑥𝑖𝛾𝛼(𝑥𝑖−1)𝛽𝛼(𝑥𝑖−1)𝑒(𝑥𝑖−1)𝛾 = 0𝑛+1

𝑖=1      

  
𝑑𝑠

𝑑𝜆
 = −

1

(𝑛+1)
∑ 1 −𝑛+1

𝑖=1 𝑒𝑥𝑖𝛾 + 𝛼(𝑥𝑖−1)𝛽(1𝑒(𝑥𝑖−1))𝛾 =  0                 

 The above expressions cannot be solve analytically, therefore, the iterative procedure techniques (conjugate-gradient 

algorithm solution) will be used in order to obtain the estimate of the parameters of ACW distributions. 

 

Bayesian estimation under half-Cauchy prior   

The Bayesian analysis of concerned reliability model begins with the specification of likelihood function. For this let us assume 

that, 𝑌: 𝑦1,𝑦2, … , 𝑦𝑛 be the observed lifetimes from additive chen-weibull (ACW) distribution with probability density function 

(PDF) 

   𝑓(𝑥) = (𝜆𝛾𝑥𝛾−1𝑒𝑥𝛾 + 𝛼𝛽(𝛼𝑥)𝛽−1)𝑒𝜆(1−𝑒𝑥𝛾)−(𝛼𝑥)𝛽 ,         𝑥 ≥ 0.                     
The corresponding likelihood function can be defined as   

 𝐿(𝑌|𝛼, 𝛽, 𝛾, 𝜆) = 

[∏ (𝜆𝛾𝑥𝑖
𝛾−1

𝑒𝑥𝑖
𝛾

+ 𝛼𝛽(𝛼𝑥𝑖)𝛽−1)] 𝑛
𝑖=1 exp[− ∑ (𝜆(1 − 𝑒𝑖

𝑥𝑖
𝛾

𝑛
𝑖=1 ) + (𝛼𝑥𝑖)𝛽−1)]         (10)                    

 

The next step in Bayesian statistics is to choose a prior distribution that express uncertainty about the parameters of the model 

before the data is observed. We consider an independent and non-informative prior distribution for the four unknown 

parameters  (𝛼, 𝛽, 𝛾, 𝜆) . Both the positive parameters are assumed to be half-Cauchy distributed according to their 

hyperparameters, and are denoted by         

𝛼 ~ Half-Cauchy (35), 𝛽 ~ half-Cauchy (35), 𝛾 ~ half-Cauchy (35) and  𝜆 ~ half-Cauchy (35) 

The joint prior distribution is defined as  

𝑃(𝛼, 𝛽, 𝛾, 𝜆) = 𝑃((𝛼2 + (35)2)(𝛽2 + (35)2)(𝛾2 + (35)2)(𝜆2 + (35)2))              (11) 

 by Bayes’ rules, the joint posterior distribution can be obtained as  

                             𝑃(𝛼, 𝛽, 𝛾, 𝜆|𝑌) ∝ 𝐿(𝑌|𝛼, 𝛽, 𝛾, 𝜆)𝑃(𝛼, 𝛽, 𝛾, 𝜆)                               (12)                   

 

Taking the log of the prior densities, the logarithm of the unnormalized joint posterior density is calculated according to the 

Bayes’ rule as:  

log𝑃(𝛼, 𝛽, 𝛾, 𝜆|𝑌) ∝ log 𝐿 (𝑌|𝛼, 𝛽, 𝛾, 𝜆)+log 𝑝 𝑃((𝛼2 + (35)2)(𝛽2 + (35)2)(𝛾2 + (35)2)(𝜆2 + (55)2))   (13)                                                                                                                                           

 

To get the correct posterior inference for the positive parameters in the situation that involves optimization of the log-posterior, 

itself a difficult numerical problem. The package Laplaces Demon favours unconstrained parameterization by making the log-

transformation of the positive parameter (Romana and Athar, 2016).                             

 

Estimation under Square Error Loss Function 

The Bayesian estimates of the four parameters of additive Chen-Weibull (ACW) distribution assuming independent Half-

Cauchy prior under square error loss function (SELF) is given by                   

   �̂� = ∫ 𝛼𝑃(𝛾, 𝛼, 𝜆, 𝛽|𝑌)𝑑𝜃                 �̂� = ∫ 𝜆𝑝( (𝛾, 𝛼, 𝜆, 𝛽|𝑌) 𝑑𝜃             

   �̂� = ∫ 𝛽𝑝( (𝛾, 𝛼, 𝜆, 𝛽|𝑌) 𝑑𝜃              𝛾 = ∫ 𝛾𝑝( (𝛾, 𝛼, 𝜆, 𝛽|𝑌) 𝑑𝜃    

 

As we can see from the above expressions that, the marginal 

posterior densities of the four parameters cannot be obtained 

in closed-form, therefore the Bayes estimator cannot be 

analytically computed through the posterior means. 

Therefore, the numerical approximation method (Laplace 

approximation) and simulation technique Monte Carlo 

Markov Chain (MCMC) will be used to approximate the 

posterior densities of the parameters. 

The independent Metropolis-Hasting algorithm is a general 

MCMC algorithm introduced by (Hastings, 1970) will be 

used to simulate a random sample from the posterior 

distribution. The implementation of independent Metropolis-

Hasting algorithm and Laplace approximation are given 

below. Let as assume a target distribution 𝒑(𝜽|𝒚) from which 

we wish to generate a sample of size 𝑇.  the metropolis-

Hastings algorithm can be described by the following iterative 

steps; where 𝜽(𝒕)  is the vector of generated values in 

𝑡 iteration of the algorithm

.  

 

Algorithm 1 

Given the marginal posterior distribution 𝑃((𝛾|𝛼, 𝜆, 𝛽, 𝑌), 

𝑃((𝛼|𝛾, 𝜆, 𝛽, 𝑌), 𝑃((𝛽|𝛾, 𝛼, 𝜆, 𝑌), 𝑃((𝜆|𝛾, 𝛼, 𝛽, 𝑌) and sample size N: 

Step 1: select a starting value of the chain 𝛾(0), 𝛼(0), 𝛽(0), 𝜆(0). 

Step 2: set 𝑚 = 1. 

Step 3: Using the M-H, generate 𝛾(𝑚) from 𝑃((𝛾|𝛼(𝑚−1), 𝜆(𝑚−1), 𝛽(𝑚−1)𝑌). 

Step 4: Using the M-H, generate  𝛼(𝑚) from 𝑃(𝛼|𝛾(𝑚), 𝜆(𝑚−1), 𝛽(𝑚−1), 𝑌). 

Step 5: Using the M-H generate  𝛼(𝑚) from 𝑃(𝛽|𝛾(𝑚), 𝛼(𝑚), 𝜆(𝑚−1), 𝑌). 
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Step 6: Using the M-H generate 𝜆(𝑚) from 𝑃((𝜆|𝛾(𝑚), 𝛼(𝑚), 𝛽(𝑚), 𝑌). 

Step 7: set 𝑚 = 𝑚 + 1. 
Step 8: Repeat step 2 to 7until 𝑚 = 𝑁 to obtain the samples of 𝛾, 𝛼, 𝜆 and 𝛽 

With size𝑁, respectively. 

 

Data 
A two real data sets will be used for illustrations purposes that 

is; Aarset and Meeaker-escobar data with a random sample of 

50 lifetime’s devices and the failure and running times of 30 

devices respectively. Two failure modes were observed for 

this data. 

 

 

RESULT AND DISCUSSIONS  

In this section, we have given an application of Bayesian and 

maximum product of spacing method of estimation (MPSE) 

of the additive Chen-Weibull (ACW) distribution to two real 

reliability data sets to illustrate the applicability of ACW 

distribution by the two different estimation methods. The 

Kolmogorov-Smirnov test is also provided for the comparison 

between the two estimation methods

. 

 

Meeker-Escobar data 

                         Table 1. Meeker-Escobar data 

2         10      13     23      23     28      30       65     80     88 

106     143    147   173    181   212    245     247   261   266 

275     293    300   300    300   300    300     300   300   300 

 

Table 1 represent the Meeker-Escobar data with a failure and running times of 30 devices. Two failure modes were observed 

for this dataset. Many authors in the literature used this data for illustration purpose and the most recent studies are given by 

(Tien and Radim, 2020), Almaliki et al., (2013), Bo He et al., (2016) and Mohammed et al., (2019). 

 
Figure 1. The empirical scaled TTT-transform plot for Meeker-Escobar data 

Source: Author’s computation aided by R package V 3.6.3 

 

Fig. 1. Provides the empirical scaled TTT-transform plot for Meeker-Escobar data sets. From this plot we can observed that 

the Meeker-Escobar data have a bathtub-shaped failure rate function. 

The independent Metropolis-Hasting algorithm (algorithm 1) in MCMC is used to simulate a random sample from each of the 

marginal posterior density of four unknown parameters to approximate the posterior distribution of ACW model.  

 

Table 2.  Bayes estimates for the parameters of ACW model to Meeker-Escobar Data. 

Parameter Bayes   SD   Bayes 95%CI 

              𝛾 0.25942 0.0144 [0.2322, 0.2877] 

             𝛼 0.00333 0.0000 [0.0033, 0.0033] 

𝜆 0.01660 0.0588 [0.0079, 0.0306] 

𝛽 289.109 7.6153 [274.98, 304.49] 

 

Source: Author’s computation aided by R package V 3.6.3 

 

Table 2 Shows Bayes estimates and Bayes 95% CI, standard 

deviation for (𝛼, 𝛽, 𝛾,  and𝜆) . Additionally, the asymptotic 

approximation method (Laplace approximation) is also used 

to simulate a random sample from the each of the marginal 
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posterior density using sampling important resampling and 

approximate the posterior densities of the four parameters of 

the ACW model. The estimates of the four parameters 

(𝛾, 𝛼, 𝛽,  and  𝜆)  by asymptotic approximation method are 

respectively computed as, the Bayes estimates are 0.25959, 

0.00333, 0.01729 and 289.698. The standard deviation of the 

four parameters are given as 0.0224, 0.0000, 0.0098 and 

12.319 and the Bayes 95% C.Is are given as [0.2108, 0.3008], 

[0.0033, 0.0033], [0.0056, 0.0472] and [269.44, 319.97]. 

Therefore, it has been observed throughout that the Monte 

Carlo Markov Chain (MCMC) technic particularly (algorithm 

1) summarizes the posterior more precisely in terms of the 

lower standards deviations of the parameters as compared to 

that of asymptotic approximation. 

 

 

       
                                (A)                                                                 (B)           

 Figure 2. (A) Trace plots and (B) plots of the marginal posterior densities of the parameters for the posterior distribution of 

additive Chen-Weibull model using the IM 

Source: Author’s computation aided by R package V 3.6.3 

Fig. 2 (A) trace plot and (B) the marginal posterior density estimates of the parameters obtained by MCMC algorithm 

(algorithm 1). The trace plots of each parameter showed that IM algorithm converges quickly to the same target distribution. 

The marginal posterior densities of the four parameters are distributed approximately symmetrically around the central values 

which means that they provide good Bayesian estimates under square error loss function.  

 

                  Table 3:  MPSE of ACW model Using Meeker-Escobar data 

Parameter                                                  MPSEs 

𝛾                                                 0.15168 

𝛼                                                 0.00333 

𝜆                                                 0.01518 

𝛽                                                 13.4583 

                      Source: Author’s computation aided by R package V 3.6.3 

 

Table 3 gives the maximum product of spacing (MPS) point estimate of the four unknown parameters of additive Chen-Weibull 

(ACW) model of meeker-Escobar data using mpedist function in BMT package in R with good set of initial values of the 

parameters.  

 

     Table 4. K-S and its p-value when fitting to ACWTo Meeker-Escobar data 

Method of Estimation                 K-S(p-value) 

Bayesian              0.14084 (0.5912) 

MPSEs              0.13729 (0.6238) 

        Source: Author’s computation aided by R package V 3.6.3 
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Table 4 represents the K-S statistic and its p-value for the comparison of the two different estimation methods (Bayesian and 

MPSEs) when fitting ACW model to Meeker-Escobar dataset. The result from K-S statistic showed that MPSE with KS = 

0.13729 (p-value = 0.6238) perform better than the Bayesian estimate. 

  
                                   (A)                                                                (B)                                                                                                         

 Figure 3. The estimated (A) failure rate function and (B) reliability function obtained by fitting ACW distribution using 

Bayesian and MPS method of estimation to meeker-Escobar data  

Source: Author’s computation aided by R package V 3.6.3   

 Fig 3 showed a visual comparison of reliability/survival function and failure/hazard rate functions plots, we can see from (A)  

that, the FR of Bayesian estimate started to increase at around 𝑥 = 300,  which shows a low and long constant FR at mid time 

region. the FR of MPSE  started to increase at nearly 𝑥 = 220, which showed low and short constant FR at mid time region. 

 

  
                                   (A)                                                                 (B) 

Figure 4. The estimated (A) PDF and (B) CDF of the ACW model using Bayesian and MPS method of estimation to meeker-

Escobar data. 

 Source: Author’s computation aided by R package V 3.6.                                                      

Fig. 4 showed (A) the probability density function (PDF) and (B) the cumulative distribution function (CDF) of the two 

different estimation method have different shape. From the results obtained we can conclude that, the MPSEs provides a better 

fit of the four unknown parameters of ACW model for Meeker-Escobar data. 

 

                            
                                         (A)                                                 (B)                                                                            

 

Figure. 5. Comparison of theP-P plots of (A) Bayesian (B) MPS estimate when fitting ACW model with meeker-Escobar data 

Source: Author’s computation aided by R package V 3.6.                                                      
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Fig. 5 showed p-p plot of the two different estimation methods for fitting the ACW model to Meeker-Escobar data. P-p plot 

also gives more information about the appropriateness of each estimation methods for fitting ACW model Meeker-Escobar 

data. From the results obtained we can conclude that, the MPSEs provides a better fit of the four unknown parameters of ACW 

model for Meeker-Escobar data. 

 

Aarset data 

 

                              Table 5: Aarset data 

0.1    0.2   1.0   1.0    1.0   1.0    1.0    2.0    3.0    6.0  

7.0    11    12    18     18    18     18     18     21     32 

36     40    45    46     47    50     55     60     63     63 

67     67    67    67     72    75     79     82     82     83 

84     84    84    85     85    85     85     85     86     86 

                             

Table 5 represent the Aarset data with a random sample of 50 lifetime’s devices. Many authors in the literature used this data 

for illustration purpose and the most recent studies are given by  Govind et al., (1993), Lai et al., (2003), (Sarhan and Apolo, 

2013), Almaliki et al., (2013), Bo He et al., (2016), Hongtao et al., (2016) and Mohammed et al., (2019).  

 
Figure. 6. The empirical scaled TTT-transform plot for Aarset data 

Source: Author’s computation aided by R package V 3.6.3 

Fig. 6. Provides the empirical scaled TTT-transform plot for Aarset datasets. From this plot we can observed that the Aarset 

data have a bathtub-shaped failure rate function. 

The independent Metropolis-Hasting algorithm (algorithm 1) in MCMC is also used to simulate a random sample from each 

of the marginal posterior density of the four unknown parameters to approximate the posterior density of ACW model.  

 

Table 6.  Bayes estimates for the parameters when fitting ACW model to Aarset 

Parameters      Bayes                                   SD                                                     Bayes 95%C.I 

𝛾      0.2834                        0.0147                 [0.2553, 0.3123] 

𝛼      0.0118      0.0000                 [0.0117, 0.0119] 

𝜆      0.0420      0.0094                 [0.0264, 0.0629] 

𝛽      80.151      13.103                 [57.284, 108.92] 

             Source: Author’s computation aided by R package V 3.6.3 

 

Table 6. Gives the Bayes estimates, Bayes 95% CIs, and 

standard deviation for (𝛼, 𝛽, 𝛾,  and 𝜆) . Additionally, the 

asymptotic approximation method (Laplace approximation) is 

also used to simulate a random sample from the each of the 

marginal posterior density using sampling important 

resampling and approximate the posterior densities of the four 

parameters of the ACW model. The estimates of the four 

parameters by Laplace approximation of (𝛾, 𝛼, 𝛽, and 𝜆) are 

respectively given as, the Bayes estimates are 0.2812, 0.0118, 

0.0434 and 73.000. The standard deviation are 0.0254, 

0.0001, 0.0170 and 22.8416.  The Bayes 95% C.Is are given 

as [0.2309, 0.3301], [0.0117, 0.0119], [0.0187, 0.0849] and 

[37.8081, 124.67]. Therefore, it has been observed throughout 

in this study that, the MCMC algorithm (independent-

Metropolis) summarizes the posterior more precisely in terms 

of the lower standards deviations of the parameters as 

compared to that of Laplace approximation

.  
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                              (A)                                                                        (B) 

 

Figure. 7 (A) Trace plots and (B) plots of the marginal posterior densities of the parameters for the posterior distribution of 

additive Chen-Weibull model using the IM 

Source: Author’s computation aided by R package V 3.6.3 

Fig. 7 shows the trace plots and density estimates of the parameters obtained by MCMC algorithm. The trace plots of each 

parameter showed that the IM algorithm converge quickly to the same target distribution. The densities are distributed 

approximately symmetrically around the central values which means that they provide good Bayes estimates under square 

error loss function. 

                             

     Table 7:  MPSE of ACW model Using Aarset data 

Parameter                                        MPSEs 

𝛾                                         0.2759 

𝛼                                         0.0118 

𝜆                                         0.0423 

𝛽                                         38.231 

                               Source: Author’s computation aided by R package V 3.6.3 

 

Table 7 gives the maximum product of spacing (MPS) point estimate of the four unknown parameters of additive Chen-Weibull 

(ACW) model of Aarset data using mpdist function in BMT package in R with good set of initial values of the parameters.  

 

               Table 8. K-S and its p-value when fitting to ACWTo Meeker-Escobar data 

Method of Estimation                        K-S (p-value) 

Bayesian                      0.089235(0.8208) 

MPSE                     0.069895(0.9675) 

                Source: Author’s computation aided by R package V 3.6.3 

 

Table 8 represents the K-S statistic and its p-value for the 

comparison of the two different estimation methods 

(Bayesian and MPSEs) when fitting ACW model to Aarset 

data. The result from K-S statistic showed that MPSE with KS 

= 0.069895 (p-value=0.9675) Perform better than the 

Bayesian estimate assuming half-Cauchy prior with KS = 

0.089235 (p-value = 0.8208). In addition, the MPSE also 

perform better than the Bayesian estimate assuming gamma 

prior with KS = 0.079682 (p-value = 0.9087) and MLE with 

KS = 0.070375(p-value=0.9654) studied by (Tien and Radim 

2020).  
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(A)  (B)                                                                        

         Figure. 8. The estimated (A) failure rate function and (B) reliability function.  

            Source: Author’s computation aided by R package V 3.6.3 

Fig 8. Showed a visual comparison of reliability/survival function (R) and failure/hazard rate functions obtained by fitting 

ACW distribution using Bayesian and MPS method of estimation to Aarset data, it has been cleared from these plots that, the 

FR of both Bayesian and MPS estimate predict relatively low and long constant FR at mid time region.  

 

               
                                   (A)                                                                     (B) 

Figure. 9. The estimated (A) PDF and (B) CDF of the ACW model 

Source: Author’s computation aided by R package V 3.6.3 

 

Fig. 9 showed the plots of (A) probability density function 

(PDF) with corresponding (B) cumulative distribution 

function (CDF) plots obtained by fitting ACW distribution 

using Bayesian and MPS method of estimation to Aarset data. 

We can observed from these plots that,  the two different 

estimation methods have almost similar shape as there is only 

slight difference between the two estimation methods. From 

the results obtained we can conclude that, the MPSEs 

provides a better fit  than the Bayesian assuming two different 

priors (half-Cauchy and gamma) and MLE studied by (Tien 

and Radim 2020) of the four unknown parameters of ACW 

model to Aarset data. 

 

                           
                                    (A)                                                         (B)  

Figure. 10. Comparison of the P-P plots of (A) Bayesian (B) MPS estimate when fitting ACW model with Aarset data 

Source: Author’s computation aided by R package V 3.6.3 

Fig. Fig. 10 showed p-p plot of the two different estimation methods for fitting the ACW model to Aarset data. It is cleared 

that, the p-p plot also provides more information about the appropriateness of each estimation methods for fitting ACW model 

to Aarset data.  
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CONCLUSION  

In this study, the additive Chen-Weibull (ACW) model is used 

to analyze the lifetime data using Bayesian assuming half-

Cauchy prior and maximum product of spacing method of 

estimation (MPSE). A two real data sets were used for 

illustration purposes. In Bayesian paradigm, the analytic 

approximation and MCMC techniques were implemented 

using the function LaplaceApproximation and 

LaplacesDemon Respectively. Therefore, it has been 

observed throughout that the simulation technique, 

particularly independent-Metropolis algorithm summarizes 

the posterior more precisely in terms of the lower standard 

deviations of the parameters as compared to that of Laplace 

approximation. From the results obtained we can conclude 

that, the MPSEs provides a better fit than the Bayesian 

estimate.  
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