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ABSTRACT 

In this research, the effects of heat sink and radiation on unsteady hydromagnetic convective Couette flow of a 

viscous, electrically conducting and incompressible fluid is studied. The governing equations that describe the 

flow formation, heat and mass transfer are modeled as Partial Differential Equations (PDEs) and solved 

numerically using Finite Element Method (FEM). The effect of physical parameters embedded on the velocity, 

temperature and concentration were studied graphically. It is noticed that, the momentum boundary layer 

increases as the value of radiation parameter is increased while the velocity of the fluid falls for higher values 

of the heat sink parameter.  
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Nomenclatures and Greek Symbols 

Symbol Interpretation Unit 

𝑦′ Dimensional length 𝑚 

𝑌 Dimensionless length  

𝑔 Gravitational acceleration 𝑚𝑠−2 

𝑘0 Thermal conductivity 𝑊/𝑚𝐾 

𝑇′ Dimensional temperature 𝐾 

𝑑 Dimensional channel width 𝑚 

𝑇𝑑
′  Ambient temperature 𝐾 

𝑢′, 𝑣′ Dimensional velocity 𝑚𝑠−1 

𝜐 Kinematic viscosity 𝑚2𝑠−1 

pC  Specific heat at constant pressure 𝑘𝐽/𝑘𝑔𝐾 

0Q  
Volumetric rate of heat generation/absorption J 

S  Constant heat sink parameter  

𝑃𝑟 Prandtl number  

𝑆𝑐 Schmidt number  

𝑡′ Dimensional time 𝑠 

𝑡 Dimensionless time  

𝑈 Dimensionless velocity  

T  Dimensionless temperature of the fluid  

C  Dimensionless temperature of the fluid  

𝑀 Hatman number  

𝑅𝑐 Chemical reaction parameter  

𝐷𝑟 Dufour Number  

  Coefficient of thermal expansion 1/𝐾 

'  Coefficient of thermal expansion 1/𝐾 

  Coefficient of viscosity 𝑁𝑠/𝑚2 

e  
Kinematic viscosity of the fluid 𝑚2/𝑠 

  Fluid density 𝑘𝑔/𝑚3 

  Stefan-Boltzman Constant 𝐽𝐾−1 
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INTRODUCTION 

Radiative convective flows are encountered in countless 

industrial and environmental processes, particularly in 

astrophysical studies and space technology. Radiative heat 

and mass transfer play an important role in manufacturing 

industries for the design of fins, steel rolling, nuclear power 

plants, gas turbines and various propulsion device for aircraft, 

combustion and furnace design, materials processing, energy 

utilization temperature measurements, remote sensing for 

astronomy and space exploration, food processing cryogenic 

engineering as well as numerous agricultural, health and 

military applications. Naik et al. (2014) considered thermal 

radiation effect on an unsteady hydromagnetic free 

convective oscillatory Couette flow of a viscous fluid 

embedded in a porous medium. They used a stable finite 

difference scheme of Crank Nicolson method to obtain their 

expressions. Omokhuale et al. (2019) reported unsteady heat 

and mass Magnetohydrodynamic (MHD) convective Couette 

flow with thermal radiation. They solved their problem 

numerically using FEM. An investigation on the non – linear 

problem of the effect of Hall current on the unsteady magneto 

hydrodynamic free convective Couette flow of 

incompressible, electrically conducting fluid between two 

parallel plates was carried out, when a uniform magnetic field 

is applied transverse to the plate, while the thermal radiation, 

viscous and Joule’s dissipation are taken into account. Baoku 

et al. (2010) analyzed magnetic field and thermal radiation 

effects on steady hydromagnetic Couette flow through a 

porous channel numerically. 

In fluid dynamics, Couette flow refers to the laminar flow of 

viscous fluid in the space between two parallel plates, one of 

which moving relative to the other. The flow is driven by 

virtue of viscous drag force acting on the fluid and the applied 

pressure gradient parallel to the plates. This type of flow is 

named in honor of Maurice Marie Alfred Couette, a Professor 

of Physics at the French University of Angers in the late 19th 

century. Couette flow is frequently used in undergraduate 

physics and engineering courses to illustrate shear – driven 

fluid motion. Some important applications of Couette motion 

are magnetohydrodynamic power generators and pumps, 

polymer technology, petroleum industry and purification of 

crude oil and fluid droplets sprays. The numerical solution of 

natural convection in unsteady hydromagnetic Couette flow 

of viscous incompressible electrically conducting fluid 

between two vertical parallel plates in the presence of thermal 

radiation was obtained by Rao et al. (2014). Mebine (2007) 

studied the effect of thermal radiation on MHD Couette flow 

with heat transfer between two parallel plates. The natural 

convection in unsteady Couette flow of a viscous 

incompressible fluid confined between two vertical parallel 

plates in the presence of thermal radiation has been 

investigated by Narahari (2010). Rajput and Sahu (2012) 

found the exact solution of natural convection in unsteady 

hydromagnetic Couette flow of a viscous incompressible 

electrically conducting fluid between two vertical parallel 

plates in the presence of thermal radiation. 

Finite Element Method (FEM) is a numerical technique used 

to obtain an approximate solution to boundary value problems 

as they consist of elliptic partial differential equations and the 

boundary conditions. It has been applied to many physical 

problems. The method basically consists of assuming the 

piecewise continuous function for the solution and obtaining 

the parameters of the functions in a manner that reduces the 

error of the solution. Using FEM, Rao et al. (2012) examined 

heat and mass transfer in MHD flow of a viscous fluid past a 

vertical plate under oscillatory suction velocity. Job and 

Gunakala (2015) studied unsteady radiative MHD natural 

convection Couette flow between permeable plates. Raju et 

al. (2016) studied unsteady hydromagnetic natural convection 

Couette flow of a viscous, incompressible and electrically 

conducting fluid between two vertical plates in the presence 

of thermal radiation using finite element method. The entropy 

generation and temperature dependent heat source effects on 

MHD Couette flow with permeable base in the presence of 

radiation and viscous dissipation was studied by Sukumar and 

Varma (2016). Reddy et al. (2017) investigated unsteady 

MHD heat transfer in Couette flow of water at 4OC in a 

rotating system with ramped temperature. Ajibade and Bichi 

(2019) examined natural convection Couette flow through a 

vertical porous channel due to combined effects of thermal 

radiation and variable fluid properties. Recently, Bilal et al. 

(2021) worked on Couette flow of viscoelastic dusty fluid in 

a rotating frame with the heat transfer.  

Motivated by the above studies and applications, a novel 

investigation has been conducted to study unsteady 

convective Couette flow in the presence of thermal radiation 

and heat sink. The flow is governed by a modeled coupled 

nonlinear system of partial differential equations (PDEs) in 

dimensional form which are transformed into non-

dimensional form using some suitable non-dimensional 

variables. The resulting equations whose exact solutions if 

possibly found is difficult to get Thus, we numerically used 

FEM to obtain the solutions. Furthermore, the effects of 

physical parameters embedded in the problem were examined 

with the help of graphs.  

 

MATHEMATICAL FORMULATION 

The two- dimensional unsteady convective Couette flow of an 

electrically conducting and viscous fluid between two parallel 

plates 0y   and y d  surrounded by porous medium 

under the influence of a uniform transverse magnetic field, 

thermal radiation and heat source. The following assumptions 

are considered:  

(i) The x - axis and y - axis are considered in the 

vertically upward and normal direction to the plate 

respectively. 

(ii) The plates be separated by a distance 𝑑. Initially, at time 

𝑡′ ≤ 0,  the fluid and the plates of the channel are 

assumed to be at rest and at same temperature 𝑇𝑑
′  and 

concentration 𝐶𝑑
′ .  When time 𝑡′ > 0, the plate (at 𝑦′ =

0 ) begins to move with time dependent velocity 

𝑈0𝑡′𝑛(𝑈0 is a constant and is a non-negative integer) in 

its own plane and at the same time the plate temperature 

and concentration is raised to 𝑇𝑤
′  and 𝐶𝑤

′  respectively 

while the plate (at 𝑦′ = 𝑑) is fixed. Similarly, at 𝑡′ > 0, 

the wall at 𝑦′ = 𝑑 is stationary and kept at a constant 

temperature and concentration 𝑇𝑑
′  and 𝐶𝑑

′  respectively. 

(iii) The transverse magnetic field of the uniform strength 

𝐻0 is to be applied to the plate, 

(iv) The fluid has constant suction, kinematic viscosity and 

thermal conductivity, the Boussinesq approximations 

has been considered for the flow. 

From the above assumptions, the flow is governed by the 

following PDEs.                                                                                           
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Continuity equation: 
*

*

v

y




                                                                                                                                                         (1)                                                                                                                                                                                                                                    

Momentum equation: 

     
2 22 * * *

* * * * *0
1 2 0*2 * *

0ne
d d

Bu u u
v g T T g C C u U t

y t K


 



 
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 
                                          (2) 

Energy equation: 

 
2 * * 2 *

* *0
0*2 * *2

1
0m T r

d

s p

k D k qT T C
Q T T

Cp y t c c y Cp y 
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     
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                                                                    (3) 

Species diffusion equation: 

 
2 * *

* *

*2 *
0d

C C
Dc Rc C C

y t

 
   

 
  

                                                                                                   (4) 

The corresponding initial and boundary conditions are: 

* * * * * * *

* * * * * * *

0*

* * * * * *

0 : 0, ,        0

, ,       0
0 :

0, ,         

d d

n

w w

d d

t u T T C C for y d

u U t T T C C at y
t

u T T C C at y d

     


     
  

    

                                                                                         (5) 

The radiative heat flux is reduced by employing the Rosseland approximation given as 
* *4

* *

4

3
r

T
q

k y

 
 


                                                                                                                             (6a) 

                  

we assume that the difference in temperature within the flow are sufficiently small such that rq  may be presented as a linear 

function of 
*.T Therefore, on expanding

*4T in Taylor series about
*

dT up to first order approximation, gives 

 *4 * * * *3 * *3 *44 4 3d d d d dT T T T T T T T            (6b)

  Using Equations (6a) and (6b) in the last term of Equation (2), we have: 
*3 2 *

* * *2

16

3

dr
Tq T

y k y

 
 

 
    (7) 

Introducing (7) into Equation (2), the energy equation becomes: 

 
*3* 2 * 2 * 2 *

* *0
0* *2 *2 * *2

16

3

m T d
d

s p

k D k TT T C T
Q T T

t Cp y c c y k Cp y



 

   
    
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        (8) 

To obtain the non-dimensional form of Equations (1), (3) and (8), the following dimensionless quantities are introduced: 

   

 
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
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
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  

 

         (9) 

 

Using the dimensionless quantities in Equation (9), the dimensionless form of Equations (1), (3) and (8) and (3) are: 

 
2

2

2
0nU U

GrT GcC M U Ft
Y t

 
     

 
           (10) 
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2 2

2 2

1 3 4
0

Pr 3

R T T C
Dr ST

R Y t Y

    
    
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       (11) 

2

2

1
0

C C
RcC

Sc Y t

 
  

 
                               (12) 

 iinitial and boundary conditions (4) in dimensionless forms are: 

0 : 0, 0, 0       0

, 1, 1      0
0 :

0, 0, 0        

n

t U T C for Y d

U Ft T C atY
t

U T C at Y d

      


     
      

       (13) 

Two cases are studied, to find the solutions of Equations (10) to (12) subject to the initial and boundary conditions (13): 

1. Impulsive movement of the plate at 0Y  (i.e., 0n  ) and 

2. Uniform accelerated movement of the plate at 0Y  (i.e., 1n  ). 

Case (1): Impulsive movement of the plate at 0Y  : 

Taking 0n  in Equation (10), then the Equation (10) can be expressed as 

 
2

2

2
0

U U
GrT GcC M U F

Y Y

 
     

 
         (14) 

 and the corresponding boundary conditions (13) reduce to  

0 : 0, 0, 0       0

, 1, 1      0
0 :

0, 0, 0        

t U T C for Y d

U F T C atY
t

U T C at Y d

      


    
      

         (15)  

Case (2): Uniform accelerated movement of the plate at 0Y  . 

Taking 1n   in Equation (10), then the Equation (10) can be written as 

 
2

2

2
0

U U
GrT GcC M U Ft

Y Y

 
     

 
       (16) 

 and the initial and boundary conditions (13) reduce to  

0 : 0, 0, 0       0

, 1, 1      0
0 :

0, 0, 0        

t U T C for Y d

U Ft T C atY
t

U T C at Y d

      


    
      

         (17) 

For practical engineering applications and the design of chemical engineering systems, quantities of interest viz. Skin-friction, 

Nusselt and Sherwood numbers which are necessary to compute. The skin-friction or the shear tress at the moving plate of the 

channel in dimensionless form is given by 

**

*

00 0

w

yy

U

u Y




  

   
      

  
        (18) 

The rate of heat transfer at the moving hot plate of the channel in dimensionless form is illustrated by 

*

*

*

0* 1

0 0* *

0

Re
y

x

Yw H

T

Y T
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T T Y

 


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 
    

     
  

      (19) 

Also, the rate of heat transfer on the stationary plate is given by 

*

*

*

* 1

1 1* *

1

Re
y H

x

Yw H

T

Y T
Nu x Nu

T T Y

 



 
 
    

     
  

      (20) 

The Sherwood number at the moving plate of the channel in dimensionless form is given by 
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       (21) 

where Rex is the Reynold’s number. The mathematical 

modeling of the problem is now done. So, Equations. (11), 

(12), (14) and (16) presents a coupled system of linear PDEs 

and these are to be solved with initial and boundary conditions 

(15) and (17). Therefore, finding the exact solutions are 

complicated, whenever it is possible. Thus, these equations 

are solved numerically by FEM. 

 

Numerical solutions by FEM 

The FEM is an efficient numerical and computational method 

to solving a variety of engineering and real-world problems. 

So many developers, researchers and users have recognized 

this method as one of the most powerful numerical analysis 

tools useful to analyze complex engineering problems. The 

simplicity, flexibility, computability and accuracy of the 

method make it significant in modeling and design process. 

This is because of the discretization of domain of the problem 

is done employing highly flexible elements or uniform or non-

uniform patches that can be easily shown as complex shapes. 

The method vitally comprises the piecewise continuous 

functions in a systematic way that reduces the error in the 

solution. 

The steps involved in the finite element analysis as follows: 

Step 1: Discretization of the domain 

Step 2: Generation of the element equations 

Step 3: Assembling of the element equations 

Step 4: Imposition of the boundary conditions 

Step 5: Solution of assembled equations 

 

Variational Formulation 

The Variational formulation associated with Equations (10) to (12) over a typical two-noded linear element  1,e eY Y  is 

given by 
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where 1 2,z z and 3z are arbitrary test functions and may be seen as the variation in ,U T and C  respectively. When the order 

of integration was reduced, we got the following system of equation: 
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Finite Element Formulation: 

The finite element model can be gotten from Equations (25) to (27) by substituting the finite element approximations of the 

form: 
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2 2

1 1

,e e e e
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 

   and

2

1

e e

k k

k

C 


          (28) 

with  1 2 3 1,2 ,e

kz z z k    ,e e

k kU T  and
e

kC are the velocity, temperature and concentration respectively at the 

thk node of typical 
the element  1,e eY Y  and

e

k are the shape functions for this element  1,e eY Y  and are taken as: 

1
1

1

e e

e e

Y Y

Y Y
 







and

2

1

,e e

e e

Y Y

Y Y








1e eY Y Y          (29) 

This finite element model of the equations for 
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  (30) 

where     ,mn mnP W and                , , , , , , 1,2,3e e e e e e meU T C U T C a m  are the set of 

matrices of order 2 2 and 2 1 respectively and 
'
(dash) indicates .

d

dy
 

These matrices are defined as follows:  
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In one-dimensional space, linear element, quadratic element 

or element of higher order can be used. The entire flow 

domain is divided into 10,000 quadratic elements of equal 

size. Each element is three-noded, and as such the whole 

domain contains 20,001 nodes. At each node, three functions 

are to be evaluated: hence, after assembling of the element 

equations, we got a system of 80,004 equations which are 

linear. Thus, an iterative scheme must be employed in the 

solution. On imposing the boundary conditions, a system of 

equations was gotten which is solved by Gauss elimination 

method while maintaining an accuracy of 0.00001. A 

convergence criterion based on the relative difference 

between the current and previous iterations is used. After 

these differences satisfy the desired accuracy, the solution is 

assumed to have been converged and iterative process 

terminated. The Gaussian quadrature is implemented for 

solving the integrations. The code of the algorithm has been 

executed twice in MAPLE for cases 1 and 2. Excellent results 

was seen for all results. 

 

Study of grid Independence 

In general, to study the grid independency/dependency, the 

mesh size is varied in order to check the solution at different 

mesh (grid) sizes and get a range at which there is no variation 

in the solutions. 
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RESULTS AND DISCUSSION 

A MAPLE program is written to generate line graphs for the 

velocity, temperature and concentration profiles in other to 

provide a clear understanding of the problem at hand. Figures 

1 and 2 show the effects of thermal and mass Grashof numbers 

on the velocity profiles. It is seen that, there is rise in the 

velocity because of the enhancement of thermal buoyancy 

force. Also, the peak value of the velocity increases rapidly 

near the porous plate and the decays smoothly for free steam 

velocity. It is further noted that the fluid velocity increases 

and the peak value is more distinctive due to increase in 

species buoyancy force. Thus, the velocity distribution attains 

a distinctive maximum value in the vicinity of the plate and 

then reduces properly to approach free stream value. The 

effect of Magnetic parameter (Hartmann number) on the 

velocity profiles is as depicted in Figure 3. It is found that, the 

velocity of the fluid reduces with increasing magnetic 

parameter. This type of resistive force has a tendency to slow 

down the flow field. This is due to the fact that the presence 

of magnetic field in an electrically conducting fluid sets in a 

force called Lorentz force which acts against the flow if the 

magnetic field is applied in the normal direction as reflected 

in the problem.

  

 

                       Figure 1: Velocity profiles for different values of .Gr  

 

                        Figure 2: Velocity profiles for different values of .Gc  
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                      Figure 3: Velocity profiles for different values of .M  

 

It is revealed from Figure 4 that, increase in heat source leads 

to fall in the fluid velocity profile.  Figure 5 describes the 

effect of Prandtl number on the velocity profiles. From this 

Figure, it is clear that the velocity become lower as the values 

of Prandtl number is increased. Physically, this happens due 

to the phenomenon that fluid with high Prandtl number have 

greater viscosity, which makes the fluid thick and then move 

slowly. The effect of Dufour number Du  for varied values 

on the velocity profiles are displayed in Figure 6. It is 

observed that intensification in Dufour number causes growth 

in the velocity throughout the boundary layer. However, a 

distinct velocity overshoot exists near the plate, and thereafter 

the profiles fall to zero at the edge of the boundary layer.  

Figures 7 and 8 illustrates the velocity profiles for different 

values of Schmidt number and thermal radiation parameter. It 

is noticed that, an increase in Schmidt number results in 

decrease in the velocity boundary layer while the reverse is 

seen as thermal radiation becomes significant. 

 

                              Figure 4: Velocity profiles for different values of .S  
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                         Figure 5: Velocity profiles for different values of .Pr  

 

                      Figure 6: Velocity profiles for different values of .Dr  

 

                          Figure 7: Velocity profiles for different values of .Sc  
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                    Figure 8:  Velocity profiles for different values of 𝑅. 
 

Figure 9 presents the effect of Prandtl number on the 

temperature profiles. From this Figure, it is found that the 

temperature reduces as Prandtl number is increased. The 

effect of thermal radiation and heat sink on the velocity 

profiles in the boundary layer is depicted in Figures 10 and 

11.  It is noticed that, increase in the thermal radiation 

parameter results in increasing temperature while a reverse 

trend is noticed as heat sink becomes higher within the 

boundary layer.  

 

                          Figure 9. Temperature profiles for different values of .Pr  

 

                              Figure 10: Temperature profiles for different values of .R  
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                                   Figure 11: Temperature profiles for different values of .S  

Figures 12 and 13 show the concentration field due to 

variation in Schmidt number and chemical reaction 

parameter. It is seen that; the concentration of the fluid 

reduces as the Schmidt number is increased and a similar 

trend is observed as chemical reaction rises. Physically, this 

holds because increase in Sc  means decrease of molecular 

diffusivity, which results in decrease of concentration 

boundary layer. Hence, the concentration of species is smaller 

for higher values of .Sc  

 

                              Figure 12: Concentration profiles for different values of .Sc  

 
                               Figure 13: Concentration profiles for different values of 𝑅𝑐. 
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CONCLUSION 

We have studied unsteady MHD convective Couette flow 

with heat sink and radiation effects. The problem is described 

by a system coupled linear PDEs and solved by FEM. 

Computations are performed to study the effects of physical 

parameters on the velocity, temperature and concentration of 

the fluid.  The following conclusion can be drawn from this 

study: 

1. The fluid concentration rises due to higher values of 

Schmidt number. 

2. The momentum boundary layer increases as the value 

of radiation parameter is increased while the velocity of 

the fluid falls for higher values of the heat sink 

parameter.  

3. Increasing mass and thermal Grashof numbers boost the 

velocity profile while the fluid temperature reduces as 

the value of Prandtl number rises. 

4. The velocity of the fluid is boosted significantly when

Du  is increased. The opposite trend is observed for 

higher values of .M  

5. When the numerical results of the present study are 

compared with the previous results in literatures with 

the absence of heat sink and thermal radiation a good 

agreement was found.  
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