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ABSTRACT 

In this paper, we present an overview of both classical and fuzzy convexity, particularly, in conjunction with 

continuity 5 and some topological concepts, and provide proofs of some of their algebraic properties along with 

suitable illustrations. We have extended the work of (Ammar E. E., 1999) by proving that if μ and ν  are two 

convex fuzzy sets, then μ + ν, μ − ν, μ ∗ ν, and μ/ν are also convex fuzzy sets. We have also shown that the 

convexity of a fuzzy set implies semistrict quasi-convexity. 
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INTRODUCTION 

The notion of fuzzy set provides a convenient point of 

departure for the construction of a conceptual framework 

which is parallel in many respects to those used in the case of 

ordinary set. Essentially, such a framework provides a natural 

way of dealing with problems in which the source of 

imprecision is the absence of sharply defined the class 

membership rather than the presence of random variables. 

The notion of convexity was extended to fuzzy sets (Zadeh L. 

A., 1965). This idea appears to be particularly useful in 

applications involving pattern classification, optimization 

approximate reasoning, preference modeling, and many other 

related problems. As a matter of fact, if a problem satisfies 

certain convexity attributes, it can be modelled easily (Syau, 

Lee, L., & Lixing, 2004).  

A fuzzy set 𝐴 is convex if and only if the sets Γ𝛼, defined by 

Γ𝛼 = {𝑥:  𝜇𝐴(𝑥) ≥ 𝛼} , are convex for all  𝛼 ∈ (0,1] . 

Alternately, a fuzzy set 𝐴 is convex if and only if 

 𝜇𝐴[(1 −  𝜆)𝑥1 + 𝜆𝑥2] ≥ min [ 𝜇𝐴(𝑥1),  𝜇𝐴(𝑥2)].  

Where Γ𝛼 is called the 𝛼 −cut set (or 𝛼 −level set).    

The study of convexity in fuzzy set-theoretic framework 

began with (Zadeh L. A., 1965) himself. The notions of 

inclusion, union, intersection, complement, relation, 

convexity were extended to such sets, and various properties 

of these notions in the context of fuzzy sets were established. 

In particular, a separation theorem for convex fuzzy sets was 

proved without requiring that the fuzzy sets be disjoint. In 

Zadeh’s paper, an application of fuzzy set was described as a 

result of classifying pattern in RAND, although, the domain 

of the definition of the characteristic function 𝜇𝐴  was 

restricted to a subset of a set 𝑋. Zadeh (1965) generalizes the 

notion of linear combination of any two vectors 𝑓 and 𝑔 of 

the form 𝜆𝑓 + (1 − 𝜆)𝑔, 𝜆 ∈ [0,1] to fuzzy set. 

(Katsaras & Liu, 1977) studied fuzzy vector spaces and fuzzy 

topological vector spaces. In their work, they apply the 

concept of a fuzzy set to the elementary theory of vector 

spaces and topological vector spaces. The notion and 

terminology for fuzzy sets follows that of (Zadeh L. A., 

1965). The topology aspect of fuzzy sets and fuzzy 

convexity, in spirit of vector spaces, were considered in their 

work. 

(Lowen, 1980), studied convex fuzzy sets introduced in 

(Zadeh, 1965) and introduced the concept of affine fuzzy sets 

which are translates of fuzzy subspaces introduced by 

(Katsaras & Liu, 1977). One of the important result is the 

Representation Theorem where a useful characterization of 

fuzzy subspaces is given. Using this characterization, he 

defined the notions of dimension of a fuzzy subspace and 

fuzzy hyperspaces, and established that two fuzzy subspaces 

of the same dimension are linear translate of one another. 

Further, he introduced the notion of convex fuzzy cone. 

(Liu, 1985), investigated some properties of convex fuzzy 

sets and developed some fundamental results such as: 

Separation theorem and theorems on shadows of convex 

fuzzy sets, in particular. Liu provides some suitable 

countable counter examples in order to show the draw backs 

of the theorem on shadows of convex fuzzy sets proposed by 

(Zadeh L. A., 1965). He added some assumptions about fuzzy 

topologies in other to yield several positive results on the 

theorem of shadows of convex fuzzy sets. In addition, a 

simple and direct proof of two theorems that described the 

relations between the fuzzy convex cone and fuzzy union 

subspace were formulated. Significantly, the proofs of these 

theorems do not appeal to (Lowen, 1980) representation 

theorem. He confines his findings mainly on convex fuzzy 

sets defined on Euclidean spaces.     

(Drewniak, 1987), investigated convex and strongly convex 

fuzzy sets on the real line and characterized them by means of 

piece-wise monotonic functions. He also described the 

properties of the ‘Support’ and the ‘Core’ of convex and 

strongly convex fuzzy sets. 

(Ammar & Metz, 1992), introduce a new formulation of 

fuzzy convexity and presented several results. 

(Yang X. , 1993), introduced two weak conditions under 

which a fuzzy closed set is a convex fuzzy set. He also 

considered fuzzy sets defined on the Euclidean space and 

outlined its generalization to the case of fuzzy sets defined in 

a linear space over real or complex field. 

(Yang X. , 1995), investigated some new properties of convex 

fuzzy sets, strictly convex fuzzy sets, and strongly convex 

fuzzy sets based on his critical study of several results 

developed in (Brown, 1971) and (Katsaras & Liu, 1977). 

(Ammar E. E., 1999), based on the formulation of fuzzy 

convexity in (Ammar & Metz, 1992), and introduction of 

fuzzy line segments, introduced convex, strictly convex, 

quasi-convex, strictly quasi-convex, and M-convex fuzzy 

sets, and proved several related results. 
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(Syau Y. R., 2000), proposed the notion of closed and convex 

fuzzy sets and provided two weak conditions to show that a 

closed fuzzy set is a quasi-convex fuzzy set. In his work, he 

proved that a fuzzy set 𝜇: ℝ𝑛 ⟶ [0,1] is closed if and only if 

its fuzzy hypograph is a closed subset of ℝ𝑛 × (0,1], and also 

gave two weak conditions that a closed fuzzy set is a convex 

fuzzy set.  

(Cheng, Syau, & Ting, 2004), studied the concept of 

semistrictly convex fuzzy sets and proved that for the upper 

semicontinuous case, the class of semistrictly convex fuzzy 

sets lies between the convex and strictly convex classes. 

(Syau, Lee, & Lixing, 2004), studied convexity and upper 

semicontinuity of fuzzy Sets. They investigated the 

interrelationships of several concepts of generalized convex 

fuzzy sets and established that for the upper semicontinuous 

case, the class of semistrictly quasi-convex fuzzy sets lies 

between the convex and quasi-convex classes. They also 

obtained some results on composition rules for upper 

semicontinuous fuzzy sets, for example, a convex 

combination of upper semicontinuous fuzzy sets is an upper 

semicontinuous fuzzy set.    

In this paper, we present an overview of both classical and 

fuzzy convexity in conjunction with continuity and some 

topological concepts, and established some new results on 

convexity and their algebraic properties and finally provided 

suitable illustrations.  

 

Preliminaries 

Definition 1. 

Let  𝑓: 𝐼 ⟶ ℝ be a function and 𝑥0 ∈ I, the function 𝑓  is 

called upper semicontinuous at 𝑥0 if li𝑚
𝑥⟶𝑥0

𝑓(𝑥) ≤ 𝑓(𝑥0) for 

all 𝑥 ∈ (𝑥0 − 𝛿, 𝑥0 + 𝛿) . In other words, 𝑓  is upper 

semicontinuous at 𝑥0 if given 𝜖 > 0, there exists 𝛿 > 0 such 

that 𝑓(𝑥) < 𝑓(𝑥0) + 𝜖  for |𝑥 − 𝑥0| < 𝛿 . Similarly, 𝑓  is 

called lower semicontinuous at 𝑥0 if li𝑚
𝑥⟶𝑥0

𝑓(𝑥) ≥ 𝑓(𝑥0) for 

all 𝑥 ∈ (𝑥0 − 𝛿, 𝑥0 + 𝛿) . Equivalently, 𝑓  is lower 

semicontinuous at 𝑥0 if for a given  𝜖 > 0, there exists 𝛿 >
0  such that 𝑓(𝑥0) − 𝜖 < 𝑓(𝑥)  for |𝑥 − 𝑥0| < 𝛿 . The 

function, 𝑓 is called continuous at 𝑥0 if and only if it is both 

upper and lower semicontinuous. 

Definition 2. 

“ (Zadeh L. A., 1965)”, founder of fuzzy set theory, was the 

first to introduce the concept of fuzzy convexity as follows:   

As defined earlier, a fuzzy set  𝐴   in 𝑋  (universal set) is 

defined by 𝜇𝐴: 𝑋 ⟶ [0,1] . That is, if 𝐴 ⊆ 𝑋 , then its 

generalized characteristic function 𝜇𝐴  is a fuzzy set. It 

follows that a fuzzy set 𝜇: ℝ𝑛 ⟶ [0,1] is the set of all pairs 

(𝑥, 𝜇(𝑥)) . A point 𝑥 ∈ ℝ𝑛  is called a fuzzy point if 𝑥 ∈
𝑠𝑢𝑝𝑝(𝜇). Where 𝑠𝑢𝑝𝑝(𝜇) is called the support of a fuzzy 

set.   

A fuzzy set  𝐴 is called convex if and only if the set Γ𝛼 , 

defined by Γ𝛼 = {𝑥: 𝜇𝐴(𝑥) ≥ 𝛼} , are convex for all 𝛼 ∈
(0,1]. 
Note that 0-cuts are excluded since it is always equal to ℝ or 

ℝ𝑛. It may be observed that in view of  𝛼-cuts of a fuzzy set 

being crisp sets, this definition is a generalization of classical 

convexity.    

In the same paper, he also provided an equivalent alternative 

definition of convexity which is more direct and easy to 

work with as follows:  

A fuzzy set 𝐴  in 𝑋  is convex if and only if 𝜇𝐴(𝜆𝑥1 +
(1 − 𝜆)𝑥2) ≥ min(𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2))  for all 𝑥1 , 𝑥2 ∈ 𝑋  (a 

universal set) and 𝜆 ∈ [0,1] , where 𝜇  is the membership 

function. 

 

SOME INTERESTING EXAMPLES AND RESULTS 

Example 1. 

i. Let 𝑓(𝑥) = {
sin

1

𝑥
 , 𝑥 ≠ 0

1 , 𝑥 = 0
.  

Then li𝑚
𝑥⟶0

sin
1

𝑥
= 1 = 𝑓(0),    li𝑚

𝑥⟶0

sin
1

𝑥
= −1 ≠ 𝑓(0) . 

Hence 𝑓  is upper semicontinuous at 𝑥 = 0, but not lower 

semicontinuous at 𝑥 = 0 and thereby, 𝑓 is not continuous at 

𝑥 = 0.  

ii. Let 𝑓 be a characteristic function of rationals, that 

is, 𝑓(𝑥) = 1 if 𝑥 is rational, and 𝑓(𝑥) = 0 if 𝑥 is irrational. 

Then 𝑓 is upper semicontinuous at every rational point and 

lower semicontinuous at every irrational point, and thus 𝑓 is 

discontinuous at each point 𝑥 ∈ ℝ . Analogously, the 

characteristic function of irrationals is upper semicontinuous 

at each irrational point and lower semicontinuous at each 

rational point, and hence discontinuous at each point of ℝ. 

iii. Let 𝜙 be a step function defined on 𝐼 = [𝑎, 𝑏], that 

is, 𝜙 assumes only one value in (𝑥𝑖  , 𝑥𝑖+1), a subinterval of 

𝐼, for each 𝑖. Then 𝜙 is lower semicontinuous if and only if 

𝜙(𝑥𝑖) ≤ minimum of the values assumed by 𝜙 in (𝑥𝑖−1 , 𝑥𝑖) 

and in (𝑥𝑖  , 𝑥𝑖+1) . Analogous result holds for upper 

semicontinuous. 

iv. Let 𝜙 be a function defined on a closed set. Then 𝜙 

is lower semicontinuous if and only if the set {𝑥: 𝑓(𝑥) ≤ 𝑘} 

is closed for every real number 𝑘. Analogous result holds for 

upper semicontinuous. 

Example 2. 

(a)          Let the fuzzy sets 𝜇𝑘 ,   𝑘 = 1,2 be defined by 

𝜇𝑘(𝑥) = {
1 − (𝑥 − 𝑘)2,         𝑘 − 1 < 𝑥 < 𝑘 + 1
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                           

 .                                                                                      

Then, 𝜇1 is convex and  𝜇2 is strictly convex. 

Solution. 

We show that: 

1 − (𝜆𝑥1 + (1 − 𝜆)𝑥2 − 𝑘)2 ≥ 𝜆(1 − (𝑥1 − 𝑘)2) + (1 − 𝜆)(1 − (𝑥2 − 𝑘)2)    … (1) 

We have         𝜇𝑘(𝑥) = 1 − (𝜆𝑥1 + (1 − 𝜆)𝑥2 − 𝑘)2 

= 1 − (𝜆𝑥1 + (1 − 𝜆)𝑥2)2 + 2𝑘(𝜆𝑥1 + (1 − 𝜆)𝑥2) − 𝑘2 

= 1 − 𝜆2𝑥1
2 − 2𝜆𝑥1𝑥2 + 2𝜆2𝑥1𝑥2 − 𝑥2

2 + 2𝜆𝑥2
2 − 𝜆2𝑥2

2 + 2𝑘𝜆𝑥1 + 2𝑘𝑥2 − 2𝑘𝜆𝑥1 − 𝑘2 .   … (2).  

Since 𝜆 ≥ 𝜆2, we have 
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𝜇𝑘(𝑥) ≥ 1 − 𝜆𝑥1
2 − 𝑥2

2 + 2𝜆𝑥2
2 − 𝜆𝑥2

2 + 2𝑘𝜆𝑥1 + 2𝑘𝑥2 − 2𝑘𝜆𝑥2 − 𝑘2    … (3). 

= 1 − 𝜆𝑥1
2 − 𝑥2

2 + 𝜆𝑥2
2 + 2𝑘𝜆𝑥1 + 2𝑘𝑥2 − 2𝑘𝜆𝑥2 − 𝑘2 

= 1 + 𝜆 − 𝜆𝑥1
2 − 𝑥2

2 − 𝜆𝑘2 + 𝜆𝑥2
2 + 2𝑘𝜆𝑥1 + 2𝑘𝑥2 − 𝜆 − 2𝑘𝜆𝑥2 − 𝑘2 + 𝜆𝑘2 

= 𝜆[1 − (𝑥1
2 − 2𝑘𝑥1 + 𝑘2)] + 1[1 − (𝑥2

2 − 2𝑘𝑥2 + 𝑘2)] − 𝜆[1 − (𝑥2
2 − 2𝑘𝑥2 + 𝑘2)] 

= 𝜆(1 − (𝑥1 − 𝑘)2) + (1 − 𝜆)(1 − (𝑥2 − 𝑘)2).       … (4). 

Hence the proof. 

(b)         Let the fuzzy sets 𝜇𝑘 ,   𝑘 = 1,2 be defined by 

𝜇𝑘(𝑥) = {

1

1+(𝑥−𝑘)2
  ,    𝑘 − 1 < 𝑥 < 𝑘 + 1

0  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     
 .                                                                                        

Then neither  𝜇1 is convex nor is  𝜇2 strictly convex. 

We note here that 𝜇1 and 𝜇2 are quasi-convex (strictly quasi-convex), and the 𝛼-level set of 𝜇, is convex (strictly convex) 

(Ammar & Metz, 1992). 

(c)   Let 𝜇: ℝ ⟶ [0,1] be defined by  

𝜇(𝑥) = {

1

4
  ,        𝑥 ≤ 0 

1

2
 ,       𝑥 > 0 

. 

Clearly, 𝜇  is not closed since [𝜇]1

2

= (0, ∞)  which is not a closed subset of ℝ . Moreover, 𝜇  is not convex since it is 

discontinuous at  𝑥 = 0,  [lim
𝑥−

𝜇(𝑥) ≠ lim
𝑥+

𝜇(𝑥)]. 

Remark 1. 

Recall that a fuzzy set is closed if its 𝛼-level set is a closed set for each 𝛼 ∈ [0,1]. 

Alternatively, a fuzzy set is closed if and only if its fuzzy hypergraph is a closed subset of ℝ𝑛 × (0,1). The example in (c) 

illustrates a fuzzy set which is not closed (Ammar & Metz, 1992). 

Definition 3. (Ammar E. E., 1999) 

For any two fuzzy sets 𝜇 and 𝜈, using the extension principle in (Zadeh L. A., 1975), then the fuzzy sets (𝜇 + 𝜈), (𝜇 −
𝜈), (𝜇 ∗ 𝜈) and (𝜇/𝜈) can be defined as follows: 

(𝜇 + 𝜈)(𝑧) =       ⋁
(𝑥,𝑦):𝑧=𝑥+𝑦

(𝜇(𝑥) ∧ 𝜈(𝑦))       … (5). 

(𝜇 − 𝜈)(𝑧) = ⋁
(𝑥,𝑦):𝑧=𝑥−𝑦

(𝜇(𝑥) ∧ 𝜈(𝑦))       … (6) 

(𝜇 ∗ 𝜈)(𝑧) =       ⋁
(𝑥,𝑦):𝑧=𝑥∗𝑦

(𝜇(𝑥) ∧ 𝜈(𝑦))       … (7) 

(𝜇/𝜈)(𝑧) = ⋁
(𝑥,𝑦≠0):𝑧=𝑥/𝑦

(𝜇(𝑥) ∧ 𝜈(𝑦))       … (8) 

 

Definition  4. (Syau Y. R., 2000) 

A fuzzy set 𝜇 ∈ ℱ(ℝ𝑛) is called upper semicontinuous at a point 𝑥 ∈ 𝑠𝑢𝑝𝑝(𝜇) if for any 𝜖 > 0, there exists a 𝛿 > 0 such 

that 𝜇(𝑦) < 𝜇(𝑥) + 𝜖, for all 𝑦 ∈ 𝑠𝑢𝑝𝑝(𝜇) and  

‖𝑦 − 𝑥‖ < 𝛿. 
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If a fuzzy set 𝜇 is upper semicontinuous at each point of its support, then it is called upper semicontinuous.    

By definitions given in the preceding sections, it follows that a fuzzy set 𝜇 is upper semicontinuous if and only if its 𝛼-level 

sets are convex for all 𝛼 ∈ (0,1]. Moreover, the class of upper semicontinuous fuzzy set is closed under addition and scalar 

multiplication.   

Definition 5. (Wu & Cheng, 2004) 

A fuzzy set 𝜇: ℝ𝑛 ⟶ [0,1] with convex support is said to be 

(1)  semistrictly convex if for all 𝑥, 𝑦 ∈ 𝑠𝑢𝑝𝑝(𝜇), 𝜇(𝑥) ≠ 𝜇(𝑦), and 𝜆 ∈ (0,1), 
𝜇(𝜆𝑥 + (1 − 𝜆)𝑦) > 𝜆𝜇(𝑥) + (1 − 𝜆)𝜇(𝑦), 

(2) semistrictly quasi-convex if for all 𝑥, 𝑦 ∈ 𝑠𝑢𝑝𝑝(𝜇), 𝜇(𝑥) ≠ 𝜇(𝑦), and 𝜆 ∈ (0,1), 

𝜇(𝜆𝑥 + (1 − 𝜆)𝑦) > 𝑚𝑖𝑛{𝜇(𝑥), 𝜇(𝑦)}. 

Theorem 1. 

If 𝜇 and 𝜈  are two convex fuzzy sets, then 𝜇 + 𝜈, 𝜇 − 𝜈, 𝜇 ∗ 𝜈, and 𝜇/𝜈 are also convex fuzzy sets. 

Proof. 

The proof of 𝜇 + 𝜈 case was proved in (Ammar E. E., 1999), while others were not proven. Then, we shall prove the convexity 

of 𝜇 − 𝜈  and  𝜇/𝜈. 

Proof of (𝜇 − 𝜈):   Let  𝑧𝑖 = 𝑥𝑖 − 𝑦𝑖  ;  𝑥𝑖 ∈ 𝑆𝑢𝑝𝑝(𝜇), 𝑦𝑖 ∈ 𝑆𝑢𝑝𝑝(𝜈),   𝑖 = 1,2; and  

𝑥 = 𝜆𝑥1 + (1 − 𝜆)𝑥2, 𝑦 = 𝜆𝑦1 + (1 − 𝜆)𝑦2, 𝑧 = 𝜆𝑧1 + (1 − 𝜆)𝑧2,     𝜆 ∈ [0,1].    … (9). 

We need to show that   

(𝜇 − 𝜈)(𝑧) = (𝜇 − 𝜈)[𝜆𝑧1 + (1 − 𝜆)𝑧2] ≥ [𝜆(𝜇 − 𝜈)𝑧1 + (1 − 𝜆)(𝜇 − 𝜈)𝑧2].    … (10). 

By definition 3, we have  

(𝜇 − 𝜈)[𝜆𝑧1 + (1 − 𝜆)𝑧2] ≥ 𝜇[𝜆𝑥1 + (1 − 𝜆)𝑥2] ∧ 𝜈[𝜆𝑦1 + (1 − 𝜆)𝑦2] 

≥ [𝜆𝜇(𝑥1) + (1 − 𝜆)𝜇(𝑥2)] ∧ [𝜆𝜈(𝑦1) + (1 − 𝜆)𝜈(𝑦2)]      … (11) 

Therefore,  and 𝜈  are convex fuzzy sets. 

≥ 𝜆[𝜇(𝑥1) ∧  𝜈(𝑦1)] + (1 − 𝜆)[𝜇(𝑥2) ∧ 𝜈(𝑦2)] 

≥ 𝜆(𝜇 − 𝜈)(𝑧1) + (1 − 𝜆)(𝜇 − 𝜈)(𝑧2). ∎ 

This proves (10). 

Proof of (𝜇/𝜈):  Here  𝑧 = 𝑥/𝑦𝑦 ≠ 0. 

We need to show that  

(𝜇/𝜈)(𝑧) = (𝜇/𝜈)[𝜆𝑧1 + (1 − 𝜆)𝑧2] ≥ [𝜆(𝜇/𝜈)𝑧1 + (1 − 𝜆)(𝜇/𝜈)𝑧2].     … (12).          

by definition 3 for  (𝜇/𝜈), we have  

(𝜇/𝜈)[𝜆𝑧1 + (1 − 𝜆)𝑧2] ≥ 𝜇[𝜆𝑥1 + (1 − 𝜆)𝑥2] ∧ 𝜈[𝜆𝑦1 + (1 − 𝜆)𝑦2]    … (13) 

≥ [𝜆𝜇(𝑥1) + (1 − 𝜆)𝜇(𝑥2)] ∧ [𝜆𝜈(𝑦1) + (1 − 𝜆)𝜈(𝑦2)] ∵ 𝜇 and 𝜈 are convex fuzzy sets 

≥ 𝜆[𝜇(𝑥1) ∧  𝜈(𝑦1)] + (1 − 𝜆)[𝜇(𝑥2) ∧ 𝜈(𝑦2)]         … 

(14). 

≥ 𝜆(𝜇/𝜈)(𝑧1) + (1 − 𝜆)(𝜇/𝜈)(𝑧2). ∎  
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Remark 2. 

It follows from the definitions of strictly convex fuzzy sets, 

and those given above, that any strictly convex fuzzy set is 

semistrictly convex (but not vice versa) and that any 

semistrictly convex fuzzy set is semistrictly quasi-convex 

(but not vice versa). Moreover, in the upper semicontinuous 

case, the class of semistrictly quasi-convex fuzzy sets lies 

between the convex and quasi-convex classes. (see (Cheng, 

Syau, & Ting, 2004), (Syau, Lee, L., & Lixing, 2004), &(Wu 

&Cheng, 2004) for more details). 

The main difference between a strictly convex and 

semistrictly convex fuzzy sets is that the former can attain 

its global maximum at no more than one point whereas the 

latter can have a flat maximum. As mentioned earlier, both 

strict and semistrict convexity of a fuzzy set 𝜇 imply that 𝜇 

is semistrictly quasi-convex. An important result in (Cheng, 

Syau, & Ting, 2004) shows that for a semistrictly quasi-

convex fuzzy set with convex support, a local maximizer is 

also a global. The application of strictly, semistrictly, and 

hence that of semistrictly quasi-convex fuzzy sets in decision 

theory has become of paramount significance.     

 

For example, let 𝜇 ∶  ℝ ⟶ [0,1] be given by 

𝜇(𝑥) = {
2

3
  ,        𝑥 = 0

1 ,       𝑥 ≠ 0
.   

It is a semistrictly convex fuzzy set with every nonzero point in ℝ as its global maximizer. It has a flat maximum. 

In the following, we include some results in this regard.  

 

Theorem 2. 

A fuzzy set 𝜇 ∶ ℝ𝑛 ⟶ [0,1] is closed if and only if 𝜇 is upper semicontinuous.  

Proof. 

The proof is immediate from the definitions of a fuzzy set being closed upper semicontinuous.  

Theorem 3.  

The convexity of a fuzzy set implies semistrict quasi-convexity. 

Proof. 

Let 𝜇 ∶  ℝ ⟶ [0,1] be a convex fuzzy set, and let 𝑥, 𝑦 ∈ 𝑠𝑢𝑝𝑝(𝜇), 𝜇(𝑥) ≠ 𝜇(𝑦). Let 𝜇(𝑥) > 𝜇(𝑦). We have 

𝜆𝜇(𝑥) + (1 − 𝜆)𝜇(𝑦) > 𝜇(𝑦), for each 𝜆 ∈ (0,1). 

⟹ 𝜇(𝜆𝑥 + (1 − 𝜆)𝑦) ≥ 𝜆𝜇(𝑥) + (1 − 𝜆)𝜇(𝑦) > 𝜇(𝑦), for each 𝜆 ∈ (0,1).      

⟹ 𝜇 is semi strictly quasi-convex. ∎ 

 

Theorem 4. 

Let 𝜇: ℝ𝑛 ⟶ [0,1] be a fuzzy set with convex support. If  𝜇 is a semistrictly quasi-convex fuzzy set but not quasi-convex, 

then there exist distinct points �̃�, �̃� ∈ 𝑠𝑢𝑝𝑝(𝜇) and �̃� ∈ (�̃�, �̃�) such that on the closed line segment [�̃�, �̃�], we have 0 < 𝜇(�̃�) <
𝜇(�̃�) = 𝜇(�̃�) and 𝜇(𝑥) = 𝜇(�̃�), for all 𝑥 ∈ [�̃�, �̃�) ∪ (�̃�, �̃�]. 

Proof. 

Let 𝜇 be semistrictly quasi-convex fuzzy set but not quasi-convex. Then, there exist distinct points �̃�, �̃� ∈ 𝑠𝑢𝑝𝑝(𝜇) and �̃� ∈
(�̃�, �̃�) ⊆ 𝑠𝑢𝑝𝑝(𝜇) such that 

𝜇(�̃�) = 𝜇(�̃�),   but    𝜇(�̃�) < 𝜇(�̃�) = 𝜇(�̃�).                                   

Let 𝑧1 ∈ (�̃�, �̃�)  and  𝑧2 ∈ (�̃�, �̃�). Then, by (11) and the semistrict quasi-convexity of 𝜇, we have  𝜇(𝑧1) > 𝜇(�̃�)  and  𝜇(𝑧2) >
𝜇(�̃�). 

Since �̃� ∈ (𝑧1, �̃�) , we must have 𝜇(𝑧1) = 𝜇(�̃�) ; otherwise, from the semistrict quasi-convexity of  𝜇 , 𝜇(�̃�) >
min {𝜇(𝑧1), 𝜇(�̃�)}, a contradiction. Similarly, 

𝜇(𝑧2) = 𝜇(�̃�) = 𝜇(�̃�). Hence,  𝜇(𝑥) = 𝜇(�̃�),  for all 𝑥 ∈ [�̃�, �̃�) ∪ (�̃�, �̃�]. ∎ 

CONCLUSION 

In this paper, a systematic study of convexity analysis both 

in classical set theory and fuzzy set theory was presented, 

many known results were studied, a number of examples and 

counter examples were provided, and a couple of new results 

were proven. 

REFERENCES 

Ammar, E. E. (1999). Some Properties of Convex Fuzzy Sets 

and Convex Fuzzy Cones. Fuzzy Sets and Systems, 106, 381-
386. 



STUDY OF CONVEXITY IN SETS …   Abubakar et al  FJS 

FUDMA Journal of Sciences (FJS) Vol. 6 No. 1, March, 2022, pp  175 - 180 
180 

 ©2022 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 
International license viewed via https://creativecommons.org/licenses/by/4.0/ which  permits  unrestricted  use,  
distribution,  and  reproduction  in  any  medium, provided the original work is cited appropriately.  

Ammar, E. E., & Metz, J. (1992). On fuzzy convexity and 

parametric fuzzy optimization. Fuzzy Sets and Systems, 49, 
135-142. 

Brown, J. (1971). A Note on Fuzzy Sets. Journal of 

information and control, 18, 23-39. 

Cheng, J., Syau, Y. R., & Ting, C. J. (2004). Convexity and 

semi continuity of fuzzy sets. fuzzy sets and systems, 143, 
459-469. 

Drewniak, J. (1987). Convex and Strongly Convex Fuzzy 

Sets. Journal of Mathematical Analysis and Applications, 
126, 292 – 300. 

Katsaras, A. K., & Liu, D. B. (1977). Fuzzy Vector Spaces 

and Fuzzy Topological Vector Spaces. Journal of 
Mathematical Analysis and Applications, 58, 135-146. 

Liu, Y. M. (1985). Some Properties of Convex Fuzzy Sets. 

Journal of Mathematical Analysis and Applications, 111, 
119-129. 

Lowen, R. (1980). Convex fuzzy sets. Fuzzy Sets and Systems, 
3, 291–310. 

Syau, Y. R. (2000). Closed and Convex Fuzzy Sets. Fuzzy 
Sets and Systems, 110, 287-291. 

Syau, Y. R., Lee, E. S., & Lixing, J. L. (2004). Convexity and 

Upper Semi Continuity of Fuzzy Sets. Journal of Computers 

and Mathematics with Applications, 48, 117-129. 

Wu, S. Y., & Cheng, W. (2004). A note on fuzzy convexity. 
Applied Mathematics Letter, 17, 1127-1133. 

Wu, S. Y., & Cheng, W. H. (2004). A note on fuzzy convexity. 
Applied Mathematics Letter, 17, 1127-1133. 

Yang, X. (1993). A Note on Convex Fuzzy Set. Fuzzy Sets 
and Systems, 53, 117 118. 

Yang, X. (1995). Some Properties of Convex Fuzzy Set. 
Fuzzy Sets and Systems, 72, 129-132. 

Zadeh, L. A. (1965). Fuzzy sets. Information and Control,, 8, 
338-353. 

Zadeh, L. A. (1975). The concept of linguistic variable and its 

application to approximate reasoning. Information Science, 8, 
199-249. 

 

 

 

https://creativecommons.org/licenses/by/4.0/

