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ABSTRACT 

The iterative solution methods for transient distribution in Markov chain is the computation of state probability 

distributions at an arbitrary point of time, which in the case of a discrete-time Markov chain means, finding the 

distribution at some arbitrary time step 𝑛  denoted 𝜋(𝑛), a row vector whose 𝑖𝑡ℎ component is the probability 

that the Markov chain is in state 𝑖 at time step 𝑛. In this study, the solutions of transient distribution in Markov 

chain using matrix scaling and powering methods for small state spaces which produce a significantly more 

accurate response in less time for some types of situations and also, tries to get to the end result as quickly as 

possible has been investigated, in order to provide some insight into the solutions of transient distribution of 

Markov chain. Our goal is to compute solutions and algorithms for tiny state spaces utilizing matrix scaling 

and powering approaches, which begin with an initial estimate of the solution vector and then comes closer and 

closer to the true solution with each step or iteration. With the help of several existing Markov chain laws, 

theorems, and formulas, matrices operations such as multiplication with one or more vectors, Padé variant of 

the matrix-powering and scaling technique are used. While the algorithms are explained, the transient 

distribution vector’s  𝜋(𝑛), 𝑛 = 1, 2,…, Padé approximants 𝑅𝑝𝑞(𝑋), and a backward error analysis of the Padé 

approximation are obtained for certain illustrative examples.. 

 

Keywords: infinitesimal generator, linear combination, matrix-powering, matrix scaling, Padé approximants, 

uniformization method 

INTRODUCTION 

In the discipline of numerical analysis, there are two types of 

solution methods: iterative solution methods and direct 

solution methods. Iterative approaches start with an initial 

estimate of the solution vector and then alter it in such a way 

that it gets closer and closer to the genuine solution with each 

step or iteration. It eventually converges on the true solution. 

If there is no known initial approximation, a guess is 

performed or an arbitrary initial vector is used instead. The 

solution must be computed when a specified number of well-

defined stages have been completed.  The most widely 

utilized methods for deriving the stationary probability vector 

from either the stochastic transition probability matrix or the 

infinitesimal generator are iterative methods of one form or 

another. This decision was made for a variety of reasons. 

First, a look at the conventional iterative approaches reveals 

that the matrices are only involved in one operation: 

multiplication with one or more vectors, which leaves the 

transition matrices unchanged. When the transition matrix is 

large and not banded.  Romanovsky (1970) established the 

application and simulation of discrete Markov Chains, while 

the stable recursion formulae for the steady state vector in 

Markov chains of M/G/1 type is presented  by 

Ramaswami,and Neuts (1980) as well as Ramaswami  (1988) 

respectively, this was followed by Stewart (1994, 2009) with 

the development of Numerical Solutions of Markov Chains 

and, Dayar (1998) helped in Permuting Markov chains to 

nearly completely decomposable form. while Pesch et al. 

(2015) demonstrated the appropriateness of the Markov chain 

technique in the wind feed in Germany. Uzun and Kiral 

(2017) used the Markov chain model of fuzzy state to 

anticipate the direction of gold price movement and to 

estimate the probabilistic transition matrix of gold price 

closing returns, whereas Azizah et al. (2019) used the Markov 

chain model of fuzzy state to predict monthly rainfall data. 

Clement (2019) demonstrated the application of Markov 

chain to the spread of disease infection, demonstrating that 

Hepatitis B became more infectious over time than 

tuberculosis and HIV, while Vermeer and Trilling (2020) 

demonstrated the application of Markov chain to journalism. 

Agboola (2021) introduced direct equation solving algorithms 

compositions of lower -upper triangular matrix and 

Grassmann–Taksar–Heyman for the stationary distribution of 

Markov chains while Agboola, and Ayoade (2021) analysed 

the matrix geometric and analytical block numerical iterative 

methods for stationary distribution in the structured Markov 

chains. Agboola and Ayinde (2021) demonstrated the 

performance measure analysis on the states classification in 

Markov chain while Agboola and Badmus (2021) established 

the application of renewal reward processes in homogeneous 

discrete Markov chain and, Agboola (2022) discussed the 

decomposition and aggregation algorithmic numerical 

iterative solution methods for the stationary distribution of 

Markov chain. However, in this study, the analysis of 

transient distribution in Markov chain using matrix scaling 

and powering methods for small state spaces is considered. 

 

Notation 

𝜋(𝑛), is transient distribution; 𝜋𝑖(𝑡), is the probability that the 

Markov chain is in state 𝑖  at time 𝑡 ;  𝜋 , is the stationary 

distribution; 𝑅𝑝𝑞(𝑋) , is Padé approximants;  𝑃(𝑖) , is the 

transition probability matrix at step 𝑖 and  𝑄, is infinitesimal 

generator. 
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MATERIALS AND METHODS 

The study area consisted of the analysis of matrix scaling and 

powering methods for small state spaces transient distribution 

in Markov chain. Transient Distribution in Markov Chain 

involves the computation of state probability distributions at 

an arbitrary point of time. In the case of a discrete-time 

Markov chain, this means finding the distribution at some  

arbitrary time step 𝑛. This distribution is denoted 𝜋(𝑛), a row 

vector whose 𝑖𝑡ℎ  component is the probability that the 

Markov chain is in state 𝑖 at time step 𝑛. This satisfies the 

relationship 

 

 

𝜋(𝑛) = 𝜋(𝑛−1)𝑃(𝑛 − 1) = 𝜋(0)𝑃(0)𝑃(1)⋯𝑃(𝑛 − 1),   (1) 

where 𝑃(𝑖) is the transition probability matrix at step 𝑖. For a homogeneous discrete-time Markov 

chain, this reduces to 

𝜋(𝑛) = 𝜋(𝑛−1)𝑃 = 𝜋(0)𝑃𝑛,      (2) 

where 𝑃(0) = 𝑃(1) = ⋯ = 𝑃.  For a continuous-time Markov chain with infinitesimal generator Q, we seek the distribution 

at any time t. Such a distribution is denoted 𝜋(𝑡), a row vector whose component 𝜋𝑖(𝑡) is the probability that the Markov chain 

is in state 𝑖 at time 𝑡 and this vector satisfies the relationship 

𝜋(𝑡) = 𝜋(0)𝑒𝑄𝑡       (3) 

where 𝑒𝑄𝑡 is the matrix exponential defined by 

𝑒𝑄𝑡 = ∑
(𝑄𝑡)𝑘

𝑘!
∞
𝑘=0 .        (4) 

 

In both cases, what is usually required is seldom the 

probability distribution 𝜋(𝑛)  or 𝜋(𝑡)  itself, but rather some 

linear combination of the components of these vectors, such 

as the probability that the Markov chain is in a single state 𝑖, 

( 𝜋(𝑛)𝑒𝑖  or 𝜋(𝑡)𝑒𝑖  , where 𝑒𝑖  is a column vector whose 

elements are all zero except the 𝑖𝑡ℎ which is equal to 1) or the 

probability that the Markov chain is in a subset of states 

𝐸𝑖  (∑ 𝜋(𝑛)𝑒𝑖𝑖∈𝐸𝑖    𝑜𝑟 ∑ 𝜋(𝑡)𝑒𝑖𝑖∈𝐸𝑖 ) or yet again a weighted 

sum of the probabilities wherein the unit component of 𝑒𝑖 is 
replaced by an arbitrary scaler. In addition, rather than only 

its (single) value at the final time point, the evolution of this 

statistic from the initial time to the desired time step n or time 

t may be required. Transient distributions of discrete-time 

Markov chains are rarely difficult to compute. To acquire the 

probability distribution at step 𝑘 , multiply the probability 

distribution vector obtained at step (𝑘 −  1)  with the 

stochastic transition probability matrix again for 𝑘 =
 1, 2, . . . , 𝑛 . If 𝑛  is large and the number of states in the 

Markov chain is small, the Markov chain will have a large 

number of states (not exceeding several hundreds). Then, by 

successively squaring the transition probability matrix j times, 

where j is the largest integer such that 2𝑗 ≤  𝑛 , some 

computation time savings can be obtained. This produces the 

matrix 𝑃2𝑗, which may now be multiplied by 𝑃 (and powers 

of 𝑃) to obtain the value  𝑃𝑛.  𝜋(𝑛) = 𝜋(0)𝑃𝑛 is now used to 

find the distribution at time step n. Because the sparsity of the 

matrix 𝑃 is lost in the computation of 𝑃𝑛, this approach is not 

suitable for long sparse Markov chains. Furthermore, if a 

temporal trajectory of a distribution statistic is required, this 

approach may fall short, as only distributions at computed 

values of  𝑃2𝑗  will be accessible. Finally, for large values of 

𝑛, it may be helpful to keep a watch on convergence to the 

stationary distribution, as this may occur, correct to some 

acceptable computational accuracy, prior to step 𝑛 . Any 

subsequent vector–matrix multiplications will have no effect 

on the distribution. 

 

Matrix Scaling and Powering Methods for Small State 

Spaces 
Moler and Van Loan (1978) present 19 dubious methods for 

computing the exponential of a small-order matrix. The 

accuracy of the approximations is largely dependent on the 

matrix's norm, which is a key flaw in all of these techniques. 

Attempting to compute 𝑒𝑄𝑡 directly when the norm of 𝑄 or t 

is big is likely to produce unsatisfactory results. It becomes 

required to divide the interval [0,t] into subintervals (called 

panels) [0, 𝑡0], [𝑡0, 𝑡1], . . . , [𝑡𝑚−1 , 𝑡𝑚  =  𝑡]  and compute the 

transient solution at each time 𝑡𝑗 , 𝑗 =  0, 1, . . . , 𝑚 using the 

solution at the start of the panel as the starting point. 

This is commonly exactly what a user need, allowing them to 

track the evolution of specific system performance metrics 

over time. Matrix-scaling and -powering approaches are 

based on a feature of the exponential function that is unique 

to it, namely:

 

 

𝑒𝑄𝑡 = (𝑒𝑄𝑡/2)
2
     (5) 

The main concept is to compute 𝑒𝑄𝑡0 for a small number 𝑡0 such that 𝑡 = 2𝑚𝑡0 and then build 𝑒𝑄𝑡 by applying the equation 

(5) repeatedly. Let Q be the infinitesimal generator of a continuous-time, ergodic Markov chain, and 𝜋(0) be the probability 

distribution at time t = 0. We're looking for 𝜋(𝑡), which is the transient solution at time t. Let m be an integer and 𝑡0 ≠ 0 be a 

time for which 𝑡 = 2𝑚𝑡0. Then 

𝜋(𝑡) = 𝜋(2𝑚𝑡0).                         (6) 

By writing 𝑡𝑗 = 2𝑡𝑗−1, we will compute the matrices 𝑒𝑄𝑡𝑗 for 𝑗 = 0, 1, 2, … ,𝑚 and, as a result, the transient solution at times  

𝑡0, 2𝑡0, 2
2𝑡0, …  , 2

𝑚𝑡0 = 𝑡. by multiplying with 𝜋(0). 𝑃(𝑡𝑗) = 𝑒
𝑄𝑡0 is a stochastic matrix, and the Chapman–Kolmogorov 

equations show that 

𝑃(𝑡𝑗) = 𝑃(𝑡𝑗−1)𝑃(𝑡𝑗−1)      (7) 

After computing 𝑃(𝑡0), each of the remaining 𝑃(𝑡𝑗) can be calculated using Equation (7) by squaring the previous 𝑃(𝑡𝑗−1) 

As a result, matrix-powering methods supply the transient solution at intermediate intervals 𝑡0, 2𝑡0, 2
2𝑡0, …  , 2

𝑚𝑡0 during 

their calculation. However, in addition to computational costs proportional to 𝑛3 and memory needs of 𝑛2, a downside of 

matrix-powering approaches is that repetitive squaring may cause rounding error buildup, especially in cases when 𝑚 ≫ 1.
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RESULTS AND DISCUSSIONS 

This section discusses the solutions for performance measures  from the illustrative example such as stationary distribution 𝜋, 

transient distribution 𝜋(𝑛), Padé approximant 𝑅𝑝𝑞(𝑋),  statistic 𝜋(𝑛)𝑎, backward error analysis of the Padé approximation and 

algorithms 

Illustrative Example 1:  Given a discrete-time Markov chain with transition probability matrix P given by 

 

𝑃 = (

0.4 0 0.6 0
0.0002 0.3 0 0.6998
0.1999
0

0.0001
0.5

0.8
0

0
0.5

)    (8) 

 

Assume that the Markov chain begins in state 1, i.e. 𝜋(0) =  (1, 0, 0, 0), and that the value of being in each state at time step n 

is given by the vector 𝑎 =  (0, 4, 0, 10)𝑇 . In other words, in states 1 and 3, the Markov chain is meaningless, but worth 4 

(arbitrary units) in state 2 and 10 in state 4. 𝜋(𝑛)𝑎 is the value at time step 𝑛, and we want to compute this statistic for different 

values of 𝑛. For small values of 𝑛 =  1, 2, . . ., we may compute  𝜋(1)  =  𝜋(0)𝑃, 𝜋(2)  =  𝜋(1)𝑃,   𝜋(3)  =  𝜋(2)𝑃, . . .,  and so 

on, and we get 

𝜋(1) = (0.4 0 0.6 0) 

𝜋(2) = (0.27994 0.00006 0.72 0) 

𝜋(3) = (0.255904 0.00009 0.74396 0.000042) 

𝜋(4) = (0.25108 0.000122 0.748714 0. 000084) 
 

which gives the following values of the statistic 𝜋(𝑛)𝑎: 

0,   0.00024,   0.00078,     0.001329,… 

 

These numbers can be graphed to show how a statistic has evolved over time. If the transient distribution is required for much 

larger n values, the small size of the matrix should be employed to compute the matrix's consecutive powers. For example, if 

the distribution is required at time step 1000, powering the matrix P yields 𝑃(1000) . Furthermore, until that moment, the 

behavior of the statistic is 

𝜋(100) = (0.248093 0.003099 0.744507 0.004251) 

𝜋(200) = (0.246263 0.006151 0.739062 0. 008524) 

𝜋(300) = (0.244461 0.009156 0.733652 0.012731) 

𝜋(400) = (0.242688 0.012113 0.728328 0. 016871) 
    ⋮ 

𝜋(1000) = (0.232618 0.028906 0.698094 0. 040382) 

which gives the following values of the statistic 𝜋(𝑛)𝑎: 

0.0549,   0.109846,   0.163928,     0.217161,… , 0.519446. 
Finally, we note that the distribution at time step n = 1,000 differs significantly from the stationary distribution provided by 

𝜋 =  (.131589, .197384, .394768, .276259) , with the statistic 𝜋𝑎 =  3.552123 . For the calculation of transient 

distributions of continuous-time Markov chains, i.e., the computation of 𝜋(𝑡)) from  

𝜋(𝑡) = 𝜋(0)𝑒𝑄𝑡 
where 𝑄 is an irreducible continuous-time Markov chain's infinitesimal generator. 𝜋(𝑡) can be computed by first forming 𝑒𝑄𝑡 
and then pre-multiplying this with the initial probability vector, depending on the numerical approach used 𝜋(0). The matrix-

scaling and powering methods are examples of this. When the transition rate matrix is modest, they are the best choice. In 

some circumstances, 𝜋(𝑡)can be computed without having to create  𝑒𝑄𝑡 explicitly. The uniformization method and ordinary 

differential equation (ODE) solvers both use this methodology. Both can be used to create large-scale Markov chains. 

Illustrative Example 2: Assuming we need to find the transition distribution of a Markov chain with infinitesimal generator 

𝑄 at time t = 10. 

𝑄 = (

−0.6 0 0.6 0
0.1 −0.9 0.1 0.7
0.4
0

0.3
0.5

−0.8
0

0.1
−0.5

)     (9) 

We must find a 𝑡0 such that 𝑡0 is tiny and an integer 𝑚 exists, resulting in  𝑡 = 2𝑚𝑡0, in order to use the matrix-scaling and -

powering strategy. When we set m = 5 and solve for 𝑡0, we get 𝑡0 =
10

32
, which is small enough for our scenario. Therefore, 

𝑃(𝑡0) = (𝑒
10𝑄/32) = (

0.83864 0.007076 0.151351 0.002933
0.026528 0.769552 0.26528 0.17393
0.10208
0.002075

0.074581
0.126413

0.789369
0.002075

0.03397
0.869437

)   (10) 

and that performing the operations 𝑃(𝑡𝑗) = 𝑃(𝑡𝑗−1)𝑃(𝑡𝑗−1) for 𝑗 = 0, 1, 2,… , 5  gives the result 

𝑃(𝑡5) = (

0.175703 0.265518 0.1757 0.383082
0.136693 0.289566 0.136659 0.437156
0.161384
0.129865

0.274324
0.293702

0.16139
0.129865

0.402903
0.446568

) = (𝑒10𝑄).   (11) 
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The distribution at time t = 10 can be found by pre-multiplying by an initial probability distribution. The computation of  𝑒𝑄𝑡0 
is now the focus of our attention. Methods based on approximations about zero are feasible possibilities since 𝑡0 is modest. 

The rational Padé approximations around the origin are excellent option. The unique (p, q) rational function 𝑅𝑝𝑞(𝑋) is the (p, 

q) Padé approximant to the matrix exponential 𝑒𝑋.  

𝑅𝑝𝑞(𝑋) ≡
𝑁𝑝𝑞(𝑋)

𝐷𝑝𝑞(𝑋)
,     (12) 

which matches the Taylor’s series expansion of 𝑒𝑋 through terms to the power( 𝑝 +  𝑞). Its coefficients are determined by 

solving the algebraic equations 

∑
𝑋𝑗

𝑗!
−
𝑁𝑝𝑞(𝑋)

𝐷𝑝𝑞(𝑋)
= 𝑂(𝑋𝑝+𝑞+1)∞

𝑗=0 ,   (13) 

which yields 

𝑁𝑝𝑞(𝑋) = ∑
(𝑝+𝑞−𝑗)!𝑝!  𝑋𝑗

(𝑝+𝑞)! 𝑗! (𝑝−𝑗)!

∞
𝑗=0     (14) 

and 

𝐷𝑝𝑞(𝑋) = ∑
(𝑝+𝑞−𝑗)!𝑞!(−𝑋)𝑗

(𝑝+𝑞)! 𝑗! (𝑞−𝑗)!

∞
𝑗=0 .    (15) 

 

Baker (1975) has further information about Padé approximants, and one of their primary drawbacks is that they are only 

accurate at the origin, therefore they should not be employed when ‖𝑋‖2 is large. We can choose 𝑡0 so that ‖𝑄𝑡0‖2 is small 

enough that the Padé approximant to 𝑒𝑄𝑡0 can be derived with acceptable accuracy, even for relatively low-degree 

approximants, because we will be employing them in the context of a matrix-scaling and -powering method. The diagonal 

Padé approximants are obtained when 𝑝 =  𝑞, and there are two main reasons why this choice is preferable. They are, first 

and foremost, more stable. All of the eigenvalues of 𝑋 =  𝑄𝑡 in Markov chain problems can be found in the left half plane. 

Because either 𝑝 >  𝑞 and cancellation difficulties may occur, or 𝑝 <  𝑞 and 𝐷𝑝𝑞(𝑋)  may be inadequately conditioned, the 

computed approximants 𝑅𝑝𝑞(𝑋) for 𝑝 ≠ 𝑞 have greater rounding errors. Second, using the same amount of computation, we 

obtain a higher-order approach. 𝑅𝑝𝑞(𝑋)  with 𝑝 <  𝑞 takes around 𝑞𝑛3 flops to compute and provides an approximant of order  

(𝑝 +  𝑞). The number of flops required to compute 𝑅𝑞𝑞(𝑋) is nearly the same, but the result is an approximant of order 2𝑞 >

 (𝑝 + 𝑞). When 𝑝 >  𝑞 similar statements can be made. We find diagonal Padé approximants 

 

𝑅𝑝𝑝(𝑋) ≡
𝑁𝑝𝑝(𝑋)

𝑁𝑝𝑝(−𝑋)
,                       (16) 

Where 

𝑁𝑝𝑝(𝑋) = ∑
(2𝑝−𝑗)!𝑝!  𝑋𝑗

(2𝑝)! 𝑗! (𝑝−𝑗)!
= ∑ 𝑐𝑗

𝑝
𝑗=0

𝑝
𝑗=0 𝑋𝑗 .     (17) 

The coefficients 𝑐𝑗 can be conveniently constructed by means of the recursion 

𝑐0 = 1;     𝑎𝑛𝑑 𝑐𝑗 = 𝑐𝑗−1
𝑝+1−𝑗

𝑗(2𝑝+1−𝑗)
.     (18) 

For real implementation, the irreducible form below gives significant computation time savings at the tradeoff of more memory 

locations: 

𝑅𝑝𝑝(𝑋) =

{
 
 

 
 1 + 2

𝑋∑ 𝑐2𝑘+1

𝑃
2−1

𝐾=0 𝑋2𝑘

∑ 𝑐2𝑘

𝑃
2
𝐾=0

𝑋2𝑘−𝑋∑ 𝑐2𝑘+1

𝑃
2−1

𝐾=0
𝑋2𝑘

    𝑖𝑓 𝑝 𝑖𝑠 𝑒𝑣𝑒𝑛  

−1 − 2
𝑋∑ 𝑐2𝑘

𝑃
2−1

𝐾=0 𝑋2𝑘

𝑋∑ 𝑐2𝑘+1

𝑃
2
𝐾=0 𝑋2𝑘−∑ 𝑐2𝑘

𝑃
2−1

𝐾=0 𝑋2𝑘
    𝑖𝑓 𝑝 𝑖𝑠 𝑜𝑑𝑑 

         (19) 

Thus, for even values of p, 

𝑅𝑝𝑝(𝑋) = 𝐼 + 2
𝑆𝑒

𝑇𝑒−𝑆𝑒
,     (20) 

Where 

𝑆𝑒 = 𝑐1𝑋 + 𝑐3𝑋
3 + …+ 𝑐𝑝−1𝑋

𝑝−1 and  𝑇𝑒 = 𝑐0 + 𝑐2𝑋
2 + 𝑐4𝑋

4 + …+ 𝑐𝑝𝑋
𝑝 (21) 

while for odd values of p, 

𝑅𝑝𝑝(𝑋) = 𝐼 + 2
𝑆0

𝑇0−𝑆0
,     (22) 

Where 

𝑆0 = 𝑐0 + 𝑐2𝑋
2 + 𝑐4𝑋

4 + …+ 𝑐𝑝−1𝑋
𝑝−1 and 𝑇0 = 𝑐1𝑋 + 𝑐3𝑋

3 + …+ 𝑐𝑝𝑋
𝑝 (23) 

 

These computations can be merged easily, necessitating the use of a Horner-type evaluation procedure. Horner evaluations of 

the numerator and denominator in Equation (19), for example, require only half the operations of a conventional 

implementation of Equation (16). For the computation of 𝑒𝑋, the following four phases, modified from Philippe and Sidje 

(1993), create a Padé form of the matrix-powering and -scaling approach. The integer m is chosen as    𝑚 = [𝑙𝑜𝑔‖𝑋‖∞/
𝑙𝑜𝑔2] + 1. in this implementation. 

 

To compute the transient solution of a Markov chain with generator Q and starting state 𝜋(𝑡0), at time t just use this approach 

with 𝑋 =  𝑄𝑡 and then create 𝜋(𝑡0)𝑅 where R is the algorithm's approximation to 𝑒𝑋. 

 

1. Find appropriate scaling factor: 

• Compute𝑚 = max {0, [𝑙𝑜𝑔‖𝑋‖∞/𝑙𝑜𝑔2] + 1}. 
2. Compute coefficients and initialize: 
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• Set 𝑐0 = 1. 

• For 𝑗 =  1, 2, . . . , 𝑝 do 

◦ Compute 𝑐𝑗 = 𝑐𝑗−1
𝑝+1−𝑗

𝑗(2𝑝+1−𝑗)
. 

• Compute 𝑋1 = 2
−𝑚;  𝑋2 = 𝑋1

2;    𝑇 = 𝑐𝑝𝐼;   𝑆 = 𝑐𝑝−1𝐼 . 

3. Application of Horner scheme: 

• Set odd = 1. 

• For 𝑗 =  𝑝 −  1, . . . , 2,1 do 

◦ if odd = 1, then 

∗ Compute = 𝑇 × 𝑋2 + 𝑐𝑗−1𝐼 ; 

else 

∗ Compute = 𝑆 × 𝑋2 + 𝑐𝑗−1𝐼 . 

◦ Set odd = 1 − odd. 

• If odd = 0, then 

◦ Compute 𝑆 = 𝑆 × 𝑋1;  𝑅 =  𝐼 +  2 ×  (𝑇 −  𝑆)−1  ×  𝑆; 

else 

◦ Compute  𝑇 = 𝑇 × 𝑋1;  𝑅 = − (𝐼 +  2 ×  (𝑇 −  𝑆)−1  ×  𝑆) 
4. Raise matrix to power 2m by repeated squaring: 

• For j = 1 to m do 

◦ Compute 𝑅 =  𝑅 ×  𝑅.  Philippe and Sidje (1993) 

 

For 𝑒𝑋 the Padé approximation needs about (𝑝 + 𝑚 +  4/3 )𝑛3  multiplications. In addition to the storage necessary for the 

matrix, it can be implemented with three double-precision arrays, each of size 𝑛2. As a result, we are left with the option of p. 

Moler and Van Loan (1978) (1978) gave a backward error analysis of the Padé approximation, demonstrating that if 
‖𝑋‖2

2𝑚
≤

1

2
,  

then 

[𝑅𝑝𝑝(2
−𝑚𝑋)]

2𝑚
= 𝑒𝑋+𝐸 , 

Where 

 
‖𝐸‖2

‖𝑋‖2
≤ (

1

2
)
2𝑝−3

   
(𝑝 !)2

(2𝑝 !)(2𝑝+1)!
≈

{
 
 

 
 0.77 × 10

−12       (𝑝 = 5)

0.34 × 10−15       (𝑝 = 6)

0.11 × 10−18       (𝑝 = 7)

0.27 × 10−22       (𝑝 = 8)

            (24) 

 

 

This suggests that Padé approximants of low degree for value 

of 𝑝 = 5  to 𝑝 = 8  are adequate. The above analysis, 

however, does not account for rounding error. Ward (1977) 

looked into this and proposed some criteria for selecting 

appropriate values for certain computers. Saff (1973) also 

provides a discussion on the degree of greatest rational 

approximation to the exponential function. Finally, Philippe 

and Sidje (1993) found that even values of p are better than 

odd values, and that p = 6 is generally satisfactory in 

numerical experiments on Markov chains. 

 

CONCLUSION 

 The solutions of transient distribution in Markov chain using 

matrix scaling and powering methods for small state spaces, 

which produce a significantly more accurate response in less 

time for some types of situations and also, tries to get to the 

end result as quickly as possible while the solution must be 

computed when a specified number of well-defined stages 

have been completed has been investigated, in order to 

provide some insight into the solutions of transient 

distribution in Markov chain. Our quest is to compute the 

solutions and algorithms of matrix scaling and powering 

methods.  Matrices operation such as multiplication with one 

or more vectors, Padé variant of the matrix-powering and 

scaling approach are used with the help of some existing 

laws, theorems and formulas of Markov chain. The transient 

distribution vector’s 𝜋(𝑛), 𝑛 = 1, 2,…,  Padé approximants 

𝑅𝑝𝑞(𝑋)  and a backward error analysis of the Padé 

approximation are obtained for some illustrative examples 

while the algorithms is presented. The first illustrative 

example was considered on Markov chain which begins in 

state 1, i.e. 𝜋(0) =  (1, 0, 0, 0), and that the value of being in 

each state at time step 𝑛  is given by the vector 𝑎 =

 (0, 4, 0, 10)𝑇. 𝜋(𝑛)𝑎 statistic which is the value at time step 

𝑛  were computed for different values of 𝑛  and,  it was 

observed  that for 𝑛 = 1000,  𝜋(1000) =
(0.232618 0.028906 0.698094 0. 040382) , the 

statistic 𝜋(𝑛)𝑎  is 

0.0549,   0.109846,   0.163928,     0.217161,… , 0.519446. 
While the second illustrative example considered the 

transition distribution of a Markov chain with infinitesimal 

generator 𝑄 at time t = 10 for continuous distribution Markov 

chain using Padé approximants technique and, it was found 

that even values of p are better than odd values, and that p = 

6 is generally satisfactory in numerical experiments on 

Markov chains. 
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