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ABSTRACT 

A unique and efficient implicit four-step approach with application to nonlinear third order ordinary 

differential equations is considered in this article. In the derivation of this method Collocation and 

Interpolation techniques were engaged and power series approximate solution was used as the 

interpolating polynomial. The third derivative of the power series was collocated at the entire grid points, 

while the interpolation was done at the first three points. Appropriate study of the basic properties of the 

method was done. The results generated when the new block method was applied on nonlinear third 

order ordinary differential equations are better in terms of accuracy than the existing methods.  

Keywords: Implicit Four-step, Non-linear Third Order, Interpolation, Collocation, Ordinary Differential 

Equations, and Power series. 

INTRODUCTION 

The numerical solution of nonlinear third order initial value problems (IVPs) of ordinary differential equations (ODEs) directly 

using a unique implicit four-step linear multistep block method is studied in this research. These ODEs which are frequently 

met in our everyday lives are of the form  

𝑦𝑖𝑖𝑖(𝑥) = 𝑓(𝑥, 𝑦, 𝑦𝑖 , 𝑦𝑖𝑖), 𝑦(𝑥𝑜) = 𝑦0, 𝑦𝑖(𝑥𝑜) = 𝑦1, 𝑦𝑖𝑖(𝑥𝑜) = 𝑦2                                                              (1) 

Equation (1) arises in diverse fields of applied mathematics, amongst which are elasticity, fluid mechanics, and quantum 

mechanics as well as in control system, engineering and physics. The existence and uniqueness of the solution for these 

equations have been discussed extensively in Adeniran & Omotoye (2016) and Wend (1969). In general, finding the exact 

solutions of these equations is not easy. For instance, the application problem in fluid mechanics named Fluid flow does not 

have exact solution, hence it is important to get the numerical solutions [3, 7, 9]. For a long time, different numerical methods 

have been developed in order to approximate the solution of equation (1). Among these methods are block method, linear 

multistep method, hybrid method, Taylor series and Rung-kutta method, see Henrici (1962), Kayode et al., (2018), Adoghe et 

al., (2016), Adeniran & Omotoye (2016), Abdelrahim et al., (2019), Ukpebor (2019), Ogunware et al., (2018), and Yao et al., 

(2011). 

 

This article is motivated to derive a Four-step approach with an application to nonlinear third order ordinary 

differential equations via power series as the basic function. This work is motivated by the success story of block 

methods for solving ordinary differential equations directly without reducing it to system of first order ordinary 

differential equation. The advantages of the method lie in the fact that it is economical, saves time and 

computationally reliable.  

MATERIALS AND METHOD 

In this section, the procedure for derivation of the proposed method for solving (1) is presented. Let the exact solution 𝑦(𝑥) to 

approximate  (1) be of the form 

𝑦(𝑥) =  ∑ 𝑎𝑗𝑥𝑗

𝑐+𝑖−1

𝑗=0

                                                                                                                      (2) 

with the third derivative given as 

𝑦′′′(𝑥) =  ∑ 𝑗(𝑗 − 1)(𝑗 − 2)𝑎𝑗𝑥𝑗−3

𝑐+𝑖−1

𝑗=3

                                                                                                     (3) 

In this case, c is the number of collocation points and i is the number of interpolation points. (2) is called interpolation 

equation while (3) is called collocation equation.  

Applying the conditions (2) and (3) at some strategic points give the following equations 
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ℎ7𝑎7 + ℎ6𝑎6 + ℎ5𝑎5 + ℎ4𝑎4 + ℎ3𝑎3 + ℎ2𝑎2 + ℎ𝑎1 + 𝑎0 = 𝑦𝑛+1                                       (4) 

128ℎ7𝑎7 + 64ℎ6𝑎6 + 32ℎ5𝑎5 + 16ℎ4𝑎4 + 8ℎ3𝑎3 + 4ℎ2𝑎2 + 2ℎ𝑎1 + 𝑎0 = 𝑦𝑛+2             (5) 

2187ℎ7𝑎7 + 729ℎ6𝑎6 + 243ℎ5𝑎5 + 81ℎ4𝑎4 + 27ℎ3𝑎3 + 9ℎ2𝑎2 + 3ℎ𝑎1 + 𝑎0 = 𝑦𝑛+3    (6) 

6𝑎3 = 𝑓𝑛                                                                                                                                  (7) 

210ℎ4𝑎7 + 120ℎ3𝑎6 + 60ℎ2𝑎5 + 24ℎ𝑎4 + 6𝑎3 = 𝑓𝑛+1                                                      (8) 

3360ℎ4𝑎7 + 960ℎ3𝑎6 + 240ℎ2𝑎5 + 48ℎ𝑎4 + 6𝑎3 = 𝑓𝑛+2                                                  (9) 

17010ℎ4𝑎7 + 3240ℎ3𝑎6 + 540ℎ2𝑎5 + 72ℎ𝑎4 + 6𝑎3 = 𝑓𝑛+3                                            (10) 

53760ℎ4𝑎7 + 7680ℎ3𝑎6 + 960ℎ2𝑎5 + 96ℎ𝑎4 + 6𝑎3 = 𝑓𝑛+4                                            (11) 

Remark 2.1: It should be noted that equations (4) to (11) are generated by evaluating the approximate solution (2) and its 

third derivative (3) at the suitable points. 

 

Combining (4-11) and solve with Computer Aided Software such as Maple 18 to obtained the values of  

𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7 as follows. see Ogunware et al., (2015) and Omole & Ukpebor (2020) for more details 

𝑎0 = −
1

240
ℎ3𝑓𝑛 −

29

60
ℎ3𝑓𝑛+1 −

21

40
ℎ3𝑓𝑛+2 +

1

60
ℎ3𝑓𝑛+3 −

1

240
ℎ3𝑓𝑛+4 + 3𝑦𝑛+1 

−3𝑦𝑛+2 + 𝑦𝑛+3 

𝑎1 =
1

10080

1

ℎ
(677ℎ3𝑓𝑛 + 10480ℎ3𝑓𝑛+1 + 7254ℎ3𝑓𝑛+2 + 64ℎ3𝑓𝑛+3 + 5ℎ3𝑓𝑛+4 

−25200𝑦𝑛+1 + 40320𝑦𝑛+2 − 15120𝑦𝑛+3) 

𝑎2 = −
1

720

1

ℎ2
(118ℎ3𝑓𝑛 + 477ℎ3𝑓𝑛+1 + 96ℎ3𝑓𝑛+2 + 35ℎ3𝑓𝑛+3 − 6ℎ3𝑓𝑛+4 

−360𝑦𝑛+1 + 720𝑦𝑛+2 − 360𝑦𝑛+3) 

𝑎3 =
1

6
𝑓𝑛 

𝑎4 = −
1

288

25𝑓𝑛 − 48𝑓𝑛+1 + 36𝑓𝑛+2 − 16𝑓𝑛+3 + 3𝑓𝑛+4

ℎ
 

𝑎5 =
1

1440

35𝑓𝑛 − 104𝑓𝑛+1 + 114𝑓𝑛+2 − 56𝑓𝑛+3 + 11𝑓𝑛+4

ℎ2  

𝑎6 = −
1

1440

5𝑓𝑛 − 18𝑓𝑛+1 + 24𝑓𝑛+2 − 14𝑓𝑛+3 + 3𝑓𝑛+4

ℎ3
 

𝑎7 =
1

5040

𝑓𝑛 − 4𝑓𝑛+1 + 6𝑓𝑛+2 − 4𝑓𝑛+3 + 𝑓𝑛+4

ℎ4  

 

Substituting (𝑎0 − 𝑎7) into (2) gives a Four-step implicit continuous coefficient of the form: 

𝑦(𝑡) = 𝛼1(𝑡)𝑦𝑛+1 + 𝛼2(𝑡)𝑦𝑛+2 + 𝛼3(𝑡)𝑦𝑛+3 + ℎ2(𝛽0(𝑡)+𝛽1(𝑡)+𝛽2(𝑡)+𝛽3(𝑡)+𝛽4(𝑡))                          (12) 

where and  are continuous coefficients. See Kayode et al., (2018), Adoghe et al., 

(2016), Adeniran & Omotoye (2016), Abdelrahim et al., (2019), Ukpebor (2019) for more reference 

The continuous method (12) is used to the discrete schemes below. That is, evaluating (12) at t=4 and t=0 and evaluate the 

first and second derivatives of (12) at all points gives the following discrete schemes. For more details, please see Yao et al., 

(2011), Wend (1969) and Ogunware et al. (2015). 

 

1

240
ℎ3𝑓𝑛 −

1

60
ℎ3𝑓𝑛+1 +

21

40
ℎ3𝑓𝑛+2 +

29

60
ℎ3𝑓𝑛+3 +

1

240
ℎ3𝑓𝑛+4 − 3𝑦𝑛+2 + 3𝑦𝑛+3 

+ 𝑦𝑛+1 = 𝑦𝑛+4                                                                                       (13) 

−
1

240
ℎ3𝑓𝑛 −

29

60
ℎ3𝑓𝑛+1 −

21

40
ℎ3𝑓𝑛+2 +

1

60
ℎ3𝑓𝑛+3 −

1

240
ℎ3𝑓𝑛+4 + 3𝑦𝑛+1 − 3𝑦𝑛+2 

+ 𝑦𝑛+3 = 𝑦𝑛                                                                                           (14) 

With the first derivatives as follows 

1

10080

1

ℎ
(677ℎ3𝑓𝑛 + 10480ℎ3𝑓𝑛+1 + 7254ℎ3𝑓𝑛+2 + 64ℎ3𝑓𝑛+3 + 5ℎ3𝑓𝑛+4 

−25200𝑦𝑛+1 + 40320𝑦𝑛+2 − 15120𝑦𝑛+3) = 𝑦′𝑛                            (15) 

1 2( ), ( )...t t  0 1 4( ), ( ),... ( )t t t  
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−
1

5040

1

ℎ
(29ℎ3𝑓𝑛 − 452ℎ3𝑓𝑛+1 − 1296ℎ3𝑓𝑛+2 + 52ℎ3𝑓𝑛+3 − 13ℎ3𝑓𝑛+4 + 7560𝑦𝑛+1 

−10080𝑦𝑛+2 + 2520𝑦𝑛+3) = 𝑦′𝑛+1        (16) 

1

10080

1

ℎ
(5ℎ3𝑓𝑛 − 104ℎ3𝑓𝑛+1 − 1482ℎ3𝑓𝑛+2 − 104ℎ3𝑓𝑛+3 + 5ℎ3𝑓𝑛+4 − 5040𝑦𝑛+1 

+ 5040𝑦𝑛+3) = 𝑦′𝑛+2                                                                        (17) 

1

5040

1

ℎ
(13ℎ3𝑓𝑛 − 52ℎ3𝑓𝑛+1 + 1296ℎ3𝑓𝑛+2 + 452ℎ3𝑓𝑛+3 − 29ℎ3𝑓𝑛+4 + 2520𝑦𝑛+1 

−10080𝑦𝑛+2 +7560𝑦𝑛+3) = 𝑦′𝑛+3                                                   (18) 

1

10080

1

ℎ
(5ℎ3𝑓𝑛 + 64ℎ3𝑓𝑛+1 + 7254ℎ3𝑓𝑛+2 + 10480ℎ3𝑓𝑛+3 + 677ℎ3𝑓𝑛+4 

+ 15120𝑦𝑛+1 − 40320𝑦𝑛+2 + 25200𝑦𝑛+3) = 𝑦′𝑛+4                      (19) 

With the following second derivatives 

−
1

360

1

ℎ2
(118ℎ3𝑓𝑛 + 477ℎ3𝑓𝑛+1 + 96ℎ3𝑓𝑛+2 + 35ℎ3𝑓𝑛+3 − 6ℎ3𝑓𝑛+4 − 360𝑦𝑛+1 

+ 720𝑦𝑛+2 − 360𝑦𝑛+3) = 𝑦′′𝑛                                                       (20) 

1

720

1

ℎ2 (15ℎ3𝑓𝑛 − 308ℎ3𝑓𝑛+1 − 456ℎ3𝑓𝑛+2 + 36ℎ3𝑓𝑛+3 − 7ℎ3𝑓𝑛+4 + 720𝑦𝑛+1 

− 1440𝑦𝑛+2 + 720𝑦𝑛+3) = 𝑦′′𝑛+1                                                (21) 

−
1

360

2ℎ3𝑓𝑛 − 19ℎ3𝑓𝑛+1 + 19ℎ3𝑓𝑛+3 − 2ℎ3𝑓𝑛+4 − 360𝑦𝑛+1 + 720𝑦𝑛+2 − 360𝑦𝑛+3

ℎ2  

= 𝑦′′𝑛+2 

1

720

1

ℎ2 (7ℎ3𝑓𝑛 − 36ℎ3𝑓𝑛+1 + 456ℎ3𝑓𝑛+2 + 308ℎ3𝑓𝑛+3 − 15ℎ3𝑓𝑛+4 + 720𝑦𝑛+1 

− 1440𝑦𝑛+2 + 720𝑦𝑛+3) = 𝑦′′𝑛+3                                                  (22) 

−
1

360

1

ℎ2 (6ℎ3𝑓𝑛 − 35ℎ3𝑓𝑛+1 − 96ℎ3𝑓𝑛+2 − 477ℎ3𝑓𝑛+3 − 118ℎ3𝑓𝑛+4 − 360𝑦𝑛+1 

+ 720𝑦𝑛+2 − 360𝑦𝑛+3) = 𝑦′′𝑛+4                                                 (23) 

Combining equations (13-23) and solve simultaneously gives the block formula below which will be used to solve (1) 

directly with developing separate starting values 

𝑦𝑛+1 =
113

1120
ℎ3𝑓𝑛 +

107

1008
ℎ3𝑓𝑛+1 +

43

1680
ℎ3𝑓𝑛+3 −

47

10080
ℎ3𝑓𝑛+4 −

103

1680
ℎ3𝑓𝑛+2 

+
1

2
ℎ2𝑦′′𝑛 + ℎ𝑦′𝑛 + 𝑦𝑛                                                                             (24) 

𝑦𝑛+2 =
331

630
ℎ3𝑓𝑛 +

332

315
ℎ3𝑓𝑛+1 −

8

2
ℎ3𝑓𝑛+2 +

52

315
ℎ3𝑓𝑛+3 −

19

630
ℎ3𝑓𝑛+4 + 2ℎ2𝑦′′𝑛 

+2ℎ𝑦′𝑛 + 𝑦𝑛                                  (25) 

𝑦𝑛+3 =
1431

1120
ℎ3𝑓𝑛 +

1863

560
ℎ3𝑓𝑛+1 −

243

560
ℎ3𝑓𝑛+2 +

45

112
ℎ3𝑓𝑛+3 −

81

1120
ℎ3𝑓𝑛+4 

+
9

2
ℎ2𝑦′′𝑛 + 𝑦𝑛 + 3ℎ𝑦′𝑛                                                                         (26) 
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𝑦𝑛+4 =
248

105
ℎ3𝑓𝑛 +

2176

315
ℎ3𝑓𝑛+1 +

32

105`
ℎ3𝑓𝑛+2 +

128

105
ℎ3𝑓𝑛+3 −

8

63
ℎ3𝑓𝑛+4 + 8ℎ2𝑦′′𝑛 

+4ℎ𝑦′𝑛 + 𝑦𝑛                                                                                             (27) 

With first derivatives  

𝑦′𝑛+1 =
367

1440
ℎ2𝑓𝑛 +

3

8
ℎ2𝑓𝑛+1 −

47

240
ℎ2𝑓𝑛+2 +

29

360
ℎ2𝑓𝑛+3 −

7

480
ℎ2𝑓𝑛+4 + ℎ𝑦′′𝑛 

+ 𝑦′𝑛          (28) 

𝑦′𝑛+2 =
53

90
ℎ2𝑓𝑛 +

8

5
ℎ2𝑓𝑛+1 −

1

3
ℎ2𝑓𝑛+2 +

8

45
ℎ2𝑓𝑛+3 −

1

30
ℎ2𝑓𝑛+4 + 2ℎ𝑦′′𝑛 + 𝑦′𝑛  

                                                                                        (29) 

𝑦′𝑛+3 =
147

160
ℎ2𝑓𝑛 +

117

40
ℎ2𝑓𝑛+1 +

27

80
ℎ2𝑓𝑛+2 +

3

8
ℎ2𝑓𝑛+3 −

9

160
ℎ2𝑓𝑛+4 + 3ℎ𝑦′′𝑛 

+ 𝑦′𝑛          (30) 

𝑦′𝑛+4 =
56

45
ℎ2𝑓𝑛 +

64

15
ℎ2𝑓𝑛+1 +

16

15
ℎ2𝑓𝑛+2 +

64

45
ℎ2𝑓𝑛+3 + 4ℎ𝑦′′𝑛 + 𝑦′𝑛             (31) 

 

With the second derivatives 

𝑦′′𝑛+1 =
251

720
ℎ𝑓𝑛 +

323

360
ℎ𝑓𝑛+1 −

11

30
ℎ𝑓𝑛+2 +

53

360
ℎ𝑓𝑛+3 −

19

720
ℎ𝑓𝑛+4 + 𝑦′′𝑛        (32) 

𝑦′′𝑛+2 =
29

90
ℎ𝑓𝑛 +

62

45
ℎ𝑓𝑛+1 +

4

15
ℎ𝑓𝑛+2 +

2

45
ℎ𝑓𝑛+3 −

1

90
ℎ𝑓𝑛+4 + 𝑦′′𝑛            (33) 

𝑦′′𝑛+3 =
27

80
ℎ𝑓𝑛 +

51

40
ℎ𝑓𝑛+1 +

9

10
ℎ𝑓𝑛+2 +

21

40
ℎ𝑓𝑛+3 −

3

80
ℎ𝑓𝑛+4 + 𝑦′′𝑛            (34) 

𝑦′′𝑛+4 =
14

45
ℎ𝑓𝑛 +

64

45
ℎ𝑓𝑛+1 +

8

15
ℎ𝑓𝑛+2 +

64

45
ℎ𝑓𝑛+3 +

14

45
ℎ𝑓𝑛+4 + 𝑦′′𝑛         (35) 

 

ANALYSIS OF THE BLOCK METHODS 

Order and error Constants of the Block Methods 

According to Adeniran & Omotoye (2016), Abdelrahim et al., (2019) and Ukpebor (2019), the order of the new block method 

(24) – (27) is obtained by using the Taylor series and it is found it has uniformly order five, with an error constants vector  

𝐶𝑝+3 = [
139

40320
,

1

45
,

243

4480
,

32

45
]

𝑇
                      (36) 

Consistency 

Definition 3.1: The Four-step block method (24-27) is said to be consistent if it has an order more than or equal to one i.e. 

. Therefore, the method is consistent (Abdelrahim et al., (2019) and Lambert 1973). 

Zero Stability 

Definition 3.2: The hybrid block method (24-27) said to be zero stable if the first characteristic polynomial  having 

roots such that , then the multiplicity of must not greater than six  as discussed in Wend 

(1969) and Ogunware et al. (2015). 

 

 

In order to find the zero-stability of Four-step block method (24-27), we only consider the first characteristic polynomial of 

the method as follows 

                  (37) 

which implies . Hence the method is zero-stable since . 

Convergence 

Theorem (3.1): Consistency and zero stability are sufficient condition for linear multistep method to be convergent. Since the 

method (22-24) are consistent and zero stable, it implies the method is convergent for all point (as reported in Kayode et al., 

(2018), Adoghe et al., (2016) and Ukpebor (2019)). 

Implementation of the Block Methods 

In this section, we implement our derived method (24) – (27) and its first and second derivatives (28) – (31) and (32) – (35) 

respectively with the aid of   MATLAB coding to solve third order nonlinear problems in order to show the level of accuracy 

and efficiency of the method. 

 

1P

 r

11  zz rifandr
zr

 r   3

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1
1

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

r r r

   
   
     
   
   
   

0,0,0, 1r  1zr
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Numerical Examples 

The method is specifically developed to examine third order nonlinear problems to test the accuracy of the proposed methods 

and our results are compared with the results obtained using existing methods. 

The following problems are taken as test problems: 

Examples
 

 

Exact solution:  

Source: Adoghe et al., (2016) 

2. Application Problem (Fluid flow) 

 

Source: Adeniran & Omotoye (2016) 

Table1: Showing the result of Problem 1 

x y-exact solution y-computed solution Error 

K=4,P=5  

Error in Adoghe et al 

(2016) 

K=4, P=7 

0.1 
1.0500417292784914 1.0500417292688820

 

9.6094e-012 
1.93182e-08  

0.2 
1.1003353477310756

 

1.1003353470238757

 

7.0720e-010

 
5.61699e-07  

0.3 
1.1511404359364668

 

1.1511404292437832

 

6.6927e-009

 
3.77772e-06  

0.4 
1.2027325540540821

 

1.2027325226369256

 

3.1417e-008

 
1.34474e-05  

0.5 
1.2554128118829952

 

1.2554127068075998

 

1.0508e-007

 
3.26773e-05  

0.6 
1.3095196042031119

 

1.3095193190398202

 

2.8516e-007
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 Figure 1:  Graph showing the error differences between the proposed method namely ‘NM’ and the existing method namely 

‘AD16’. 

Table 2:  Showing the result of Problem 2 

x y-computed solution y-computed solution in Adeniran & Omotoye (2016)  

0.1 0.004999916668877     

 

0.004999997916667 

0.2 0.019997333981535      0.019999866667262 

0.3 0.044979767219860      0.004449984812841 

0.4 0.079914841165289      0.079991467273443 

0.5 0.124740629167025       0.124967453567222 

0.6 0.179356502477224      0.179902834981102 

0.7 0.243614844746559      0.244755061293070 

0.8 0.317314056925792       0.319454487433778 

0.9 0.400193307358953      0.4038948458877279 

1.0 0.491929477903173      0.4979224398235544 

 

Remark 4.1: it should be noted that problem 2 is an application problem and does not have an exact solution. Hence the 

comparison of the computed solution of the proposed method with similar work in the literaturede. 

 

DISCUSSION OF RESULTS  

In this section, the tables of results will be extensively 

discussed.  Table 1 shows the exact solution, computed 

solution and the error in the method for problem 1. The 

comparison of error in new method with another error in the 

literature is also made. Specifically, Adoghe et al., (2016) 

who proposed a linear multistep method of order 5. As it 

could be seen in Table 1 , the four-step block method of order 

5 proposed in this work is better in terms of accuracy than 

that of Adoghe et al (2016). On the other hand, Table 2 shows 

the computation of an application problem in Fluid 

Mechanics namely Thin Flow. The problem was solved by 

Adeniran and Omotoye (2016) using h=0.1. The results show 

that the proposed method is more accurate when compared 

with other method in the literature. The method is therefore 

computationally reliable and recommended for general use.  

 

CONCLUSION  

In this article, the derivation of the new block method for 

solving third order nonlinear ordinary differential equations 

directly is studied. The method is of order p=5 which shows 

that it is consistent. The positive aspect of the method over the 

existing numerical methods is its ability to solve problem with 

exact solution and without exact solution and performance in 

terms of accuracy and convergence in the literature. the 

comparison of errors in the new method with other existing 

method is shown in Figure 1. The new method gives minimal 

error and also solves a notable real life problem namely Thin 

Flow which has application in fluid mechanics.  
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