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ABSTRACT  

There are several methods to combine and extend the continuous lifetime models to increase their flexibility 

and generality. Here we proposed a new lifetime distribution model with two parameters. Various lifetime 

distribution representations related to this model are derived and presented with their properties. Several 

Statistical measures and their properties are also studied. The method maximum likelihood estimator is 

discussed. Simulation studies are performed to assess the finite sample performance of the maximum 

likelihood estimators (MLEs) of the parameters. In the end, to show the flexibility of this distribution, an 

application using real data sets is presented. 
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INTRODUCTION 

The log-logistic distribution is considered as one of the most 

popular statistical distribution used in modeling lifetime and 

reliability data. It may serve as a superior alternative distribution 

to the most commonly used statistical distributions such as 

Weibull distribution, log-normal and gamma distributions. 

Application of the Log-logistic distribution are demonstrated in 

numerous applied areas such as in biostatistics and it has also 

been used in hydrology to model climate change by [3, 5, 7]. 

And the log-logistic distribution can be used to solve many 

practical problems especially in survival data, but it may not be 

effective to handle some other practical problems of interest. 

This is motivating us to expand the family of the log-logistic 

distribution by introducing a new parameter to the original 

distribution. A method of introducing a new parameter(s) to 

expand the family of distributions is not new [1, 9, 10, 14, 15, 

14, 17, 22, 24] for example [16], proposed a family of 

distribution that can be derived based on the probability density 

function and hazard function. In this paper, we introduce a new 

lifetime distribution called two-parameter log-logistic Poisson 

distribution which is not considered in the literature and study 

its properties with application to censored life time data. The 

probability density function of Log-logistic distribution is given 

by [2] as 

𝑓(𝑥; 𝛼, 𝛽) =
𝛽𝛼𝛼𝑥𝛼−1

(𝛽𝛼+𝑥𝛼)2
,  𝑥 > 0  (1) 

Where 𝛼, 𝛽 > 0,are shape and scale parameters respectively, by 

taking 𝛽 = 1, we have one parameter log-logistics distribution; 

in this paper we use this one parameter distribution to introduce 

a new two parameter distribution by mixing it with Poisson 

distribution. 

 

The Two-parameter Log-Logistics Poisson distribution (LLP) 

The probability density function of the random variable X with scale parameter 𝜆 > 0, and shape parameter 𝛼 > 0 is give by  

𝑓(𝑥; 𝛼, 𝛽) =
𝜆𝛼𝑥𝛼−1

(𝑒𝜆−1)(1+𝑥𝛼)2
e

λ
1+xα⁄   𝑥 > 0      (2). 

The cumulative distribution and survival functions are given respectively by 

𝐹(𝑥) =
𝑒𝜆−e

λ
1+xα⁄

(𝑒𝜆−1)
,      𝑥 > 0          (3)  

and     𝑆(𝑡) =
eλ 1+tα⁄ −1

(𝑒𝜆−1)
,            (4) 
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Theorem 2.1 The probability density function of the Two-parameter Log-Logistic Poisson LLP distribution is decreasing for 1 >

𝛼 > 0 and unimodel for 𝛼 > 1. 

Proof. Let 𝐾(𝑥) = log 𝜆𝛼 (𝑒𝜆 − 1) + (𝛼 − 1) log 𝑥 + λ
1 + xα⁄ − 2 log(1 + 𝑥𝛼). The first derivative of 𝐾(𝑥)is K′(x) =

(α−1)

x
−

αxα−1

1+xα
(2 +

λ

1+xα
). If 0 < 𝛼 ≤ 1, it then follows that K′(x) < 0, for 𝑥 > 0. This implies that 𝑓(𝑥) is a decreasing function. Now 

suppose that 𝛼 > 1, then 𝐾′(𝑥) =
𝑈(𝑥)

𝑥(1+𝑥𝛼)
, where (𝑥) = (1 + 𝛼)𝑥2𝛼 + (2 + 𝛼𝜆)𝑥𝛼 − (𝛼 − 1) , this shows that K′(x) = 0 if and 

only if 𝑈(𝑥) = 0. This equation has a unique positive solution 

𝒙𝒐 = (
−(𝟐+𝝀𝜶)+√(𝟐+𝜶𝝀)𝟐+𝟒(𝜶𝟐−𝟏)

𝟐(𝟏+𝜶)
)

𝟏
𝜶

 , 

And 𝑈(𝑥) > 0 for 𝑥 < 𝑥𝑜 and 𝑈(𝑥) < 0 for 𝑥 > 𝑥𝑜. So, 𝑓(𝑥) is a unimodal at 𝑥 = 𝑥𝑜. [] 

 Hazard rate function 

This is one of the important functions in application; the failure rate function of the LLP is given by 

ℎ(𝑥; 𝛼, 𝜆) =
𝜆𝛼𝑥𝛼−1e

λ
1+xα⁄

(e
λ

1+xα⁄
−1)(1+𝑥𝛼)2

 , 𝑥 > 0,       (5) 

Theorem 2.2 The hazard rate function is decreasing function for 𝛼 ≤ 1 and is a bathtub for α> 1. 

Proof.  

Set 𝜂(𝑥) = −
𝑓′(𝑥)

𝑓(𝑥)
= −

(α−1)

x
+

αxα−1

1+xα
(2 +

λ

1+xα
). The first derivative of 𝜂(𝑥) is𝜂′(𝑥) =

𝑉(𝑥)

𝑥2
 , where  

V(x) = α − 1 +
2αxα(α−xα−1)

(1+xα)2 + αλ
xα(α−xα(1+α)−1)

(1+xα)3 . If 0 < 𝛼 ≤ 1, then the function V(x) and 𝜂′ are negative. So, it follows by 

Glaser’s theorem [ref] that ℎ(𝑥) is decreasing. Now suppose that 𝛼 > 1. The first derivative of 𝑉(𝑥) is 

𝑉′(𝑥) = −
2𝛼2𝑥𝛼−1

(1+xα)2 +
4𝛼2𝑥2𝛼−1(𝛼−xα−1)

(1+xα)3 −
𝜆𝛼2𝑥2𝛼−1

(1+xα)3 −
3x2α−1αλ(α−xα(1+α)−xα−1)

(1+xα)4 . 

Note that 𝑉′(𝑥) is decreasing with a root at 

𝑥𝑜 = (
4(𝛼 − 1) + 𝜆(2 − 3𝛼) + √𝛼2(16 + 33𝜆) + 4𝜆(11𝛼 + 1)

4
)

1
𝛼

 

So, 𝑉(𝑥) is upside-down function with lim
𝑥→0

𝑉(𝑥) = 𝛼 − 1 > 0 and lim
𝑥→∞

𝑉(𝑥) = −(𝛼 − 1) < 0. For 𝛼 > 1 then 𝜂′ has a root at 𝑥 =

𝑘𝑜 ,   where V(ko) = 0,   with 𝜂′ > 0 for  x < ko and 𝜂′ < 0 for x > ko.  Since lim
𝑥→0

𝑓(𝑥) = 0,   it follows by Glaser’s theorem [11] 

that ℎ(𝑥)is upside − down bathtub shape. [] 
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Fig.1 Plots of the probability density and hazard function respectively 

Figure 1 shows the shapes of the density function and hazard function for different values of parameters. It shows that the pdf can 

be decreasing as indicated by the green dotted curve for α=0.5<1 or unimodal as indicated in the figure by (red-long dashed, blue 

solid and dark blue dashed dotted curve) for α=2>1. The hazard function can be upside-down bathtube shaped as displayed in the 

figure by red-long dashed curve, blue solid and dark blue dashed dotted curve for α=2>1 and decreasing as shown by the green 

dotted curve for α=0.5<1. 

 

Properties 

Moments 

One most important and hardly emphasized property in statistical analysis is moments. Through moments we can study 

important features and characteristics of a distribution (e.g. mean, variance skewness, and kurtosis etc.). The k-th moment of 

the proposed distribution is given by 

𝐸[𝑋𝑘] = (𝑒𝜆 − 1)−1𝜆 ∑
𝜆𝑟𝛤(1+𝑘

𝛼
)𝛤(1+𝑟−𝑘

𝛼
)

𝑟!𝛤(𝑟+2)
∞
𝑟=0  ,             (6) 

It can also express by using hyper geometric function 

𝑬[𝑿𝒌] = (𝒆𝝀 − 𝟏)−𝟏𝝀 𝜞(𝟏 + 𝒌

𝜶
)𝜞(𝟏 − 𝒌

𝜶
)𝑭𝟏,𝟏(𝟏 − 𝒌

𝜶
, 𝟐, 𝝀),           (7) 

Where 𝑭𝟏,𝟏(𝟏 − 𝒌

𝜶
, 𝟐, 𝝀) = ∑

(𝟏−𝒌
𝜶)𝒓𝝀𝒓

(𝟐)𝒓𝒓!

∞
𝒓=𝟎  

𝒎𝒆𝒂𝒏 = (𝒆𝝀 − 𝟏)−𝟏𝝀 𝜞(𝟏 + 𝟏

𝜶
)𝜞(𝟏 − 𝟏

𝜶
)𝑭𝟏,𝟏(𝟏 − 𝟏

𝜶
, 𝟐, 𝝀),           (8) 

𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 = (𝒆𝝀 − 𝟏)−𝟏𝝀 𝜞 (𝟏 +
𝟐

𝜶
) 𝜞 (𝟏 −

𝟐

𝜶
) 𝑭𝟏,𝟏 (𝟏 −

𝟐

𝜶
, 𝟐, 𝝀) − ((𝒆𝝀 − 𝟏)−𝟏𝝀 𝜞 (𝟏 +

𝟏

𝜶
) 𝜞 (𝟏 −

𝟏

𝜶
) 𝑭𝟏,𝟏 (𝟏 −

𝟏

𝜶
, 𝟐, 𝝀))

2

 (9) 

𝒔𝒌𝒆𝒘𝒏𝒆𝒔𝒔 = 𝜎−3((𝒆𝝀 − 𝟏)−𝟏𝝀 𝜞(𝟏 + 𝟑

𝜶
)𝜞(𝟏 − 𝟑

𝜶
)𝑭𝟏,𝟏(𝟏 − 𝟑

𝜶
, 𝟐, 𝝀) − 𝟑𝝁𝝈 − 𝝁𝟑)  (10) 

𝒌𝒖𝒓𝒕𝒐𝒔𝒊𝒔 = 𝜎−4 ((𝒆𝝀 − 𝟏)−𝟏𝝀 𝜞 (𝟏 +
𝟒

𝜶
) 𝜞 (𝟏 −

𝟒

𝜶
) 𝑭𝟏,𝟏 (𝟏 −

𝟒

𝜶
, 𝟐, 𝝀)

− 𝟒𝜎−3 ((𝒆𝝀 − 𝟏)−𝟏𝝀 𝜞 (𝟏 +
𝟑

𝜶
) 𝜞 (𝟏 −

𝟑

𝜶
) 𝑭𝟏,𝟏 (𝟏 −

𝟑

𝜶
, 𝟐, 𝝀) − 𝟑𝝁𝝈 − 𝝁𝟑) − 𝟔𝝁𝟐𝝈 − 𝟑𝝁𝟒)     (𝟏𝟏) 

Statistical inference 

 Maximum likelihood estimators 
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Let 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛 be a random sample coming from LLP (𝜆, 𝛼). The log-likelihood function (of right censored data) is 

given by [3]; 

𝑙(𝜆, 𝛼) = ∏ 𝑓𝛿𝑖(𝑥𝑖 , 𝜃)[1 − 𝐹(𝑥𝑖 , 𝜃)]1−𝛿𝑖

𝑛

𝑖=1

 

= ∑ 𝛿𝑖[ln(𝛼)

𝑛

𝑖=1

+ ln(𝜆)] + (𝛼 − 1) ∑ 𝛿𝑖 ln(𝑥𝑖)
𝑛

𝑖=1
− 2 ∑ 𝛿𝑖 ln(1 + 𝑥𝑖

𝛼)

𝑛

𝑖=1

 

+𝜆 ∑
𝛿𝑖

(1+𝑥𝑖
𝛼)

𝑛
𝑖=1 + ∑ (1 − 𝛿𝑖) ln(𝑒

𝜆

(1+𝑥𝛼) − 1)𝑛
𝑖=1 − 𝑛 ln(𝑒𝜆 − 1). 

Where𝛿𝑖 = 0, for complete observation and 𝛿𝑖 = 1, for censored observation. 

The partial derivatives of the log-likelihood function with respect to parameters 𝛼 and 𝜆 are 

𝜕𝑙

𝜕𝜆
=

∑ 𝛿𝑖
𝑛
𝑖=1

𝜆
+ ∑

𝛿𝑖

1+𝑥𝑖
𝛼

𝑛
𝑖=1 + ∑

(1−𝛿𝑖)𝑒
𝜆

(1+𝑥𝛼)

(1+𝑥𝑖
𝛼)(𝑒

𝜆
(1+𝑥𝛼)−1)

𝑛
𝑖=1 − 𝑛

𝑒𝜆

𝑒𝜆−1
                                           (12) 

𝜕𝑙

𝜕𝛼
=

∑ 𝛿𝑖
𝑛
𝑖=1

𝛼
+ ∑ 𝛿𝑖 ln(𝑥𝑖) − ∑

𝛿𝑖𝑥𝑖
𝛼 ln(𝑥𝑖)(2 + 𝜆

(1 + 𝑥𝑖
𝛼)⁄ )

1 + 𝑥𝑖
𝛼

𝑛

𝑖=1

𝑛

𝑖=1

 

−𝜆 ∑ (1 − 𝛿𝑖)
𝑥𝑖

𝛼 ln(𝑥𝑖
𝛼)𝑒

𝜆
(1+𝑥𝛼)

(1+𝑥𝑖
𝛼)2(𝑒

𝜆
(1+𝑥𝛼)−1)

𝑛
𝑖=1                       (13) 

To find the estimators, we set equation (12) and (13) to zero and solve simultaneously, but the equations are nonlinear, so it 

is very difficult to find the analytical solution by the way we use simulation technique to prove the existence of MLEs. 

Simulation 

The result of the simulation study is shown in table 1. 

Table1. The averages of 10000 MLEs and simulated standard errors for LLP 

    AE SD     AE SD 

n CR% (α,λ) α ̂ 

 

sd(α ̂) sd(λ ̂) n CR% (α,λ) α ̂ 

 

sd(α ̂) sd(λ ̂) 

50 

10% 

(0.5,-0.5) 0.5047 -0.5241 0.065 0.501 

200 

10% 

(0.5,-0.5) 0.5111 -0.5021 0.0311 0.2509 

(0.5,0.5) 0.5047 0.4979 0.064 0.504 (0.5,0.5) 0.5008 0.4961 0.0307 0.2493 

(0.5,1) 0.5052 0.9993 0.063 0.519 (0.5,1) 0.501 0.999 0.0307 0.254 

(0.5,-1) 0.5049 -1.0163 0.063 0.521 (0.5,-1) 0.5004 -1.006 0.0306 0.255 

15% 

(1,-0.5) 1.0121 -0.5103 0.133 0.511 

15% 

(1,-0.5) 1.0024 -0.4996 0.0647 0.2493 

(1,-1) 1.0096 -1.0208 0.131 0.511 (1,-1) 1.0013 -1.007 0.0632 0.2564 

(1,-1.5) 1.0109 -1.5346 0.13 0.544 (1,-1.5) 1.0024 -1.5074 0.062 0.2618 

(1,-2) 1.0106 -2.0464 0.125 0.573 (1,-2) 1.0021 -2.0155 0.0605 0.2801 

30% 

(2,0.5) 2.0342 0.5046 0.297 0.568 

30% 

(2,0.5) 2.0086 0.4997 0.1401 0.2744 

(2,1) 2.037 1.0177 0.289 0.61 (2,1) 2.0092 1.0037 0.1394 0.2878 

(3,-4) 3.0486 -4.1432 0.383 0.82 (3,-4) 3.0098 -4.0365 0.1843 0.3808 

(4,-3) 4.0593 -3.0858 0.533 0.677 (4,-3) 4.0151 -3.0178 0.2565 0.3188 

40% 

(5,-10) 5.1182 -10.908 0.654 3.025 

40% 

(5,-10) 5.0257 -10.1779 0.2965 1.152 

(6,-6) 6.1044 -6.3062 0.763 1.292 (6,-6) 6.0284 -6.0627 0.3641 0.5588 

(8,-6) 8.1467 -6.285 1.033 1.262 (8,-6) 8.0322 -6.0631 0.4893 0.5656 
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(10,-6) 10.181 -6.2986 1.318 1.323 (10,-6) 10.0459 -6.0657 0.6143 0.559 

100 

10% 

(0.5,-0.5) 0.5018 -0.5066 0.045 0.349 

500 

10% 

(0.5,-0.5) 0.5004 -0.4997 0.0192 0.1553 

(0.5,0.5) 0.5251 0.4982 0.045 0.35 (0.5,0.5) 0.5006 0.4967 0.0196 0.1575 

(0.5,1) 0.5262 1.0071 0.044 0.364 (0.5,1) 0.5004 1.0009 0.0192 1.1619 

(0.5,-1) 0.5023 -1.009 0.044 0.362 (0.5,-1) 0.5003 -1.0019 0.159 0.159 

15% 

(1,-0.5) 1.0041 -0.51 0.092 0.355 

15% 

(1,-0.5) 1.0009 -0.5006 0.0407 0.1569 

(1,-1) 1.0044 -1.0084 0.09 0.363 (1,-1) 1.0005 -1.0017 0.0402 0.1626 

(1,-1.5) 1.0042 -1.5133 0.089 0.376 (1,-1.5) 1.0004 -1.5034 0.0389 0.1666 

(1,-2) 1.0051 -2.0228 0.086 0.401 (1,-2) 1.0005 -2.0047 0.0377 0.1765 

30% 

(2,0.5) 2.0175 0.5022 0.201 0.396 

30% 

(2,0.5) 2.0026 0.504 0.0872 0.1722 

(2,1) 2.0173 1.0108 0.199 0.416 (2,1) 2.0037 0.9989 0.0863 0.1795 

(3,-4) 3.0206 -4.068 0.259 0.55 (3,-4) 3.0022 -4.0082 0.1138 0.2365 

(4,-3) 4.0306 -3.0449 0.373 0.463 (4,-3) 4.0038 -3.0059 0.1627 0.2023 

40% 

(5,-10) 5.0608 -10.387 0.427 1.725 

40% 

(5,-10) 5.011 -10.061 0.1852 0.6891 

(6,-6) 6.0537 -6.1394 0.519 0.82 (6,-6) 6.0092 -6.0259 0.2274 0.3416 

(8,-6) 8.0747 -6.1471 0.708 0.841 (8,-6) 8.0161 -6.0276 0.3062 0.3492 

(10,-6) 10.088 -6.1203 0.889 0.826 (10,-6) 10.0146 -60255 0.3773 0.3483 

 

Table1.gives the approximate values of and the results for LLP distribution shown in the tables revealed that: In all cases the 

convergence is achieved and this highlights the numerical stability of MLE method, the differences between the average estimates 

and exact values are almost insignificant and these imply that, the MLE estimates presented consistently. However, the standard 

error of the MLEs decreases when the sample size increases. 

 

Application 

The application of the introduced distribution presented by considering two right censored data sets for illustrative purposes. The 

chemotherapy Plus Radiotherapy data and meloma data were taken from [13] and [4] respectively. 

Table 2: MLEs of the survival chemotherapy Plus Radiotherapy 

Models λ α1 α2 Log-likelihood AIC 

MXWEP 3.2372 0.822 0.00045 -292.4663 590.933 

MXEP 3.2432 0.00056 - -293.8144 591.629 

GWD 0.5161 0.2176 0.0299 -664.853 715.446 

GE 0.2154 0.00034 - -450.099 904.199 

Gamma 0.6353 0.00074 - -296.666 597.332 

Weibull 0.0108 0.6931 - -294.659 593.317 

Log-logistic 0.0012 1.167 - -293.814 582.052 

Log-Normal 5.837 1.4779 - -289.075 582.152 

Fullmodel -55.164 0.7708 - -286.914 577.828 

Submodel -20.822 0.808 0.2975 -286.878 579.55 

 

Above table displayed the log-likelihood function and the Akaike Information Criterion (AIC) of our model and several known 

lifetime distributions. According the maximum log-likelihood function and AIC, our model and its submodel are the best and 

provide good fit for this data compared with remaining models as shown in the table. The generalized weibull GW distribution has 

a much poorer fit then the weibull or log-logistic distributions and its shows no evidence of an improved fit for this data. 



A NEW TWO-PARAMETER… Usman, Sadiq and Bala FJS 

FUDMA Journal of Sciences (FJS) Vol. 4 No. 1, March, 2020, pp 577  - 584  
582 

Table 3: MLEs of the survival time in month for the meloma data. 

Models λ α1 α2 Log-likelihood AIC 

MXWEP 2.18571698 1.0124993 0.02572313- -269.1265 544.253 

MXEP 2.23653557 0.0247271 - -269.133 542.266 

GWD 0.1814372 0.5541368 1.4733338 -344.5459 695.0918 

WE 0.2154 2.413882 - -269.329 542.658 

GE 0.70620765 0.7062077 - -520.9711 1045.942 

Gamma 0.98253988 0.0561181 - -269.3834 542.7668 

Weibull 0.97463288 0.0608242 - -269.3634 542.7276 

Log-logistic 0.05988028 1.1011301 - -268.7677 541.5354 

Log-Normal 2.700686 1.746734 - -270.0727 544.1454 

Fullmodel -5.7883 0.7588 - -268.4321 540.8642 

Submodel -5.04173 0.8043 0.7773 -268.388 541.289 

 

Above table displayed the log-likelihood function and the AIC of our model and several known lifetime distributions. According 

the maximum log-likelihood function and AIC, our model and its submodel are the best and provide good fit for this data compared 

with remaining models as shown in the table. The generalized weibull GW distribution has a much poorer fit then the weibull or 

log-logistic distributions and its shows no evidence of an improved fit for this data.

 

Fig. 3: Kaplan-Meiers and the plotted survival functions for the chemotherapy Plus Radiotherapy data 
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Fig. 4: Kaplan-Meiers and the plotted survival functions for the meloma data. 

 

CONCLUSION 

A new lifetime distribution is proposed which is called two 

parameters Log-logistic and Poisson distribution (LLP). Some 

statistical properties are derived and discussed for the LLP. The 

maximum likelihood estimation method is used to estimate the 

unknown parameters, simulation studies are also conducted to 

assess the finite sample behavior of the maximum likelihood 

estimators (MLEs). The LLP distribution is successfully tested 

using two real data sets in comparison to some other existing 

statistical distribution. 
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