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ABSTRACT 

Net radiation is not a climatic variable hence not observed. Tedious numerical computations have been shown 

to characterize the methods used in its determination using data on some climatic variables. This study aims at 

generating monthly synthetic net radiation data in Ibadan, Benue and Kano, Nigeria using the Autoregressive 

Integrated Moving Average (ARIMA) model. This study performed Autocorrelation Function (ACF) and 

Partial Autocorrelation Function (PACF) analysis in determining the parameters of the model while, the 

residual plots of Autocorrelation Function (ACF) and Partial Autocorrelation Functions (PACF) and graphical 

plots of backward model predictions or estimates and their respective actual values were used in the model 

validation. The study reveals that, the first difference of monthly net radiation can be represented by ARIMA 

(2, 1, 2) for Ibadan and Kano, and ARIMA (1, 1, 1) for Benue. Further result showed that there is a significant 

and fairly strong positive correlation between the monthly actual and predicted net radiation values across 

stations (p < 0.05). Lastly, the residual plots of Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) for Benue, Ibadan and Kano were examined and it was observed that the residuals were within 

the confidence intervals. This affirms the fact that the Autoregressive Integrated Moving Average (ARIMA) 

model is of good fit. 
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INTRODUCTION 

Net radiation is the difference between the incoming solar 

(shortwave) radiation that reaches the earth’s surface and the 

total terrestrial (longwave) radiation that is being emitted 

from the earth’s surface (Lincoln et al., 2015). This 

difference between the shortwave and longwave radiation 

creates an adiabatic heat sink over the polar-regions and heat 

source over the equatorial latitudes. Surplus net radiation 

from the equatorial region must be transferred by wind to the 

polar region, in order to balance the heat energy between the 

two regions. This factor controls the environmental climate 

of a place and leads to increase or decrease of air temperature. 

Due to high cost and constant maintenance of recording 

instruments such as net radiometers, net radiation (Rn) 

measurements are difficult to be obtained. Santiago et al. 

(2002) and Gavilán et al. (2007) recommended the use of 

Penman Monteith (FAO-56) model in computing net 

radiation (Rn).This is because, Von Randow and Alvalá 

(2006) and Galvão and Fisch (2000) encounter difficulties in 

computing net longwave (terrestrial) radiation using the 

FAO-24 equation. The use of these methods is not without 

the challenge of tedious numerical computations that 

characterize them. It therefore becomes imperative to 

develop predictive models of net radiation as a way of 

alleviating this problem. 

The prediction of net radiation is relevant to the study of 

climate change, agricultural meteorology, estimation of 

evapotranspiration and weather monitoring. The prediction 

of net radiation is a difficult task due to the variability in 

climatic parameter such as air temperature, relative humidity 

and solar radiation. The Numerical Weather Prediction 

(NWP) is generally available in meteorological organizations 

but the direct implementation of this method in predicting 

solar radiation has been criticized (Mohammed et al., 2019). 

Solar radiation is one of the major climatic variables that 

affect net radiation. Thus, the Numerical Weather Prediction 

(NWP) cannot be used to predict net radiation because it 

greatly dependent on air quality and hydrological 

characteristics, which strongly vary with time and sensitive 

to location (Bauer et al., 2015). This further justifies the use 

of a time series Auto-Regressive Integrated Moving Average 

(ARIMA) model in this study. ARIMA is regarded as a 

smooth method, and it is appropriate when the data is 

practically long and the correlation between past 

observations is established (Farhath et al., 2016). The 

ARIMA model has already been extensively used in a 

number of related areas such as ecological and weather 

forecasting, economic time series forecasting, traffic flow 

forecasting, medical monitoring, and so on (Musa, 2013; 

Jadevicius and Huston, 2015; Colak et al., 2015; Boualit and 

Mellit, 2016; David et al., 2016). 

Nyatuame and Agodzo (2018) analyzed and predicted annual 

rainfall and maximum temperature using the Stochastic 

ARIMA model over Tordzie watershed in Ghana. The results 

of the various analyses indicated that the models were 

satisfactory and can assist in future water planning 

projections.  Islam and Zakaria (2019) used the ARIMA 

model in carrying out 9 years predictions of monthly 

maximum and minimum temperatures in the Cox’s Bazar and 

Teknaf area of Bangladesh. The forecast result reveals that 

maximum and minimum temperature is increasing in trend 

which is very alarming for this coastal area of Bangladesh. 

Bakar and Rosbi (2017) investigated the volatility of bitcoin 

cryptocurrency using the ARIMA model. Several studies in 

literature have used ARIMA models in predicting climatic 

variables but not net radiation in Benue, Ibadan and Kano, 

Nigeria. Benue state lies between latitude 70441N and 

longitude 80 541E. Ibadan lies within latitude 7- 9° N and 

longitude 2.8 - 4.5° E. Kano is located between latitude 

11.7574oN and 8.6601oE. 
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THEORETICAL FRAMEWORK 

PENMAN-MONTEITH (FAO-56) MODEL. 

The Penman-Monteith (FAO-56) step by step method was used to compute the daily net radiation. This includes: 

Inverse relative distance Earth-Sun )( r  is given as (Spencer, 1971):   

                                                                   (1) 

Solar declination (δ) can be found from the approximate equation of Cooper (1969),
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Sun angle )( s  is given by (John and William, 2013): 
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Extraterrestrial radiation )( aR , for each day of the year can be estimated using;  
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Actual vapor pressure )( ae can be computed (Lincoln et al., 2015); 
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Clear-sky radiation 
soR is given by (Lincoln et al., 2015): 

aso RZER )510275.0( 
                                                                                         (6)

 

Net terrestrial (long wave) radiation )( TR is can be estimated using equation (7): 
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Lastly, the net radiation (
nR ) which is the difference between the incoming net shortwave radiation (

nsR ) and the outgoing net 

terrestrial radiation (
TR )

 
is given by;  

Tnsn RRR                                                                                                                     (8) 

sns RaR )1(                                                                                                               (9) 

where j = number of the day in the year between 1 (1 January) and 365 or 366 (31 December). 

  =  the latitude of a particular location. 

scG  = solar constant =1367w/m2  (lgbal, 1983). 

)( minTe  and )( maxTe  , 
maxRH and

minRH = daily saturation vapour pressure at minimum and maximum temperature, maximum 

and minimum relative humidity. 

]
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2
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Z = elevation above sea level.  

 = Stefan-Boltzmann constant [4.903x10-9MJ K-4 m-2day-1] and 
sR  is incoming solar radiation, MJm-2 day-1.

 
 

‘a’ is albedo = 0.3 

AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODELS 

An Auto-Regressive Integrated Moving Average (ARIMA) model combines the autoregressive AR(p) model with moving average 

MA(q) model. The notation AR(p) indicates an autoregressive model of order ‘p’ , a representation of a type of random process. It 

is usually used to express certain time-varying processes in time series data. The autoregressive model specifies that the output 

variable depends linearly on its own preceding values and on a stochastic term. Hence, the model is in the form of a stochastic 

difference equation.  The difference process is significant in order to make sure that the data involved in this analysis can be 

represented as data with stationary characteristics. The moving-average MA(q) model specifies that the output variable depends 

linearly on the present and a range of past values of a stochastic term. Mathematically, the autoregressive AR(p) model is given as 

(Nashirah and Sofian, 2017): 

 𝑦𝑡 = 𝐴 +  𝜑1𝑦𝑡−1 + … … . +𝜑𝑝𝑦𝑡−𝑝  + 𝜀𝑡                                           (10)  

Equation (10) can be written as: 

  𝑦𝑡 = 𝐴 +  ∑ 𝜑𝑖𝑦𝑡−𝑖
𝑝
𝑖=1 +  𝜀𝑡                            (11) 

where, 𝜑𝑖 … … … 𝜑𝑝 are the parameters associated with 𝑦𝑡−1, … … . 𝑦𝑡−𝑝   respectively, A is a constant and 𝜀𝑡 is the white noise. 

The moving average MA (q) model is given as: 

𝑦𝑡 = 𝜇 + 𝜀𝑡 +  𝜃1𝜀𝑡−1 +  … … . +𝜃𝑞𝜀𝑡−𝑞                        (12) 

Equation (12) is reduced to: 

𝑦𝑡 = 𝜇 + 𝜀𝑡 +  ∑ 𝜃𝑖𝜀𝑡−𝑖
𝑞
𝑖=1                                                                     (13) 

where 𝜃𝑖 … … … 𝜃𝑞 are the parameters associated with 𝜀𝑡−1  … … . 𝜀𝑡−𝑞 and 𝜇 is the mean of the series. The value of p and q is called 

the order of the p and q in the autoregressive AR (p) and moving average MA(q) model respectively. 

Autoregressive (AR) and moving average (MA) models can be successfully combined together to form a general time series models, 

known as the ARMA models. Mathematically an ARMA(p, q) model is represented as (Hipel and McLeod, 1994): 

𝑦𝑡 = 𝐴 + 𝜀𝑡 +  ∑ 𝜑𝑖𝑦𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜃𝑖𝜀𝑡−𝑖

𝑞
𝑖=1                                 (14) 

 The ARMA models are inadequate in describing non-stationary time series, which are commonly encountered in practice. On this 

basis, the ARIMA model is proposed, which is a generalization of an ARMA model to include the case of non-stationarity as well 

(Hipel and McLeod, 1994). For seasonal time series forecasting, the Seasonal Autoregressive Integrated Moving Average 

(SARIMA) model is usually used. The general ARIMA (p, d, q) model using lag polynomials is given as (Hipel and McLeod, 

1994): 

 𝜑(𝐿)(1 − 𝐿)𝑑𝑦𝑡= 𝜃(𝐿)𝜀𝑡             (15) 

[1 − ∑ 𝜑𝑖𝐿𝑖𝑝
𝑖=1 ](1 − 𝐿)𝑑𝑦𝑡 = 𝐴 + [1 + ∑ 𝜑𝑗𝐿𝑗𝑞

𝑗=1 ]𝜀𝑡             (16) 

where: 𝜀𝑡 = 𝜑(𝐿)𝑦𝑡 is the AR(p) model,  𝑦𝑡 =  𝜃(𝐿)𝜀𝑡 is the MA(q) model 

              𝜑(𝐿) =  1 − ∑ 𝜑𝑖𝐿𝑖𝑝
𝑖=1  ,  𝜃(𝐿) =  1 + ∑ 𝜑𝑗𝐿𝑗𝑞

𝑗=1  

p, d and q are integers greater than or equal to zero and refer to the order of the autoregressive, integrated (difference), 

and moving average parts of the model respectively. 

In developing ARIMA model, analysis of autocorrelation function (ACF) and partial autocorrelation function (PACF) need to be 

performed. The autocorrelation function (ACF) plot shows the correlation of the series with itself at different lags while the partial 

autocorrelation function (PACF) plot shows the amount of autocorrelation at lag k that is not explained by lower-order 

autocorrelations. ACF and PACF are also used to determine the structure of the seasonal ARIMA model. The autocorrelation 

function (ACF) is given as:  
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 �̂�𝑘 =
∑ (𝑦𝑡−�̅�)(𝑦𝑡−𝑘−�̅�)𝑛

𝑡=𝑘+1

∑ (𝑦𝑡−�̅�)2𝑛
𝑡=1

                                    (17) 

where �̅� denotes the sample mean and any  𝛾𝑘outside that band is statistically significant. 

The partial autocorrelation function (PACF) 𝜌11, 𝜌22 … … . . 𝜌𝑘𝑘ρ are obtained by fitting a sequence of auto-regressions given as: 

𝑦𝑡 = 𝜌11𝑦𝑡−1 +  𝑢𝑡  

𝑦𝑡 = 𝜌21𝑦𝑡−1 + 𝜌22𝑦𝑡−2 + 𝑢𝑡  

 ………..=…………. 

𝑦𝑡 = 𝜌𝑘1𝑦𝑡−1  +  𝜌𝑘2𝑦𝑡−2  + ⋯ + 𝜌𝑘𝑘𝑦𝑡−𝑘 + 𝑢𝑡                                                 (18) 

𝜌𝑘1  measures the correlation between 𝑦𝑡 𝑎𝑛𝑑 𝑦𝑡−1  after the effects of 𝑦𝑡−2, 𝑦𝑡−3, … … , 𝑦𝑡−𝑘  have been partially kept constant 

(Hipel and McLeod, 1994). 

CORRELATION ANALYSIS 

Correlation quantifies the extent to which two quantitative variables, X and Y, agree.  When high values of X are associated with 

high values of Y, a positive correlation exists but when high values of X are associated with low values of Y, a negative correlation 

exists. Methods of correlation summarize the relationship between two variables in a single number called the correlation 

coefficient. The correlation coefficient is generally denoted by the symbol 𝜏  and it ranges from -1 to +1. A correlation coefficient 

value close to 0, but either positive or negative connotes little or no relationship between the two variables. A correlation coefficient 

close to +1 implies a positive relationship between the two variables, with increase in one of the variables being associated with 

increase in the other variable. A correlation coefficient close to -1 means a negative relationship between two variables, with an 

increase in one of the variables being associated with a decrease in the other variable. The Spearman correlation coefficient and 

Pearson correlation coefficient are basically two types of correlation coefficient. Mathematically, the Pearson correlation coefficient 

(𝜏) is given as (Tukey, 1977):  

 𝜏 =
∑(𝑋𝑖−𝑋)(𝑌𝑖−𝑌)

√∑(𝑋𝑖−𝑋)2 ∑(𝑌𝑖−𝑌)2
                                      (19) 

The Spearman correlation coefficient (𝜏𝑠) is given as 

𝜏𝑠 = 1 −
6 ∑ 𝐷𝑖

2

𝑛(𝑛2−1)
             (20) 

where D is the difference in the rank on variable X and on variable Y. 

METHODOLOGY 

The daily maximum and minimum relative humidity, maximum air temperature, minimum air temperature and solar radiation data 

was obtained for each state from the International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria for the period of thirty-

four (34) years (1977-2010). The daily net radiation ( nR ) were computed using the step by step Penman Monteith model 

(equations 1-9) and averaged out monthly. Plotting a graph is the first step in the analysis of any time series. Such a plot provides 

an initial clue about the possible nature of the time series as to whether it shows an upward or downward trend, seasonal or cyclical 

variations etc. The collected data were processed, and the first difference was applied to simplify the correlation structure and to 

reveal any underlying pattern. Stationary time series data are prerequisite for developing and testing an ARIMA model. ARIMA 

model identification was done by considering the ACF and PACF for the stationary time series data. The computed monthly net 

radiation from 1977 to 2009 was used in the analysis of the ARIMA model using the Minitab software. The ARIMA model was 

used in forecasting net radiation for the next 12 months (i.e year 2010). The forecasted data was correlated with the actual data in 

order to determine the degree of association.  

RESULT AND DISCUSSION 

This section describes the result of autoregressive integrated moving average (ARIMA) model used in forecasting the monthly net 

radiation in Ibadan, Benue and Kano. The time series plot for monthly net radiation is presented in Figure 1. 
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Figure 1: Time series plot of Net radiation in Ibadan, Benue and Kano. 

The cyclical variation in a time series plot of Figure 1 illustrates 

the medium-term changes in the series, caused by 

circumstances, which repeat in cycles. Changes in air 

temperature, relative humidity and solar radiation can result to 

changes in net radiation. Net radiation is surplus in Kano and 

Benue, while a deficit and surplus state occurs in Ibadan as 

shown in Figure 1. Net radiation of any region ought to be equal 

to zero, that is, the amount of incoming solar radiation absorbed 

by the earth surface equals to the outgoing terrestrial radiation 

emitted by the earth surface. Surplus net radiation occurs when 

incoming solar radiation is greater than terrestrial radiation, 

likewise deficit net radiation occurs when terrestrial radiation 

emitted by the earth surface is greater than the solar radiation 

absorb by the earth surface. Changes in net radiation can lead to 

increase or decrease in air temperature, which is one of the major 

indicators of climate change in any region. Forecasting and 

careful analysis of net radiation in Ibadan, Benue and Kano can 

help in monitoring the weather and climate, estimation of 

evapotranspiration and the study of climate change of the 

regions. It is apparent that a successful time series forecasting 

depends on suitable model fitting. 

ARIMA modeling uses differencing, autocorrelation and partial 

autocorrelation functions in identifying an acceptable model. 

Differencing is used to simplify the correlation structure and to 

reveal any underlying pattern. Figure 2 shows the first difference 

of Net radiation in Ibadan, Benue and Kano. The first order 

seasonal difference is the difference between an observation and 

the corresponding observation from the previous year and is 

used to remove non-stationarity from the series. A stationary 

time series is one whose statistical properties such as mean, 

variance, autocorrelation, etc. are all constant over time as seen 

in Figure 2. 
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Figure 2: First difference of net radiation in Ibadan, Benue and Kano. 

This study performed the autocorrelation function (ACF) and 

partial autocorrelation function (PACF) analysis on the 

monthly net radiation across stations as shown in Figure 3. The 

ACF and PACF is significant at lag 1.There is slow decay in 

the autocorrelation and partial autocorrelation function 

analysis as presented in Figure 3. As explained by Box and 

Jenkins (1970), autocorrelation function (ACF) plot is useful in 

determining the type of model to fit a time series of length N 

and partial autocorrelation function (PACF) plot helps in 

identifying the maximum order of an AR process.  

ARIMA model identification was done by taking into 

consideration the ACF and PACF of the stationary time series 

data after differencing across stations as shown in Figure 4. 
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Figure 3: ACF and PACF plots of net radiation for Ibadan, Benue and Kano. 

The ACF and PACF were tested for 60 lags to investigate the seasonality action. Figure 4 shows significant autocorrelations (spikes) 

are present at lags that are multiples of 12 at Ibadan station, which signifies a seasonality action every 12 months. However, at 

smaller lags, significant autocorrelations are present. Autocorrelation function (ACF) shows a significant spike at lag two in Ibadan 

and Kano stations and lag one in Benue. This indicates that, the moving average ‘q’ is represented by order two for Ibadan and 

Kano, while order one for Benue. In the same vein, partial autocorrelation function (PACF) shows a significant spike at lag two in 

Ibadan and Kano stations and lag one in Benue. This indicates that, the autoregressive part can be represented by order two in 

Ibadan and Kano stations and order one in Benue as presented in Figure 4.    
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Figure 4: ACF and PACF plots of net radiation for Ibadan, Benue and Kano after differencing of order 1. 

The PACF and ACF decay gradually. Thus, the first difference of monthly net radiation can be represented by ARIMA (2, 1, 2) for 

Ibadan and Kano, and ARIMA (1, 1, 1) for Benue.  

This study derived and describes the fit of ARIMA (2, 1, 2) and ARIMA (1, 1, 1) using the ARIMA (p, d, q) model. The general 

ARIMA (p, d, q) model using lag polynomials is given as (equation 16): 

[1 − ∑ 𝜑𝑖𝐿𝑖𝑝
𝑖=1 ](1 − 𝐿)𝑑𝑦𝑡 = 𝐴 + [1 + ∑ 𝜑𝑗𝐿𝑗𝑞

𝑗=1 ]𝜀𝑡          

ARIMA (1, 1, 1) for Benue station. 

[1 − ∑ 𝜑1𝐿11
𝑖=1 ](1 − 𝐿)1𝑦𝑡 = 𝐴 + [1 + ∑ 𝜑1𝐿11

𝑗=1 ]𝜀𝑡                                 (21) 

[1 − 𝜑1𝐿1](1 − 𝐿)1𝑦𝑡 = 𝐴 + [1 + 𝜃1𝐿1]𝜀𝑡                (22) 

[1 − 𝜑1𝐿1](𝑦𝑡 −  𝑦𝑡−1)= 𝐴 + [1 + 𝜃1𝐿1]𝜀𝑡 
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[1 − 𝜑1𝐿1]∆𝑦𝑡 = 𝐴 + [1 + 𝜃1𝐿1]𝜀𝑡 

∆𝑦𝑡 − 𝜑1𝐿1∆𝑦𝑡 = 𝐴 + 𝜀𝑡 +  𝜃1𝐿1𝜀𝑡 

∆𝑦𝑡 − 𝜑1∆𝑦𝑡−1 = 𝐴 + 𝜀𝑡 +  𝜃1𝜀𝑡−1 

∆𝑦𝑡 = 𝐴 + 𝜑1∆𝑦𝑡−1 + 𝜃1𝜀𝑡−1  +  𝜀𝑡              (23) 

Thus, for Ibadan and Kano, the derived equation for ARIMA (2, 1, 2) is given as: 

  ∆𝑦𝑡 = 𝐴 + 𝜑1∆𝑦𝑡−1 +  𝜑2∆𝑦𝑡−2 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + 𝜀𝑡                 (24) 

Therefore, using the estimated parameters after running the analysis: 

Benue: 

    ∆𝑦𝑡 = −0.017328 − 0.4619∆𝑦𝑡−1 + 0.9514𝜀𝑡−1  +  𝜀𝑡                                                   (25) 

Ibadan: 

    ∆𝑦𝑡 = −0.23480 − 0.8159∆𝑦𝑡−1  + 0.1196∆𝑦𝑡−2 − 0.0055𝜀𝑡−1  +  0.9276𝜀𝑡−2 + 𝜀𝑡                     (26)  

Kano: 

    ∆𝑦𝑡 = −0.02248 − 0.8008∆𝑦𝑡−1 − 0.2184∆𝑦𝑡−2 + 0.5203𝜀𝑡−1  +  0.4159𝜀𝑡−2 +  𝜀𝑡                                 (27) 

Equation 24, 26 and 27 was used in the prediction model of ARIMA (1, 1, 1), ARIMA (2, 1, 2) and ARIMA (2, 1, 2) for Benue, 

Ibadan and Kano respectively. In validating the prediction model of ARIMA (2, 1, 2) and ARIMA (1, 1, 1), the predicted values 

for year 2010 was correlated with the actual value of the same year. The result for the spearman correlation is presented in table 1. 

Table 1: Correlation coefficient of actual net radiation values and model estimates across states 

State Model Correlation coefficient p-value Remark 

Ibadan ARIMA (2, 1, 2)  0.778 0.003 Significant 

Benue ARIMA (1, 1, 1)  0.602 0.038 Significant 

Kano ARIMA (2, 1, 2)  0.746 0.05 Significant 

p-value<0.05=significant 

 

There is a significant and fairly strong positive correlation between the monthly actual and predicted net radiation values across 

stations with p-values less than 0.05 as shown in Table 1. Figure 5 is the graphical representation of the monthly actual and predicted 

net radiation in Ibadan, Benue and Kano. 

 

From Figure 5, it is observed that the monthly actual and predicted net radiation follow the same pattern. After fitting the models, 

the residual plots of ACF and PACF for Benue, Ibadan and Kano were examined and it was observed that the residuals were within 

the confidence intervals as shown in Figure 6. This is an indication of a good fit and the satisfactoriness of the proposed ARIMA 

models.  
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(a) 

 

(b) 

 

(c) 

Figure 5: Monthly actual and predicted net radiation at (a) Ibadan (b) Benue and (c) Kano. 
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The residual is the difference between the observed and the 

forecast data. The positive and negative values of the residuals 

also indicate model goodness and suggest that the predicted 

values are sometimes higher or lower than the original values. 

Although some residuals fall beyond the ±2 limits, these 

represent a limited number of readings, but many residuals falls 

within the accepted 95% confidence interval and gradually 

decay. This implies that the residuals are independent and thus 

satisfying the residual criterion.  Residuals are employed to 

validate models. 

CONCLUSION 

Net radiation is surplus in Kano and Benue, while a deficit and 

surplus state occurs in Ibadan. The autocorrelation function 

(ACF) and partial autocorrelation function (PACF) is significant 

at lag 1 across stations. The first difference of monthly net 

radiation can be represented by ARIMA (2, 1, 2) for Ibadan and 

Kano, while ARIMA (1, 1, 1) for Benue. The residual plots of 

ACF and PACF for Benue, Ibadan and Kano were examined and 

it was observed that the residuals were within the confidence 

intervals. Hence, the predicting approach using autoregressive 

integrated moving average (ARIMA) method, generated a more 

reliable predicting model. This information will help in weather 

and climate monitoring, study of climate change, agricultural 

meteorology and estimation of evapotranspiration. 
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