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ABSTRACT 

A renewal process which is a special type of a counting process, which counts the number of events that occur 

up to (and including) time 𝑡 has been investigated, in order to provide some insight into the performance 

measures in renewal process and sequence such as, the mean time between successive renewals, 𝑀(𝑡); 

Laplace-Stiltjes transform (LST) of the mean time, �̃�(𝑡);  the Laplace-Stieltjes transform (LST) of the mean 

time distribution function,  �̃�𝑋(𝑡);  Laplace-Stiltjes transform (LST) of 𝑛 fold convolution of distribution 

function, �̃�𝑋
(𝑛)

(𝑡);  the time at which the 𝑛𝑡ℎ renewal occurs, 𝑆𝑛; the average number of renewals per unit time 

over the interval (0, t],  
𝑁(𝑡)

𝑡⁄  and expected reward, 𝐸[𝑅]. Our quest is to analyse the distribution function of 

the renewal process and sequence  {𝑋𝑛, 𝑛 ≥ 𝑖} using the concept of discrete time Markov chain to obtain the 

aforementioned performance measures. Some properties of the Erlang 𝑘 , exponential and geometric 

distributions are used with the help of some existing laws, theorems and formulas of Markov chain. We 

concluded our study through illustrative examples that, it is not possible for an infinite number of renewals to 

occur in a finite period of time; Also, the expected number of renewals increases linearly with time; and from 

the uniqueness property, we affirmed that, the Poisson process is the only renewal process with a linear mean-

value  function; and lastly, we obtained the optimal replacement policy for a manufacturing machine which 

showed that, the exponential property of the lifetime distribution holds that at any point in time, the remaining 

lifetime is identical to the lifetime of a brand new machine, while the long run rate of reward is equal to the 

expected reward per cycle divided by the mean cycle length. 

Keywords:  Erlang k distribution, Renewal process, renewal sequence, renewal reward process, homogeneous 

discrete-time Markov chain

 

INTRODUCTION 

A renewal process is a special type of counting process, while a counting process, {N(t), t ≥ 0}, is a stochastic process which 

counts the number of events that occur up to (and including) time 𝑡. Thus any counting process N(t) is integer valued with the 

properties that,  ∀  t ≥ 0 , N(t1) ≤ N(t2)   𝑖𝑓  t1 ≤ t2. {Xn, n ≥ 1} is the random variable that denotes the time which elapses 

between events (𝑛 −  1) and 𝑛. Thus, a renewal process is a counting process {N(t), t ≥ 0}  if the sequence {X1, X2, ⋯} of 

nonnegative random variables that represent the time between events are independent and identically distributed. Observe that 

this definition permits events to occur simultaneously(𝑋𝑛 = 0), but we shall restrict ourselves to renewal processes where this 

cannot happen. In our definition, 𝑋1, the time until the first event, is independent of, and has the same distribution as, all other 

random variables 𝑋𝑖 , 𝑖 > 1. This may be interpreted in terms of a zeroth event which occurs at time 𝑡 =  0, giving X1 the 

same inter-event time meaning as the other Xi. An alternative approach is to assume that the time until the occurrence of the 

first event has a different distribution from the random variables Xi, i > 1. The word “renewal” is appropriate since on the 

occurrence of each event, the process essentially renews itself: at the exact moment of occurrence of an event, the distribution 

of time until the next event is independent of everything that has happened previously. The term “recurrent process” is 

sometimes used in place of “renewal process. Romanovsky (1970) established the application and simulation of discrete 

Markov Chains and Moler and an Van Loan (1978) explain the nineteen dubious ways to compute the exponential of a matrix 

while Saff (1973) explained the degree of the best rational approximation to the exponential function and Philippe and Sidje 

(1993) derived the transient solution of Markov Processes by Krylov Subspaces, whereas  Stewart (1994, 2009) discussed the 

development of Numerical Solutions of Markov chains, while Pesch et al.(2015) demonstrated the appropriateness of the 

Markov chain technique in the wind feed in Germany and Agboola (2016) demonstrated the inclusion of Markov chain in 

repair problem while Uzun and Kiral (2017) used the Markov chain model of fuzzy state to anticipate the direction of gold 

price movement and to estimate the probabilistic transition matrix of gold price closing returns. A whereas Aziza et al. (2019) 

used the Markov chain model of fuzzy state to predict monthly rainfall data. Clement (2019) demonstrated the application of 

Markov chain to the spread of disease infection, demonstrating that Hepatitis B became more infectious over time than 

tuberculosis and HIV, while Vermeer and Trilling (2020) demonstrated the application of Markov chain to journalism. 

However, in this study, Application of Renewal Reward Processes in Homogeneous Discrete Markov Chain is considered. 

Notation 

𝐸[𝑅] , expected reward; 𝐹𝑋(𝑡), the distribution function of the random variables  {𝑋𝑛 , 𝑛 ≥ 𝑖}; �̃�𝑋(𝑡), Laplace-Stieltjes 

transform (LST) of  𝐹𝑋(𝑡);  𝐹𝑋
(𝑛)

(𝑡),  𝑛 fold convolution of 𝐹𝑋(𝑡); �̃�𝑋
(𝑛)

(𝑡), Laplace-Stiltjes transform (LST) of 𝐹𝑋
(𝑛)

(𝑡); H(t), 

the distribution function that results when two random variables having distribution functions F(t) and G(t) are added; 𝑀(𝑡) =
𝐸[𝑁(𝑡)], the expected number of renewals by time 𝑡;  �̃�(𝑠), Laplace-Stiltjes transform (LST) of  𝑀(𝑡); {𝑁(𝑡), 𝑡 ≥ 0},  
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renewal process; 𝑅𝑛, the reward process; 𝑅(𝑡), renewal time; {𝑆𝑛, 𝑛 ≥ 0},  renewal sequence; 𝑋𝑛 , sequence of 

independent and identically distributed random variables; {𝑌𝑛, 𝑛 ≥ 0}, homogeneous, discrete-time Markov chain and 𝜔, the 

mean time between successive renewals. 

 

MATERIALS AND METHODS 

The study area consisted of analysis of renewal process, inter-renewal event and renewal sequence using the concept of discrete 

time Markov chain. We started with examples of renewal process such as follows 

i. Suppose the inter-arrival times of pieces of junk mail are independent and identically distributed. Then {N(t), t ≥ 0}, the 

number of pieces of junk mail that have arrived by time t, is a renewal process.   

ii. Assume an infinite supply of standard flashlight batteries whose lifetimes are independent and identically distributed. As 

soon as one battery dies it is replaced by another. Then  {N(t), t ≥ 0}, the number of batteries that have failed by time t, is a 

renewal process.  

iii. A biased coin is tossed at times 𝑡 =  1, 2, ⋯ . The probability of a head appearing at any time is 𝜌, 0 < 𝜌 < 1. Then 
{N(t), t ≥ 0}, with N(0) = 0, the number of heads obtained up to and including time t, is a renewal process. The time between 

renewals in this case all have the same geometric probability distribution function: 

𝑃𝑟𝑜𝑏{𝑋𝑛 = 𝑖} = 𝜌(1 − 𝜌)𝑖−1, 𝑖 ≥ 1.   (1) 

The renewal process that results is called a binomial process. Let {𝑁(𝑡), 𝑡 ≥ 0} be a renewal process with inter-event (or inter-

renewal) periods 𝑋1, 𝑋2, ⋯ and let 𝑆𝑛 be the time at which the 𝑛𝑡ℎ event/renewal occurs, i.e., 

𝑆0 = 0,      𝑆𝑛 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 ,      𝑛 ≥ 1.   (2) 

In other words, the process renews itself for the 𝑛𝑡ℎ time at time 𝑆𝑛. The sequence {𝑆𝑛, 𝑛 ≥ 0} is called a renewal sequence. 

The period between renewals is called a cycle; a cycle is completed the moment a renewal occurs. To begin the analysis of the 

distribution function of the random variables  {𝑋𝑛, 𝑛 ≥ 𝑖}  so as to obtain the probability of exactly 𝑛 renewals by time 𝑡, as 

well as Laplace-Stieltjes transform (LST) of the renewal process {𝑁(𝑡), 𝑡 ≥ 0}.  

 Let {𝑌𝑛 , 𝑛 ≥ 0} be a homogeneous, discrete-time Markov chain whose state space is the nonnegative integers and assume 

that at time 𝑡 =  0, the chain is in state 𝑘. 𝑆𝑛 denote the time at which the 𝑛𝑡ℎ visit to state 𝑘 begins.   {𝑋𝑛 = 𝑆𝑛 − 𝑆𝑛−1,   𝑛 ≥
1}  is a sequence of independent and identically distributed random variables, then it follows that {𝑆𝑛, 𝑛 ≥ 0} is a renewal 

sequence and {𝑁(𝑡), 𝑡 ≥ 0}, the number of visits to state 𝑘 in (0, 𝑡], is a renewal process associated with state 𝑘. The initial 

visit to state k (the process starting at time 𝑡 =  0 in state 𝑘) must not be included in this count. A similar statement can be 

made with respect to a continuous-time Markov chain.  

Let the distribution function of the random variables  {𝑋𝑛, 𝑛 ≥ 𝑖} = 𝐹𝑋(𝑡), and let us find the distribution function of the 

renewal process {𝑁(𝑡), 𝑡 ≥ 0}. We first note that since the random variables 𝑋𝑛 are independent and identically distributed, 

the distribution of the renewal sequence  𝑆𝑛 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 is given as 𝐹𝑋
(𝑛)

(𝑡), the n-fold convolution of 𝐹𝑋(𝑡) with 

itself. The only way the number of renewals can exceed or equal 𝑛 at time 𝑡 {𝑁(𝑡), 𝑡 ≥ 0} is if the 𝑛𝑡ℎ renewal occurs no later 

than time 𝑡 (𝑆𝑛 ≤ 𝑡). The converse is also true: the only way that the 𝑛𝑡ℎ renewal can occur no later than time 𝑡 is if the number 

of renewals prior to 𝑡 is at least equal to 𝑛. This means that 𝑁(𝑡)  ≥  𝑛 if and only if (𝑆𝑛 ≤ 𝑡) and we may write 

𝑝𝑟𝑜𝑏{𝑁(𝑡), 𝑡 ≥ 𝑛} = 𝑝𝑟𝑜𝑏{𝑆𝑛 ≤ 𝑡}.                                      (3) 

Also, let  𝐻(𝑡) be the distribution function that results when two random variables having distribution functions 𝐹(𝑡) and 𝐺(𝑡) 

are added, then the convolution is defined as 

𝐻(𝑡) = ∫ 𝐹(𝑡 − 𝑥)
𝑡

0
𝑑𝐺(𝑥) = ∫ 𝐺(𝑡 − 𝑥)

𝑡

0
𝑑𝐹(𝑥).    (4) 

Where 𝑓(𝑥) and 𝑔(𝑥) are the corresponding probability functions. 

Therefore, the probability of exactly 𝑛 renewals by time 𝑡 is given by 

𝑝𝑟𝑜𝑏{𝑁(𝑡) = 𝑛} = 𝑝𝑟𝑜𝑏{𝑁(𝑡) ≥ 𝑛} − 𝑝𝑟𝑜𝑏{𝑁(𝑡) ≥ 𝑛 − 1}.   (5) 

and using Equation (1) we conclude 

𝑝𝑟𝑜𝑏{𝑁(𝑡) = 𝑛} = 𝑝𝑟𝑜𝑏{𝑆𝑛 ≤ 𝑡} − 𝑝𝑟𝑜𝑏{𝑆𝑛+1 ≤ 𝑡} = 𝐹𝑋
𝑛(𝑡) − 𝐹𝑋

(𝑛+1)
(𝑡)      (6) 

Renewal Reward Processes 

Consider a renewal process {𝑁(𝑡), 𝑡 ≥ 0} and let 𝑋𝑛 be the 𝑛𝑡ℎ inter-renewal time. Assume that on the completion of a cycle, 

a “reward” is received or alternatively a “cost” is paid. Let 𝑅𝑛 be the reward (positive or negative) obtained at the 𝑛𝑡ℎ renewal. 

We assume that the rewards 𝑅𝑛 are independent and identically distributed. This does not prevent 𝑅𝑛 from depending on 𝑋𝑛 

the length of the cycle in which the reward 𝑅𝑛 is earned. The total reward received by time t is given by 

𝑅(𝑡) = ∑ 𝑅𝑛
𝑁(𝑡)
𝑛=1 .       (7) 

Observe that, if 𝑅𝑛 = 1 for all 𝑛, then 𝑅(𝑡) = 𝑁(𝑡), the original renewal process. We now show that 

lim
𝑡→∞

𝑅(𝑡)

𝑡
=

𝐸[𝑅]

𝐸[𝑋]
,       (8) 

where 𝐸[𝑅] is the expected reward obtained in any cycle, and 𝐸[𝑋] is the expected duration of a 

cycle. We have 
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𝑅(𝑡)

𝑡
=

∑ 𝑅𝑛
𝑁(𝑡)
𝑛=1

𝑡
=

∑ 𝑅𝑛
𝑁(𝑡)
𝑛=1  

𝑁(𝑡)
×

𝑁(𝑡)

𝑡
     (9) 

Taking the limits of both sides as t →∞, and using the fact that the strong law of large numbers 

allows us to write 

lim
𝑡→∞

∑ 𝑅𝑛
𝑁(𝑡)
𝑛=1  

𝑁(𝑡)
= 𝐸[𝑅], 

gives us the desired result: 

lim
𝑡→∞

𝑅(𝑡)

𝑡
= 𝐸[𝑅] × lim

𝑡→∞

𝑁(𝑡)

𝑡
=

𝐸[𝑅]

𝐸[𝑋]
    (10) 

This tells us that the long run rate of reward is equal to the expected reward per cycle divided by the 

mean cycle length. It may also be shown that 

lim
𝑡→∞

𝐸[𝑅(𝑡)]

𝑡
=

𝐸[𝑅]

𝐸[𝑋]
      (11) 

i.e., the expected reward per unit time in the long run is also equal to the expected reward per cycle divided by the mean cycle 

length. Renewal reward models arise in the context of an ongoing process in which a product, such as a car or piece of 

machinery, is used for a period of time (a cycle) and then replaced. In order to have a renewal process, the new car is assumed 

to have identical characteristics (more precisely, an identical lifetime function) to the one that is replaced. A replacement policy 

specifies a recommended time 𝑇 at which to purchase the new product and the cost 𝑐1 of doing so at this time. A cost 𝑐2 over 

and above the replacement cost 𝑐1 must be paid if for some reason (e.g., the car breaks down) replacement must take place 

prior to the recommended time 𝑇. In some scenarios, a third factor, the resale value of the car, is also included. Let {𝑌𝑛, 𝑛 ≥ 1}, 

be the lifetime of the 𝑛𝑡ℎ  machine and assume that the 𝑌𝑛,  are independent and identically distributed with probability 

distribution function 𝐹(𝑡). If 𝑆𝑛 is the time of the 𝑛𝑡ℎ replacement, then the sequence {𝑆𝑛, 𝑛 ≥ 0} is a renewal sequence. Let 

𝑋𝑛 be the time between two replacements, i.e., 𝑋𝑛 is the duration of the 𝑛𝑡ℎ cycle and we have 

𝑋𝑛 = 𝑚𝑖𝑛{𝑌𝑛, 𝑇}.      (12) 

In the absence of a resale value, the reward (or more properly, cost) 𝑅𝑛 is given by 

𝑅𝑛 = {
𝑐1,   𝑌𝑛 ≥ 𝑇   

𝑐1 + 𝑐2,   𝑌𝑛 < 𝑇
     (13) 

and 𝑅(𝑡), the total cost up to time t, is a renewal reward process: 

𝑅(𝑡) = ∑ 𝑅𝑛
𝑁(𝑡)
𝑛=1 ,   𝑁(𝑡) ≥ 0.     (14) 

Using 𝑋 to denote the duration of an arbitrary cycle and 𝑌 the lifetime of an arbitrary machine, the expected cost per cycle is 

𝐸[𝑅] = 𝑐1𝑃𝑟𝑜𝑏{𝑌 ≥ 𝑇} + (𝑐1 + 𝑐2)𝑃𝑟𝑜𝑏{𝑌 < 𝑇} + (𝑐1 + 𝑐2)𝑃𝑟𝑜𝑏𝐹(𝑇)            (15) 

We now need to compute 𝐸[𝑋], the expected length of a cycle. Since the length of the 𝑛𝑡ℎ cycle is 

𝑚𝑖𝑛{𝑌𝑛, 𝑇} we have 

𝐸[𝑋] = ∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑇

0
+ ∫ 𝑇𝑓(𝑥)𝑑𝑥

∞

𝑇
= ∫ 𝑥𝑓(𝑥)𝑑𝑥

𝑇

0
+ 𝑇(1 − 𝐹(𝑇)),   (16) 

where 𝑓(𝑡) is the lifetime density function of an arbitrary machine. Hence the long-run average 

cost is 
𝐸[𝑅]

𝐸[𝑋]
=

(𝑐1+𝑐2)𝑃𝑟𝑜𝑏𝐹(𝑇)

∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑇

0
+𝑇(1−𝐹(𝑇))

       (17) 

It makes sense to try to find the optimal value of 𝑇, the value which minimizes the expected cost. If 𝑇 is chosen to be small, 

the number of replacements will be high but the cost due to failure will be small. If 𝑇 is chosen to be large, then the opposite 

occurs. 

Results and Discussions 

This section discusses the derivation of formulae for performance measures such the mean time between successive renewals, 

𝑀(𝑡) =  𝐸[𝑋𝑛,   𝑛 ≥ 1],  Laplace-Stieltjes transform (LST) of  𝑀(𝑡), �̃�(𝑡),  the Laplace-Stieltjes transform (LST) of 

distribution function 𝐹𝑋(𝑡), �̃�𝑋(𝑡), Laplace-Stieltjes transform (LST) of 𝑛 fold convolution of 𝐹𝑋(𝑡), �̃�𝑋
(𝑛)

(𝑡),  the time at 

which the 𝑛𝑡ℎ renewal occurs, 𝑆𝑛, the average number of renewals per unit time over the interval (0, t],  
𝑁(𝑡)

𝑡⁄ , expected 

reward, 𝐸[𝑅] 
Illustrative example 1: Assume that inter-renewal times are exponentially distributed with parameter λ, i.e., 

𝐹𝑋(𝑡) = 1 − 𝑒−𝜆𝑡 , 𝑡 ≥ 0,     (18) 

𝐹𝑋
𝑛(𝑡) = 1 − ∑ 𝑒−𝜆𝑡𝑛−1

𝑘=0
(𝜆t)𝑘

𝑘 !
, 𝑡 ≥ 0.     (19) 

an Erlang 𝑘 distribution, and 

𝑝𝑟𝑜𝑏{𝑁(𝑡) = 𝑛} = 𝐹𝑋
𝑛(𝑡) − 𝐹𝑋

(𝑛+1)(𝑡) = 𝑒−𝜆𝑡 (𝜆t)𝑛

𝑛 !
  (20) 

the renewal process  {𝑁(𝑡), 𝑡 ≥ 0} has a Poisson distribution and is called a Poisson process. We now show that it is not 

possible for an infinite number of renewals to occur in a finite period of time. 

 Let 𝜔 = 𝐸[𝑋𝑛 ,   𝑛 ≥ 1]  be the mean time between successive renewals. Since {𝑋𝑛 , 𝑛 ≥ 𝑖} are nonnegative random variables 

and we have chosen the simplifying assumption that 𝑝𝑟𝑜𝑏{𝑋𝑛 = 0} = 𝐹𝑥(0) < 1, it follows that 𝜔 must be strictly greater 

than zero, i.e.,  0 < 𝜔 ≤ ∞. In instances in which the mean inter-renewal time is infinite, we shall interpret 1/𝜔 as zero. We 

now show that 
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𝑝𝑟𝑜𝑏{𝑁(𝑡) < ∞} = 1  for all finite 𝑡 ≥ 0. 

For strong law of large numbers 

𝑝𝑟𝑜𝑏 {
𝑆𝑛

𝑛
→ 𝜔} = 1    𝑎𝑠 𝑛 → ∞,    (21) 

And since 0 < 𝜔 ≤ ∞,   𝑆𝑛  must tend to infinity as n tends to infinity: 

𝑝𝑟𝑜𝑏 { lim
𝑛→∞

𝑆𝑛 = ∞} = 1.     (22) 

Now using the fact that 𝑁(𝑡) = max{𝑛: 𝑆𝑛 ≤ 𝑡}, we find, for finite 𝑡, 

𝑝𝑟𝑜𝑏{𝑁(𝑡) = ∞} = 𝑝𝑟𝑜𝑏 {𝑚𝑎𝑥{𝑛: 𝑆𝑛 ≤ 𝑡} = ∞} = 𝑝𝑟𝑜𝑏 {𝑚𝑎𝑥{𝑛: 𝑆𝑛 ≤ 𝑡} < ∞} 

= 1 − 𝑝𝑟𝑜𝑏 { lim
𝑛→∞

𝑆𝑛 = ∞} = 0.    (23) 

The result is for finite 𝑡 only and does not hold for 𝑡 → ∞.  When 𝑡 → ∞ we have { lim
𝑡→∞

𝑁(𝑡) = ∞}. 

Finding the probability distribution of an arbitrary renewal function can be difficult so that 

frequently only 𝐸[𝑁(𝑡)], the expected number of renewals by time 𝑡, is computed. The mean 

E[N(t)] is called the renewal function and is denoted by 𝑀(𝑡). We have 

𝑀(𝑡) = 𝐸[𝑁(𝑡)] = ∑ 𝑝𝑟𝑜𝑏{𝑁(𝑡) ≥ 𝑛}∞
𝑛=1 = ∑ 𝑝𝑟𝑜𝑏{𝑆𝑁 ≤ 𝑡}∞

𝑛=1     (24) 

= ∑ 𝐹𝑋
𝑛(𝑡).

∞

𝑛=1

 

We now show that 𝑀(𝑡) uniquely determines the renewal process. Let 

�̃�(𝑠) = ∫ 𝑒−𝑠𝑡𝑑𝑀(𝑡)
∞

0
,     �̃�𝑋(𝑠) = ∫ 𝑒−𝑠𝑡𝑑𝐹𝑋(𝑡)

∞

0
,      �̃�𝑋

𝑛(𝑠) = ∫ 𝑒−𝑠𝑡𝑑𝐹𝑋
𝑛(𝑡)

∞

0
 (25) 

be the Laplace-Stieltjes transform (LST) of  𝑀(𝑡),  𝐹𝑋(𝑡) and 𝐹𝑋
𝑛(𝑡) respectively. Then  

�̃�(𝑠) = ∫ 𝑒−𝑠𝑡𝑑 ∑ 𝐹𝑋
𝑛(𝑡)

∞

𝑛=1

= ∑ ∫ 𝑒−𝑠𝑡𝑑𝐹𝑋
𝑛(𝑡)

∞

0

∞

𝑛=1

=
∞

0

∑ �̃�𝑋
𝑛(𝑠) = ∑ (�̃�𝑋(𝑠))

𝑛
∞

𝑛=1

=
�̃�𝑋(𝑠)

1 − �̃�𝑋(𝑠)

∞

𝑛=1

 

Thus 

�̃�(𝑠) =
�̃�𝑋(𝑠)

1−�̃�𝑋(𝑠)
,     and  �̃�𝑋(𝑠) =

�̃�(𝑠) 

1−�̃�(𝑠)
   (26) 

so that once �̃�(𝑠) is known completely, so also is �̃�𝑋(𝑠), and vice versa. Since a renewal process is completely characterized 

by 𝐹𝑋(𝑡), it follows that it is also completely characterized by the renewal function 𝑀(𝑡). Continuing with the renewal 

function, observe that 

𝑀(𝑡) = ∑ 𝐹𝑋
𝑛(𝑡) = 𝐹𝑋

1(𝑡) +  ∑ 𝐹𝑋
𝑛+1 (𝑡)

∞

𝑛=1

∞

𝑛=1

= 𝐹𝑋(𝑡) + ∑ ∫ 𝐹𝑋
𝑛(𝑡 − 𝑠)𝑑𝐹𝑋(𝑠)

𝑡

0

∞

𝑛=1

 

= 𝐹𝑋(𝑡) + ∫ ∑ 𝐹𝑋
𝑛 (𝑡 − 𝑠)𝑑𝐹𝑋(𝑠)∞

𝑛=1 = 𝐹𝑋(𝑡)
𝑡

0
+ ∫ 𝑀(𝑡 − 𝑠)𝑑𝐹𝑋(𝑠) 

𝑡

0
   (27) 

This is called the fundamental renewal equation. Taking the LST of both sides gives the previous 

result, namely 

�̃�(𝑠) = �̃�𝑋(𝑠) + �̃�(𝑠)�̃�𝑋(𝑠)     (28) 

Illustrative example 2:   Suppose that inter-renewal times are exponentially distributed with parameter λ, 

i.e., 𝐹𝑋(𝑡) = 1 − 𝑒−𝜆𝑡. 

 Then 

�̃�𝑋(𝑠) =
𝜆

𝜆 + 𝑠
, 
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�̃�(𝑠) =
𝜆/(𝜆 + 𝑠)

1 − 𝜆/(𝜆 + 𝑠)
, 

which when inverted gives 

𝑀(𝑡) = 𝜆𝑡 

We may conclude that, when the expected number of renewals increases linearly with time, the renewal process is a Poisson 

process. Furthermore, from the uniqueness property, the Poisson process is the only renewal process with a linear mean-value 

(renewal) function. We now give two important results on the limiting behavior of renewal processes. We have previously 

seen that the limit as 𝑡 tends to infinity of 𝑁(𝑡) is infinite. Our first result concerns the rate at which 𝑁(𝑡) → ∞. Observe that 

𝑁(𝑡)/𝑡 is the average number of renewals per unit time. We now show that, with probability 1, 
𝑁(𝑡)

𝑡
→

1

𝜔
      as      𝑡 → ∞, 

and point out why 
1

𝜔
 is called the rate of the renewal process. Recall that 𝑆𝑛 is the time at which the 𝑛𝑡ℎ renewal occurs. Since 

N(t) is the number of arrivals that occur prior to or at time t, it must follow that 𝑆𝑁(𝑡) is just the time at which the last renewal 

prior to or at time 𝑡 occurred. Likewise, 𝑆𝑁(𝑡)+1 is the time at which the first renewal after time t occurs. Therefore 

𝑆𝑁(𝑡) ≤ 𝑡 < 𝑆𝑁(𝑡)+1 

And 
𝑆𝑁(𝑡)

𝑁(𝑡)
≤

𝑡

𝑁(𝑡)
<

𝑆𝑁(𝑡)+1

𝑁(𝑡)
      (29) 

Since 
𝑆𝑁(𝑡)

𝑁(𝑡)
 is the average of 𝑁(𝑡)independent and identically distributed random variables: 

𝑆𝑁(𝑡)

𝑁(𝑡)
=

𝑡

𝑁(𝑡)
∑ 𝑋𝑖

𝑁(𝑡)
𝑖=1                     (30) 

Given that 𝜔 = 𝐸[𝑋𝑛] is the mean time between (successive) renewals, it follows from the strong law of large numbers that 

lim
𝑁(𝑡)→∞

𝑆𝑁(𝑡)

𝑁(𝑡)
= 𝜔 

which is the same as writing 

lim
𝑡→∞

𝑆𝑁(𝑡)

𝑁(𝑡)
= 𝜔      (31) 

Since 𝑁(𝑡) → ∞  when 𝑡 → ∞. Also, by means of a similar argument, 

lim
𝑁(𝑡)→∞

𝑆𝑁(𝑡)+1

𝑁(𝑡)
= lim

𝑁(𝑡)→∞

𝑆𝑁(𝑡)+1

𝑁(𝑡)+1

𝑁(𝑡)+1

𝑁(𝑡)
= lim

𝑁(𝑡)→∞
(

𝑆𝑁(𝑡)+1

𝑁(𝑡)+1
) lim

𝑁(𝑡)→∞
(

𝑁(𝑡)+1

𝑁(𝑡)
) = 𝜔  (32) 

Thus we see that 𝑡/𝑁(𝑡) is sandwiched between two numbers each of which tends to 𝜔 as 𝑡 → ∞. 

Therefore 𝑡/𝑁(𝑡) must also converge to 𝜔 as 𝑡 → ∞. Now using the fact that  1 𝑋⁄  is a continuous 

function, we have, with probability 1, 

lim
𝑁(𝑡)→∞

𝑁(𝑡)

𝑡
=

1

𝜔
.      (33) 

Where  
𝑁(𝑡)

𝑡⁄  is the average number of renewals per unit time over the interval (0, t] and in the limit as t tends to infinity, it 

is the average rate of renewals, in other words, the expected rate of renewals for all renewal processes is 
1

𝜔
, i.e., the reciprocal 

of the expected time between renewals.  

Given an average inter-renewal time of four minutes 𝜔 = 4  we would expect to get renewals at the rate of fifteen per hour, 

or 
1

4
  per minute. The second result, which we state without proof, is similar. It can be shown that, with probability 1, 

lim
𝑁(𝑡)→∞

𝑀(𝑡)

𝑡
=

1

𝜔
.      (34) 

The derivative of the renewal function 𝑀(𝑡) = 𝐸[𝑁(𝑡)] is called the renewal density and is denoted by 𝑚𝐼(𝑡). 

𝑚𝐼(𝑡) =
𝑑𝑀(𝑡)

𝑑𝑡
= ∑ 𝑓𝑋

𝑛(𝑡)∞
𝑛=1 ,     (35) 

where 𝑓𝑋
𝑛(𝑡) is the derivative of 𝐹𝑋

𝑛(𝑡). This leads to the renewal equation (as opposed to the fundamental renewal equation, 

Equation (4) 

𝑚𝐼(𝑡) = 𝑓𝑋(𝑡) + ∫ 𝑀(𝑡 − 𝑠)
𝑡

0
𝑓𝑋(𝑠)𝑑𝑠                 (36) 

It may be shown that 

lim
𝑡→∞

𝑚𝐼(𝑡) =
1

𝜔
      (37) 

For small values of ∆𝑡, 𝑚𝐼(𝑡)∆𝑡 gives the probability that a renewal will occur in the interval (𝑡 + 𝑡∆𝑡]. For a Poisson process, 

we saw that 𝑀(𝑡)  =  𝜆𝑡. Hence 𝑚𝐼(𝑡) = 𝜆 when a renewal process is Poisson, as we might have expected. 

Illustrative example 3: A manufacturing company produces biscuits from a machine called an “gangster” whose lifetimes 𝑋𝑛 

are independent and identically uniformly distributed between three and five years. In the context of the renewal reward model 

just described, we shall let 𝑐1 = 5  and  𝑐2 = 1  (hundred thousand Nairas). Let us find the optimal replacement policy.  

The probability distribution and density functions of the lifetime of the gangster machine are 

𝐹𝑋(𝑥) = {

0,               𝑥 < 3
(𝑋−3)

2
,   3 ≤ 𝑥 ≤ 5

1,            𝑥 > 5

,                    𝑓𝑋(𝑥) = {

0,               𝑥 < 3
1

2
,   3 ≤ 𝑥 ≤ 5

0,            𝑥 > 5

  (38) 
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𝐸[𝑅]

𝐸[𝑋]
=

(𝑐1 + 𝑐2)𝑃𝑟𝑜𝑏𝐹(𝑇)

∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑇

0
+ 𝑇(1 − 𝐹(𝑇))

=
(𝑐1 + 𝑐2)(𝑇 − 3)/2

𝑇2

4
+ 𝑇(1 − (𝑇 − 3)/2)

=

7
2

+ 𝑇/2

5𝑇
2

−
𝑇2

4

. 

To find the minimum, we take the derivative of this function and set the numerator to zero: 

(
5𝑇

2
−

𝑇2

4
)

1

2
− (

7

2
+

𝑇

2
) (

5

2
−

𝑇

2
) = 0. 

Simplifying, this reduces to 

𝑇2 + 14𝑇 − 70 = 0       (39) 

which has roots equal to −17.9087 and 3.9087, the latter of which gives the value of 𝑇 that minimizes the long-run average 

cost of the gagster machine. It is interesting to observe what happens when the lifetime of the product has an exponential 

distribution with parameter 𝜇, i.e., 𝐹𝑌(𝑡) = 1 − 𝑒−𝜇𝑡,      𝑓𝑌(𝑡) = 𝑒−𝜇𝑡,  in this case 

𝐸[𝑅]

𝐸[𝑋]
=

(𝑐1 + 𝑐2)(1 − 𝑒−𝜇𝑡)

∫ 𝜇𝑥𝑒−𝜇𝑥𝑇

0
+ 𝑇𝑒−𝜇𝑡

=
(𝑐1 + 𝑐2)(1 − 𝑒−𝜇𝑡)

−𝑥𝑒−𝜇𝑥|0
𝑇   + ∫ 𝜇𝑒−𝜇𝑥𝑇

0
+ 𝑇𝑒−𝜇𝑡

 

=
(𝑐1+𝑐2)(1−𝑒−𝜇𝑡)

(1−𝑒−𝜇𝑡)/𝜇
=

𝜇𝑐1

1−𝑒−𝜇𝑇 + 𝜇𝑐2,    (40) 

a monotonically decreasing function of   𝑇,  The exponential property of the lifetime distribution holds that at any point in 

time, the remaining lifetime is identical to the lifetime of a brand new machine. 

CONCLUSION 

The distribution function of the renewal process and 

sequence  {𝑋𝑛 , 𝑛 ≥ 𝑖}   is  analysed using the concept of 

discrete time Markov chain to obtain the performance 

measures in a renewal process. Some properties of the Erlang 

𝑘 , exponential and geometric distributions are used with the 

help of some existing laws, theorems and formulas of Markov 

chain. We concluded our study through illustrative examples 

that, it is not possible for an infinite number of renewals to 

occur in a finite period of time; Also, the expected number of 

renewals increases linearly with time; and by using the 

uniqueness property, we affirmed that, the Poisson process is 

the only renewal process with a linear mean-value  function; 

and lastly, we obtained the optimal replacement policy for a 

manufacturing machine which showed that, the exponential 

property of the lifetime distribution holds that at any point in 

time, the remaining lifetime is identical to the lifetime of a 

brand new machine, while the long run rate of reward is equal 

to the expected reward per cycle divided by the mean cycle 

length. 
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