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ABSTRACT 

In this research work, we have looked at how a financial institution can optimally allocate its wealth among 

three assets namely: treasury, security and loan, and also manage it assets in stochastic interest rate and 

stochastic volatility setting. We derived the optimal investment policy through the application of dynamic 

programming principle for the case of constant relative risk aversion (CRRA) utility function. Furthermore, we 

derived the Stochastic Differential Equation (SDE) for the capital adequacy ratio under Basel Accord, the SDE 

for the Total Risk – Weighted Assets (TRWA), SDE for the capital required to maintain the capital adequacy 

ratio under Basel II and Central Bank of Nigeria (CBN) standards and solve the SDEs numerically to study 

how the financial institution can manage its assets. We also presented numerical examples to illustrate the 

dynamics of the optimal investment policy, TRWA SDE and SDE of the capital required to maintain the capital 

adequacy ratio under Basel II and Nigeria CBN standards. 

Keywords: Financial Institution, Investment Strategy, Stochastic Optimization Theory, Stochastic Interest 

Rate, Stochastic Volatility. 

 

INTRODUCTION 

Management of a financial institution’s assets majorly involves 

achieving profit maximization through high returns on loans and 

securities, reducing risk and meeting the liquidity needs of the 

financial institution. Specifically, financial institutions attempt 

to manage their assets in the following ways: they try to grant 

loans to customers who are likely to pay high interest rates and 

have a low tendency to default. Secondly, they tend to purchase 

securities with high returns and low risk. Also, in attempt to 

manage their assets, financial institutions try to lower risk by 

diversifying their investment portfolio through investment in 

different types of assets (Mukuddem – Petersen and Petersen, 

2008). Financial institutions must also manage their assets so 

that it can satisfy the reserve – requirements without incurring 

high cost. 

The need for financial institutions to invest in assets with an 

acceptable level of risk and high returns is very important. For 

instance, if the return on a particular loan turns out to be very 

high at the end of the loan contract period, the financial 

institution might regret not having allocated a large enough 

portion of its capital to such loan. Therefore, optimal asset 

allocation is very crucial in a financial institution management. 

Numerous studies have been done on how to optimally allocate 

a financial institution’s wealth among its assets. In particular, 

Dangl and Lehar (2004) and Decamps et al. (2004), constructed 

a continuous – time models which solved the optimal control 

problems of a bank in the context of portfolios selection and 

capital requirements. Peter et al., (2011) studied an optimal 

assets allocation problem with stochastic interest rates which 

takes into account specific features of bank. Their goal is to 

present a numerical aspect of the derived Hamilton Jacob 

Bellman (HJB) equation and to focus on the optimal assets 

allocation model results from a practical viewpoint. Fouche et 

al (2006) also considered assets allocation problem. In their 

work, they illustrated that it is possible to use an analytic 

approach to optimize assets allocation strategies for banks. They 

formulated an optimal bank valuation problem through optimal 

choices of loan rate and demand which leads to maximal 

deposits, provisions for deposits withdrawals and bank 

profitability subject to cash flow, loan demand, financing and 

balance sheet constraints. 

Several studies have also investigated the assets allocation 

problems using stochastic control theory developed by Merton 

(1969 and 1971) in discrete and continuous time setting 

(Wachter, 2002; Munk et al., 2004). The approach solved 

nonlinear partial differential Hamilton – Jacobi – Bellman 

(HJB) equation to find the closed form solution for the value 

function. 

Also, failures spark risk management strategies and regulatory 

prescripts to mitigate this risk. One of these prescriptions is the 

Basel Accord on capital adequacy requirements, which states 
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that all major international financial institution e.g. banks should 

hold capital in proportion to their perceived risks (Peter et al., 

2011). Although, an internal model may be used by the financial 

institution to make an assessment of their portfolio risk and 

determine the capital requirement. Capital management deals 

with the decision about the amount of capital the financial 

institution should hold and how it should be accessed (Diamond 

and Rajan, 2000). A double burden seems to be associated with 

the financial institution capital management because it benefits 

the owners as it reduces the institution failure likelihood but is 

costly since the higher the level of capital, the lower the return 

on equity for a prescribed return on assets. Hence, when 

considering the amount of capital a financial institution should 

hold, the owners must decide how much is the benefits that 

results from the higher capital they are willing to trade – off for 

the lower return on equity that comes from the associated higher 

capital. 

The global economic crisis provided an opportunity for 

fundamental changes of the approach to risk and regulation in 

financial sector. An agreement on reforms to strengthen global 

capital and liquidity rules with the goal of promoting a stronger 

or more resilient banking sector, which being referred to Basel 

Accords came into being in 1988. The purpose of the Basel 

Accords is to ensure that internationally active banks hold 

enough capital to meet obligations and to absorb unexpected 

losses (Von - Thadden, 2004). Therefore, the Basel committee 

on banking supervision (BCBS) administers the regulation and 

supervision of the international banking industry by imposing 

the minimum capital requirements and other measures on the 

banking industry.  

Under Basel I Accord, banks are to maintain Total Capital 

(calculated as the sum of Tier 1 and Tier 2 Capital) equal to at 

least 8% of its total – risk – weighted assets which is referred to 

as capital adequacy ratio (CAR) (BCBS, 2004). However, Basel 

I Accord was based on simplified calculations and classification 

which have led to its disappearance. As a result, the BCBS 

issued the Basel II Accord and further agreements as symbol of 

continuous refinement of risk and capital requirement 

(Investopedia, 2019). Basel III Accord is the third global, 

voluntary regulatory standard on bank capital adequacy, stress 

testing and market liquidity risk. It is a set of reform measures 

introduced in response to the 2007 – 2008 financial crises. The 

Accord which was issued in 2010 (Debajyoti et al., 2013), aimed 

at improving the regulation, supervision and risk management 

within the banking sector. It also shows the continuous effort 

made by BCBS to improve the banking regulatory framework. 

It also important to note that CAR for banks in Nigeria currently 

stands at 10% and 15% for national/regional banks and banks 

with international license respectively (Ugo, 2014). 

Therefore, many mathematical models have been formulated 

over the past years to explore the dynamics of asset allocation 

and capital management problem in financial institutions in 

stochastic interest rate setting. In our contribution, we attempt 

to explore the dynamics of a financial institution asset allocation 

and capital management problem in a stochastic interest rate and 

stochastic volatility framework. Our goal is to maximize an 

expected utility of the assets at a future time, derive the SDE for 

the capital adequacy ratio under Basel Accord, derive the SDE 

for the total risk – weighted assets and SDE for the capital 

required to maintain the capital adequacy ratio under Basel II 

and Nigeria CBN standards. 

The Mathematical Model Formulation 

We consider a financial institution that dynamically allocates its 

wealth among three assets namely: treasury, loan and security. 

The assets prices satisfy the geometric Brownian motion, assets 

can be bought and sold without incurring any transaction costs 

or restriction on short sales and the interest rate is described by 

Affine model. The risk preference of the investor satisfies 

CRRA utility function.   

The Financial Market 

We consider a complete and frictionless financial market which 

is continuously open over a fixed time interval [0, 𝑇] and 

Brownian motion defined on a complete probability space 

(Ω, ℱ, ℙ), where  ℱ = {ℱ𝑡}𝑡≥0 is the filtration generated by the 

Brownian motions, ℙ is the real world probability. The first 

asset in the financial market is a riskless treasury and its price at 

time 𝑡 can be denoted by 𝑆0(𝑡). It evolves according to the 

following stochastic differential equation 

𝑑𝑆0(𝑡)

𝑆0(𝑡)
= 𝑟(𝑡)𝑑𝑡,                   𝑆(0) = 𝑆0                                                                                                                    (1) 

The dynamics of the short rate process, 𝑟(𝑡), is given by the stochastic differential equation  

𝑑𝑟(𝑡) = (𝑎 − 𝑏𝑟(𝑡))𝑑𝑡 − 𝜎𝑟√𝑟(𝑡)𝑑𝑤𝑟(𝑡),    𝑟(𝑡) = 𝑟0                                                                                      (2) 

Where 𝑎, 𝑏  and 𝜎𝑟 = √𝑘1 are constants. 

The second asset is a loan to be amortized over a period [0, 𝑇] whose price at time 𝑡 ≥ 0 is denoted by 𝐿(𝑡). Its dynamics can be 

described by the stochastic differential equation. 

𝑑𝐿(𝑡)

𝐿(𝑡)
= (𝑟(𝑡) + 𝑏1𝜆𝑟𝑘1𝑟(𝑡))𝑑𝑡 + 𝑏1𝜎𝑟√𝑟(𝑡)𝑑𝑤𝑟(𝑡)                                                                                        (3) 

where 𝑏1,𝜆𝑟  and 𝑘1 are constants. The loan return has a risk premium 𝑏1𝜆𝑟𝑟(𝑡) that changes with 𝑡 both implicitly through the 

dependence on 𝑟(𝑡) and explicitly through the dependence on 𝑏1. 

The third asset in the financial market is a risky security whose price is denoted by 𝑆(𝑡), 𝑡 ≥ 0. Its dynamics can be described by 

the equation: 
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𝑑𝑆(𝑡)

𝑆(𝑡)
= (𝑟(𝑡) + 𝜐𝜂(𝑡) + 𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡))𝑑𝑡 + 𝜎𝑠𝜎𝑟√𝑟(𝑡)𝑑𝑤𝑟(𝑡) + √𝜂(𝑡)𝑑𝑤𝑠(𝑡)                                         (4) 

 

Here, we assumed that the volatility 𝜂(𝑡)  satisfies the Heston model: 

𝑑𝜂(𝑡) = 𝛼(𝛿 − 𝜂(𝑡))𝑑𝑡 + 𝜎𝜂√𝜂(𝑡)𝑑𝑤𝑟(𝑡)                                                                                                         (5) 

where 𝛼, 𝛿 and𝜎𝜂 are positive constant and satisfied the condition 2𝛼𝛿 > 𝜎𝜂
2 and it ensures 𝜂(𝑡) > 0 ∀ 𝑡 ∈ [0, 𝑇]. 

Here we assume that there is no correlation between 𝑤𝑠(𝑡) and 𝑤𝑟(𝑡), and between 𝑤𝜂(𝑡) and 𝑤𝑟(𝑡). The correlation between 

𝑤𝑠(𝑡) and 𝑤𝜂(𝑡) is 𝜌. 

 

The Asset Portfolio of the Financial Institution 

Let 𝑋(𝑡) denotes the value of the financial institution assets portfolio at time 𝑡 ∈ [0, 𝑇], 𝜋𝑠(𝑡) and 𝜋𝑙(𝑡) denote the amount invested 

in the security and loan respectively. Therefore, 𝜋0(𝑡) = 𝑋(𝑡) − 𝜋𝑠(𝑡) − 𝜋𝑙(𝑡) denotes the amount invested in the riskless asset. 

The dynamics of the assets portfolio is given by  

𝑑𝑋(𝑡) = (𝑋(𝑡) − 𝜋𝑠(𝑡) − 𝜋𝑙(𝑡))
𝑑𝑆0(𝑡)

𝑆0(𝑡)
+ 𝜋𝑠(𝑡)

𝑑𝑆(𝑡)

𝑆(𝑡)
+ 𝜋𝑙(𝑡)

𝑑𝐿(𝑡)

𝐿(𝑡)
  

           = [𝑋(𝑡)𝑟(𝑡) + 𝜋𝑠(𝑡)𝜐𝜂(𝑡) + 𝜋𝑠(𝑡)𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡)+𝜋𝑙(𝑡)𝑏1𝜆𝑟𝑘1𝑟(𝑡)]𝑑𝑡 

           + [𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡)+𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)] 𝑑𝑤𝑟(𝑡) + 𝜋𝑠(𝑡)√𝜂(𝑡)𝑑𝑤𝑠(𝑡)                                                (6) 

Definition (Admissible Strategy) 

An investment strategy 𝜋(𝑡) = (𝜋𝑠(𝑡), 𝜋𝑙(𝑡)) is said to be admissible if the following conditions are satisfied. 

i. 𝜋𝑠(𝑡) and 𝜋𝑙(𝑡) are all 𝑓𝑡 −  measurable. 

ii. 𝐸 (∫ (𝜋𝑠
2(𝑡)𝜂(𝑡) + [𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟+𝜋𝑙(𝑡)𝑏1𝜎𝑟]

2𝑟(𝑡))𝑑𝑡
𝑇

0
) < ∞. 

iii. The stochastic differential equation (6) has a unique solution  

       ∀ 𝜋(𝑡) = (𝜋𝑠(𝑡), 𝜋𝑙(𝑡)). 

2.4 The Portfolio Optimization Problem  

Let the set of all admissible strategy be denoted by Π. Under the asset portfolio (6), the financial institution looks for an optimal 

strategy 𝜋𝑠
∗(𝑡) and 𝜋𝑙

∗(𝑡) which maximizes the expected utility of the terminal wealth. i.e.: 

max
𝜋(𝑡)∈Π

𝐸[𝑈(𝑋(𝑇))]                                                                                                                                                    (7) 

Based on the classical tools of stochastic optimal control, we state the problem as follows: 

Maximize     𝐸[𝑈(𝑋(𝑇))] 

Subject to: 

𝑑𝑟(𝑡) = (𝑎 − 𝑏𝑟(𝑡))𝑑𝑡 − 𝜎𝑟√𝑟(𝑡)𝑑𝑤𝑟(𝑡) 

𝑑𝜂(𝑡) = 𝛼(𝛿 − 𝜂(𝑡))𝑑𝑡 + 𝜎𝜂√𝜂(𝑡)𝑑𝑤𝑟(𝑡) 

𝑑𝑋(𝑡) = [𝑋(𝑡)𝑟(𝑡) + 𝜋𝑠(𝑡)𝜐𝜂(𝑡) + 𝜋𝑠(𝑡)𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡) + 𝜋𝑙(𝑡)𝑏1𝜆𝑟𝑘1𝑟(𝑡)]𝑑𝑡 

                 + [𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡)+𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)]  𝑑𝑤𝑟(𝑡) + 𝜋𝑠(𝑡)√𝜂(𝑡)𝑑𝑤𝑠(𝑡) 

𝑋(0) = 𝑥0, 𝑟(0) = 𝑟0, 𝜂(0) = 𝜂0, 0 ≤ 𝑡 ≤ 𝑇 

The objective is to maximize the expected utility of the financial institution’s portfolio at a future date 𝑇 > 0. That is, find the 

optimal value function  

𝐻(𝑡, 𝑟, 𝜂, 𝑥) = max
𝜋(𝑡)∈Π

𝐸[𝑈(𝑋(𝑇))|𝑟(𝑡) = 𝑟, 𝜂(𝑡) = 𝜂, 𝑋(𝑡) = 𝑥 ]                                                                    (8) 

and the optimal strategy is 𝜋∗(𝑡) = (𝜋𝑠
∗(𝑡), 𝜋𝑙

∗(𝑡)) such that  

                   H
𝜋∗(𝑡)

(𝑡, 𝑟, 𝜂, 𝑥) = 𝐻(𝑡, 𝑟, 𝜂, 𝑥)                                                                                                                  (9) 

 

The Derivation of the Hamilton – Jacobi – Bellman Equation Associated with the Portfolio Optimization Problem 

The Hamilton – Jacobi – Bellman equation associated with the portfolio optimization problem is: 

max
𝜋(𝑡)∈Π

{𝐻𝑡 + [𝑋(𝑡)𝑟(𝑡) + 𝜋𝑠(𝑡)𝜐𝜂(𝑡) + 𝜋𝑠(𝑡)𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡) + 𝜋𝑙(𝑡)𝑏1𝜆𝑟𝑘1𝑟(𝑡)]𝐻𝑥 

+
1

2
(𝜋𝑠

2(𝑡)𝜂(𝑡) + [𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡)+𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)]
2
)𝐻𝑥𝑥 − [𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟

2𝑟(𝑡) 

+𝜋𝑙(𝑡)𝑏1𝜎𝑟
2𝑟(𝑡)]𝐻𝑥𝑟 + [𝜌𝜋𝑠(𝑡)𝜎𝜂𝜂(𝑡)]𝐻𝑥𝜂 + [𝑎 − 𝑏𝑟(𝑡)]𝐻𝑟 +

1

2
𝜎𝑟
2𝑟(𝑡)𝐻𝑟𝑟 

+𝛼[𝛿 − 𝜂(𝑡)]𝐻𝜂 +
1

2
𝜎𝜂
2𝜂(𝑡)𝐻𝜂𝜂} = 0                                                                                                                  (11) 
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𝐻(𝑇, 𝑟, 𝜂, 𝑥) = 𝑈(𝑥)                                                                                                                                                  (12) 

where 𝐻𝑡, 𝐻𝜂 , 𝐻𝑥, 𝐻𝑟, 𝐻𝑥𝑥, 𝐻𝑟𝑟, 𝐻𝜂𝜂 , 𝐻𝑥𝜂  and 𝐻𝑥𝑟 denote partial derivatives of first and second orders with respect to 𝑡, 𝑟, 𝜂 and 𝑥 

respectively. 

Differentiating (11) with respect to 𝜋𝑠(𝑡) and 𝜋𝑙(𝑡), we obtain  

(𝜐𝜂 + 𝜎𝑠𝜆𝑟𝑘1𝑟)𝐻𝑥 + (𝜋𝑠(𝑡)𝜂 + (𝜋𝑠(𝑡)𝜎𝑠
2𝜎𝑟

2𝑟+𝜋𝑙(𝑡)𝑏1𝜎𝑠𝜎𝑟
2𝑟)𝐻𝑥𝑥 

−𝜎𝑠𝜎𝑟
2𝑟𝐻𝑥𝑟 + 𝜌𝜎𝜂𝜂𝐻𝑥𝜂 = 0                                                                                                                                   (13) 

and  

𝑏1𝜆𝑟𝑘1𝑟𝐻𝑥 + (𝜋𝑠(𝑡)𝑏1𝜎𝑠𝜎𝑟
2𝑟+𝜋𝑙(𝑡)𝑏1

2𝜎𝑟
2𝑟)𝐻𝑥𝑥 − 𝑏1𝜎𝑟

2𝑟𝐻𝑥𝑟 = 0                                                               (14) 

Solving (13) and (14) for 𝜋𝑠(𝑡) and 𝜋𝑙(𝑡) give the first order maximizing conditions for the optimal strategy (𝜋𝑠
∗(𝑡), 𝜋𝑠

∗(𝑡)). 

From equation (14), we have 

 𝜋𝑙(𝑡) =
𝐻𝑥𝑟
𝑏1𝐻𝑥𝑥

−
𝜆𝑟𝑘1𝐻𝑥

𝑏1𝜎𝑟
2𝐻𝑥𝑥

−
𝜋𝑠(𝑡)𝜎𝑠
𝑏1

                                                                                                                 (15) 

Substituting for 𝜋𝑙(𝑡) in equation (13) and simplifying, we obtain 

𝜋𝑠
∗(𝑡) = −𝜐

𝐻𝑥
𝐻𝑥𝑥

− 𝜌𝜎𝜂
𝐻𝑥𝜂

𝐻𝑥𝑥
                                                                                                                                    (16) 

Substituting (16) in (15) gives  

𝜋𝑙
∗(𝑡) =

𝐻𝑥𝑟
𝑏1𝐻𝑥𝑥

−
𝜆𝑟𝑘1𝐻𝑥

𝑏1𝜎𝑟
2𝐻𝑥𝑥

−
𝜎𝑠
𝑏1
(−𝜐

𝐻𝑥
𝐻𝑥𝑥

− 𝜌𝜎𝜂
𝐻𝑥𝜂

𝐻𝑥𝑥
) 

             =
𝐻𝑥𝑟
𝑏1𝐻𝑥𝑥

+
(𝜐𝜎𝑠𝜎𝑟

2 − 𝜆𝑟𝑘1)𝐻𝑥

𝑏1𝜎𝑟
2𝐻𝑥𝑥

+
𝜌𝜎𝜂𝜎𝑠𝐻𝑥𝜂

𝑏1𝐻𝑥𝑥
                                                                                       (17) 

Substituting (16) and (17) in (11) gives the partial differential equation (PDE) for the value function. 

𝐻𝑡 + 𝑥𝑟𝐻𝑥 − (
𝜐2𝜂

2
+
𝜆𝑟
2𝑘1

2𝑟

2𝜎𝑟
2 )

𝐻𝑥
2

𝐻𝑥𝑥
− 𝜌2𝜎𝜂

2𝜂
𝐻𝑥𝜂
2

2𝐻𝑥𝑥
− 𝜎𝑟

2𝑟
𝐻𝑥𝑟
2

2𝐻𝑥𝑥
− 𝜌𝜎𝜂𝜂𝜐

𝐻𝑥𝐻𝑥𝜂

𝐻𝑥𝑥
 

+𝜆𝑟𝑘1𝑟
𝐻𝑥𝐻𝑥𝑟
𝐻𝑥𝑥

+ (𝑎 − 𝑏𝑟)𝐻𝑟 +
1

2
𝜎𝑟
2𝑟𝐻𝑟𝑟 + 𝛼(𝛿 − 𝜂)𝐻𝜂 +

1

2
𝜎𝜂
2𝜂𝐻𝜂𝜂 = 0                                               (18) 

The problem now is solving (18) for the value function and replace it in (16) and (17). 

3 The Solution of the Portfolio Optimization Problem 

In the case of CRRA utility function, we conjecture a solution to the equation (18) in the following form: 

𝐻(𝑡, 𝑟, 𝜂, 𝑥) =
𝑥𝛽

𝛽
𝑓(𝑡, 𝑟, 𝜂),     𝛽 < 1, 𝛽 ≠ 0                                                                                                        (19) 

With the boundary condition: 

𝑓(𝑇, 𝑟, 𝜂) = 1                                                                                                                                                              (20) 

From (19), we have 

𝐻𝑡 =
𝑥𝛽

𝛽
𝑓𝑡 , 𝐻𝑥 = 𝑥

𝛽−1𝑓,    𝐻𝑟 =
𝑥𝛽

𝛽
𝑓𝑟 ,   𝐻𝜂 =

𝑥𝛽

𝛽
𝑓𝜂 , 𝐻𝑥𝑥 = (𝛽 − 1)𝑥

𝛽−2𝑓

𝐻𝑥𝑟 = 𝑥
𝛽−1𝑓𝑟 , 𝐻𝑥𝜂 = 𝑥

𝛽−1𝑓𝜂 ,    𝐻𝑟𝑟 =
𝑥𝛽

𝛽
𝑓𝑟𝑟 ,   𝐻𝜂 =

𝑥𝛽

𝛽
𝑓𝜂𝜂

}
 
 

 
 

                                         (21)  

Where 𝐻𝑡, 𝐻𝑥, 𝐻𝑟, 𝐻𝜂 , 𝐻𝑥𝑥, 𝐻𝑥𝑟 , 𝐻𝑥𝜂 , 𝐻𝑟𝑟  and 𝐻𝜂𝜂 are first order and second order partial derivatives of 𝐻 with respect to 𝑡, 𝑟 and 𝜂, 

𝑓𝑡 , 𝑓𝑟 , 𝑓𝜂 , 𝑓𝑟𝑟  and 𝑓𝜂𝜂 represent the first order and second order partial derivatives of 𝑓 with respect to 𝑡, 𝑟 and 𝜂. 

Introducing these derivatives in (21) into (18) and dividing through by 
𝑥𝛽

𝛽
 yields 

𝑓𝑡 + 𝑟𝛽𝑓 − (
𝜐2𝜂

2
+
𝜆𝑟
2𝑘1

2𝑟

2𝜎𝑟
2 )

𝛽𝑓

(𝛽 − 1)
− 𝜌2𝜎𝜂

2𝜂
𝛽𝑓𝜂

2

2(𝛽 − 1)𝑓
− 𝜎𝑟

2𝑟
𝛽𝑓𝑟

2

2(𝛽 − 1)𝑓
− 𝜌𝜎𝜂𝜂𝜐

𝛽𝑓𝜂

𝛽 − 1
 

+𝜆𝑟𝑘1𝑟
𝛽𝑓𝑟
𝛽 − 1

+ (𝑎 − 𝑏𝑟)𝑓𝑟 +
1

2
𝜎𝑟
2𝑟𝑓𝑟𝑟 + 𝛼(𝛿 − 𝜂)𝑓𝜂 +

1

2
𝜎𝜂
2𝜂𝑓𝜂𝜂 = 0 

𝑓𝑡 + [𝑟𝛽 − (
𝛽𝜐2𝜂

2(𝛽 − 1)
+

𝛽𝜆𝑟
2𝑘1

2𝑟

2𝜎𝑟
2(𝛽 − 1)

)] 𝑓 −
𝛽𝜌2𝜎𝜂

2𝜂𝑓𝜂
2

2(𝛽 − 1)𝑓
−

𝛽𝜎𝑟
2𝑟𝑓𝑟

2

2(𝛽 − 1)𝑓
 

+ [𝛼(𝛿 − 𝜂) −
𝛽𝜌𝜎𝜂𝜂𝜐

𝛽 − 1
] 𝑓𝜂 + [

𝛽𝜆𝑟𝑘1𝑟

𝛽 − 1
+ (𝑎 − 𝑏𝑟)] 𝑓𝑟 +

1

2
𝜎𝑟
2𝑟𝑓𝑟𝑟 +

1

2
𝜎𝜂
2𝜂𝑓𝜂𝜂 = 0                                 (22) 

We conjecture 𝑓(𝑡, 𝑟, 𝜂) as the following:  

𝑓(𝑡, 𝑟, 𝜂) = 𝑒𝐷1(𝑡)+𝐷2(𝑡)𝑟+𝐷3(𝑡)𝜂

𝐷1(𝑡) = 𝐷2(𝑡) = 𝐷3(𝑡) = 0
}                                                                                                                          (23) 
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From (23) 

𝑓𝑡 = (𝐷1
′(𝑡) + 𝐷2

′(𝑡)𝑟 + 𝐷3
′(𝑡)𝜂)𝑓

𝑓𝑟 = 𝐷2(𝑡)𝑓,   𝑓𝜂 = 𝐷3(𝑡)𝑓 

𝑓𝑟𝑟 = 𝐷2
2(𝑡)𝑓,   𝑓𝜂𝜂 = 𝐷3

2(𝑡)𝑓

}                                                                                                                   (24) 

Hence substituting for 𝑓𝑡 , 𝑓𝑟 , 𝑓𝜂 , 𝑓𝑟𝑟  and 𝑓𝜂𝜂 in (22) gives: 

[𝐷1
′(𝑡) + 𝑎𝐷2(𝑡) + 𝛼𝛿𝐷3(𝑡)]𝑓 + 𝑟𝑓 [𝐷2

′(𝑡) + (𝛽 −
𝛽𝜆𝑟

2𝑘1
2

2𝜎𝑟
2(𝛽 − 1)

) + (
1

2
𝜎𝑟
2 −

𝛽𝜎𝑟
2

2(𝛽 − 1)
)𝐷2

2(𝑡) 

+(
𝛽𝜆𝑟𝑘1
𝛽 − 1

− 𝑏)𝐷2(𝑡)] + 𝜂𝑓 [𝐷3
′(𝑡) − (

𝛽𝜐2

2(𝛽 − 1)
) + (

1

2
𝜎𝜂
2 −

𝛽𝜌2𝜎𝜂
2

2(𝛽 − 1)
)𝐷3

2(𝑡) 

−(𝛼 +
𝛽𝜌𝜎𝜂𝜐

𝛽 − 1
)𝐷3(𝑡)] = 0                                                                                                                                    (25) 

Eliminating the dependency on  𝑟 and 𝜂, we decompose (25) into: 

𝐷1
′(𝑡) + 𝑎𝐷2(𝑡) + 𝛼𝛿𝐷3(𝑡) = 0                                                                                                                             (26) 

𝐷2
′(𝑡) + (

1

2
𝜎𝑟
2 −

𝛽𝜎𝑟
2

2(𝛽 − 1)
)𝐷2

2(𝑡) + (
𝛽𝜆𝑟𝑘1
𝛽 − 1

− 𝑏)𝐷2(𝑡) + (𝛽 −
𝛽𝜆𝑟

2𝑘1
2

2𝜎𝑟
2(𝛽 − 1)

) = 0                              (27) 

𝐷3
′(𝑡) + (

1

2
𝜎𝜂
2 −

𝛽𝜌2𝜎𝜂
2

2(𝛽 − 1)
)𝐷3

2(𝑡) − (𝛼 +
𝛽𝜌𝜎𝜂𝜐

𝛽 − 1
)𝐷3(𝑡) − (

𝛽𝜐2

2(𝛽 − 1)
) = 0                                         (28) 

Observe that (27) and (28) are the general Ricotta equations. 

Now, we turn to solving the above three equations. From (26), we have 

𝐷1
′(𝑡) = −𝑎𝐷2(𝑡) − 𝛼𝛿𝐷3(𝑡) 

𝐷1(𝑡) = −(𝑎∫ 𝐷2(𝑡)
𝑇

𝑡

𝑑𝑡 + 𝛼𝛿 ∫ 𝐷3(𝑡)
𝑇

𝑡

𝑑𝑡)                                                                                                   (29) 

From (27), we have that    

𝑑𝐷2(𝑡)

𝑑𝑡
= (

𝛽𝜎𝑟
2

2(𝛽 − 1)
−
1

2
𝜎𝑟
2)𝐷2

2(𝑡) + (𝑏 −
𝛽𝜆𝑟𝑘1
𝛽 − 1

)𝐷2(𝑡) + (
𝛽𝜆𝑟

2𝑘1
2

2𝜎𝑟
2(𝛽 − 1)

− 𝛽)                                  (30) 

Observe that the RHS of (30) is a quadratic function. Therefore, 

𝑀1,2 =
−𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴
 

where  

𝐴 = (
𝛽𝜎𝑟

2

2(𝛽 − 1)
−
1

2
𝜎𝑟
2) , 𝐵 = (𝑏 −

𝛽𝜆𝑟𝑘1
𝛽 − 1

) , 𝐶 = (
𝛽𝜆𝑟

2𝑘1
2

2𝜎𝑟
2(𝛽 − 1)

− 𝛽) 

The discriminant = 𝐵2 − 4𝐴𝐶 = 𝑏2 +
𝛽(2𝑏𝜆𝑟𝑘1 − 2𝜎𝑟

2 − 𝜆𝑟
2𝑘1

2)

1 − 𝛽
 since 𝛽 < 1 

Let Δ0 = 𝑏
2 +

𝛽(2𝑏𝜆𝑟𝑘1 − 2𝜎𝑟
2 − 𝜆𝑟

2𝑘1
2)

1 − 𝛽
, then  

𝑀1,2 =
−𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴
=
(𝑏 +

𝛽𝜆𝑟𝑘1
1 − 𝛽

) ± √Δ0

(
𝜎𝑟
2

1 − 𝛽
)

,               𝛽 < 1  

Equation (27) has different solutions depending on whether Δ0 > 0, Δ0 = 0 and Δ0 < 0. Now, let Δ0 > 0 then the quadratic 

function has two different roots denoted by 𝑀1 and 𝑀1 respectively such that 

𝑑𝐷2(𝑡)

𝑑𝑡
= 𝐴[(𝐷2(𝑡) − 𝑀1)(𝐷2(𝑡) − 𝑀2)]                                                                                                            (31) 

Therefore, equation (31) becomes  

1

𝑀1 −𝑀2
(

1

𝐷2(𝑡) − 𝑀1
−

1

𝐷2(𝑡) − 𝑀2
)𝑑𝐷2(𝑡) = 𝐴𝑑𝑡                                                                                      (33) 

The integral of (33) with respect to 𝑡, from 𝑡 to 𝑇 is: 

1

𝑀1 −𝑀2
∫ (

𝑑𝐷2(𝑠)

𝐷2(𝑠) − 𝑀1
−

𝑑𝐷2(𝑠)

𝐷2(𝑠) − 𝑀2
)

𝑇

𝑡

= 𝐴∫ 𝑑𝑠
𝑇

𝑡

 

𝐷2(𝑡) =
𝑀1𝑀2 −𝑀1𝑀2𝑒

𝐴(𝑀1−𝑀2)(𝑇−𝑡)

𝑀1 −𝑀2𝑒
𝐴(𝑀1−𝑀2)(𝑇−𝑡)

 

Note that 
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𝐴 = (
𝛽𝜎𝑟

2

2(𝛽 − 1)
−
1

2
𝜎𝑟
2) = −(

𝛽𝜎𝑟
2

2(1 − 𝛽)
+
1

2
𝜎𝑟
2)  for 𝛽 < 1 

Therefore,  

𝐷2(𝑡) =
𝑀1𝑀2 −𝑀1𝑀2𝑒

−(
1
2
𝜎𝑟
2+

𝛽𝜎𝑟
2

2(1−𝛽)
)(𝑀1−𝑀2)(𝑇−𝑡)

𝑀1 −𝑀2𝑒
−(
1
2
𝜎𝑟
2+

𝛽𝜎𝑟
2

2(1−𝛽)
)(𝑀1−𝑀2)(𝑇−𝑡)

                                                                                        (34) 

Next we solve for 𝐷3(𝑡) in (28) 

𝐷3
′(𝑡) = (

𝛽𝜌2𝜎𝜂
2

2(𝛽 − 1)
−
1

2
𝜎𝜂
2)𝐷3

2(𝑡) + (𝛼 +
𝛽𝜌𝜎𝜂𝜐

𝛽 − 1
)𝐷3(𝑡)   + (

𝛽𝜐2

2(𝛽 − 1)
)                                              (35) 

Now, 

𝑀3,4 =
−𝐵1 ± √𝐵1

2 − 4𝐴1𝐶1
2𝐴1

 

From (35), we have 

𝐴1 = (
𝛽𝜌2𝜎𝜂

2

2(𝛽 − 1)
−
1

2
𝜎𝜂
2) , 𝐵1 = (𝛼 +

𝛽𝜌𝜎𝜂𝜐

𝛽 − 1
) , 𝐶1 = (

𝛽𝜐2

2(𝛽 − 1)
) 

the discriminant = 𝐵1
2 − 4𝐴1𝐶1 = 𝛼2 −

2𝛽𝜌𝜎𝜂𝜐𝛼

1 − 𝛽
−
𝛽𝜐2𝜎𝜂

2

1 − 𝛽
,        𝛽 < 1 

Again, let ∆1= 𝛼
2 −

2𝛽𝜌𝜎𝜂𝜐𝛼

1 − 𝛽
−
𝛽𝜐2𝜎𝜂

2

1 − 𝛽
 

Then,       

𝑀3,4 =
(𝛼 −

𝛽𝜌𝜎𝜂𝜐

1 − 𝛽
) ± √∆1

(𝜎𝜂
2 +

𝛽𝜌2𝜎𝜂
2

1 − 𝛽
)

,         𝛽 < 1 

Equation (28) has different solution depending on whether ∆1> 0, ∆1= 0 and ∆1< 0. Let ∆1> 0, then the quadratic function has 

two distinct roots denoted by 𝑀3 and 𝑀4 respectively such that 

𝑑𝐷3(𝑡)

𝑑𝑡
= 𝐴1[(𝐷3(𝑡) − 𝑀3)(𝐷3(𝑡) − 𝑀4)]                                                                                                         (36) 

From (36), we have 

1

𝑀3 −𝑀4
(

1

𝐷3(𝑡) − 𝑀3
−

1

𝐷3(𝑡) − 𝑀4
)𝑑𝐷3(𝑡) = 𝐴1𝑑𝑡                                                                                   (37) 

The integral of (37) from 𝑡 to 𝑇 with respect to 𝑡 is: 

1

𝑀3 −𝑀4
∫ (

1

𝐷3(𝑠) −𝑀3
−

1

𝐷3(𝑠) −𝑀4
)

𝑇

𝑡

𝑑𝐷3(𝑠) = 𝐴1∫ 𝑑𝑠
𝑇

𝑡

 

𝐷3(𝑡) =
𝑀3𝑀4 −𝑀3𝑀4𝑒

𝐴1(𝑀3−𝑀4)(𝑇−𝑡)

𝑀3 −𝑀4𝑒
𝐴1(𝑀3−𝑀4)(𝑇−𝑡)

 

Observe that  

𝐴1 = (
𝛽𝜌2𝜎𝜂

2

2(𝛽 − 1)
−
1

2
𝜎𝜂
2) = −(

𝛽𝜌2𝜎𝜂
2

2(1 − 𝛽)
+
1

2
𝜎𝜂
2) ,   𝛽 < 1 

Therefore,  

𝐷3(𝑡) =
𝑀3𝑀4 −𝑀3𝑀4𝑒

−(
1
2
𝜎𝜂
2+

𝛽𝜌2𝜎𝜂
2

2(1−𝛽)
)(𝑀3−𝑀4)(𝑇−𝑡)

𝑀3 −𝑀4𝑒
−(
1
2
𝜎𝜂
2+

𝛽𝜌2𝜎𝜂
2

2(1−𝛽)
)(𝑀3−𝑀4)(𝑇−𝑡)

                                                                                       (38) 

Theorem 1 

From equations (16), (17), (21) and (24), the optimal proportion of capital invested in security, loan and treasury under stochastic 

interest rates and stochastic volatility framework, and for the case of CRRA utility function is given by: 

𝜋𝑠𝑝
∗ (𝑡) =

𝜈

1 − 𝛽
+
𝜌𝜎𝜂𝐷3(𝑡)

1 − 𝛽
 

𝜋𝑙𝑝
∗ (𝑡) =

(𝜆𝑟𝑘1 − 𝜐𝜎𝑠𝜎𝑟
2)

𝑏1𝜎𝑟
2(1 − 𝛽)

−
𝐷2(𝑡)

𝑏1(1 − 𝛽)
−
𝜌𝜎𝑠𝜎𝜂𝐷3(𝑡)

𝑏1(1 − 𝛽)
 

𝜋0𝑝
∗ (𝑡) = 1 − 𝜋𝑠𝑝

∗ (𝑡) − 𝜋𝑙𝑝
∗ (𝑡) 



OPTIMAL INVESTMENT… Danjuma, Chinwenyi and Tyokyaa FJS 

FUDMA Journal of Sciences (FJS) Vol. 4 No. 1, March, 2020, pp 528  - 538 
534 

              = 1 +
𝜐𝜎𝑠𝜎𝑟

2 − 𝜐𝑏1𝜎𝑟
2 − 𝜆𝑟𝑘1

𝑏1𝜎𝑟
2(1 − 𝛽)

+
1

𝑏1(1 − 𝛽)
𝐷2(𝑡) +

𝜌𝜎𝜂(𝜎𝑠 − 𝑏1)

𝑏1(1 − 𝛽)
𝐷3(𝑡) 

The Dynamics of Total Risk – Weighted Assets (TRWA) and Basel II CAR 

The dynamics of the total risk – weighted assets at time 𝑡, can be described by the stochastic differential equation: 

𝑑𝑌𝑟𝑤(𝑡) = 0 × (𝑋(𝑡) − 𝜋𝑠(𝑡) − 𝜋𝑙(𝑡))
𝑑𝑆0(𝑡)

𝑆0(𝑡)
+ 0.2 × 𝜋𝑠(𝑡)

𝑑𝑆(𝑡)

𝑆(𝑡)
+ 0.5 × 𝜋𝑙(𝑡)

𝑑𝐿(𝑡)

𝐿(𝑡)
 

where, 0, 0.2 and 0.5 are the risk weights associated with the treasury, security and loan under Basel III Accord respectively. 

Therefore, 

𝑑𝑌𝑟𝑤(𝑡) = 0.2 × 𝜋𝑠(𝑡)
𝑑𝑆(𝑡)

𝑆(𝑡)
+ 0.5 × 𝜋𝑙(𝑡)

𝑑𝐿(𝑡)

𝐿(𝑡)
 

𝑑𝑌𝑟𝑤(𝑡) = 0.2𝜋𝑠(𝑡)[(𝑟(𝑡) + 𝜐𝜂(𝑡) + 𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡))𝑑𝑡 + 𝜎𝑠𝜎𝑟√𝑟(𝑡)𝑑𝑤𝑟(𝑡) + √𝜂(𝑡)𝑑𝑤𝑠(𝑡)] 

                  +0.5𝜋𝑙(𝑡)[(𝑟(𝑡) + 𝑏1𝜆𝑟𝑘1𝑟(𝑡))𝑑𝑡 + 𝑏1𝜎𝑟√𝑟(𝑡)𝑑𝑤𝑟(𝑡)]   

                 = {0.2𝜋𝑠(𝑡)(𝑟(𝑡) + 𝜐𝜂(𝑡) + 𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡)) + 0.5𝜋𝑙(𝑡)(𝑟(𝑡) + 𝑏1𝜆𝑟𝑘1𝑟(𝑡))}𝑑𝑡 

                     +0.2𝜋𝑠(𝑡)√𝜂(𝑡)𝑑𝑤𝑠(𝑡) + [0.2𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡) + 0.5𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)] 𝑑𝑤𝑟(𝑡)                (39) 

The capital adequacy ratio dynamics can be described as: 

CAR =
𝐾(𝑡)

𝑌𝑟𝑤(𝑡)
                                                                                                                                                             (40) 

where, 𝐾(𝑡) is the total capital and 𝑌𝑟𝑤(𝑡) is the total risk – weighted assets of the financial institution respectively. Let 𝐶𝐴𝑅 =

𝑍(𝑡), then from (40) 

𝑍(𝑡) =
𝐾(𝑡)

𝑌𝑟𝑤(𝑡)
                                                                                                                                                            (41) 

 

 

Proposition 1 (SDE for Basel II CAR) 

Let the dynamics of the total capital of the financial institution be 𝑑𝐾(𝑡) = 𝑘(𝑡)𝑑𝑡 and the total risk – weighted assets 𝑌𝑟𝑤(𝑡) be 

described by (39). The dynamics of the Basel III capital adequacy ratio 𝑍(𝑡) satisfies the following stochastic differential equation: 

𝑑𝑍(𝑡) =  𝑓(𝑌𝑟𝑤(𝑡))𝑑𝐾(𝑡) + 𝐾(𝑡)𝑑𝑓(𝑌𝑟𝑤(𝑡)) 

            =
𝑘(𝑡)𝑑𝑡

𝑌𝑟𝑤(𝑡)
+ {

𝐾(𝑡)

𝑌𝑟𝑤
3 (𝑡)

([0.2𝜋𝑠(𝑡)√𝜂(𝑡)]
2
+ 

              [0.2𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡) + 0.5𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)]
2
) −[0.2𝜋𝑠(𝑡)(𝑟(𝑡) + 𝜐𝜂(𝑡) + 𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡)) 

             +0.5𝜋𝑙(𝑡)(𝑟(𝑡) + 𝑏1𝜆𝑟𝑘1𝑟(𝑡))]
𝐾(𝑡)

𝑌𝑟𝑤
2 (𝑡)

} 𝑑𝑡 − [
𝐾(𝑡)

𝑌𝑟𝑤
2 (𝑡)

0.2𝜋𝑠(𝑡)√𝜂(𝑡)] 𝑑𝑤𝑠(𝑡) 

             − [
𝐾(𝑡)

𝑌𝑟𝑤
2 (𝑡)

(0.2𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡) + 0.5𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡))]𝑑𝑤𝑟(𝑡)                                                   (42) 

Proof: 

Let 𝑓(𝑌𝑟𝑤(𝑡)) =
1

𝑌𝑟𝑤(𝑡)
,   𝑑𝐾(𝑡) = 𝑘(𝑡)𝑑𝑡, then 

𝑍(𝑡) = 𝐾(𝑡)𝑓(𝑌𝑟𝑤(𝑡)) 

𝑑𝑍(𝑡) = 𝑑[𝐾(𝑡)𝑓(𝑌𝑟𝑤(𝑡))]                                                                                                                                     (43) 

Applying Ito product rule to the RHS (right hand side) of (43) yields  

𝑑𝑍(𝑡) =  𝑓(𝑌𝑟𝑤(𝑡))𝑑𝐾(𝑡) + 𝐾(𝑡)𝑑𝑓(𝑌𝑟𝑤(𝑡))                                                                                                   (44) 

From Ito Lemma, 

𝑑𝑓(𝑌𝑟𝑤(𝑡)) = 𝑓
′(𝑡)𝑑𝑡 + 𝑓′(𝑌𝑟𝑤(𝑡))𝑑𝑌𝑟𝑤(𝑡) +

1

2
𝑓′′(𝑌𝑟𝑤(𝑡))[𝑑𝑌𝑟𝑤(𝑡)]

2 

                      = 0. 𝑑𝑡 + (−
1

𝑌𝑟𝑤
2 (𝑡)

) × 𝑑𝑌𝑟𝑤(𝑡) +
1

2
(2 ×

1

𝑌𝑟𝑤
3 (𝑡)

) [𝑑𝑌𝑟𝑤(𝑡)]
2 

                      = −
𝑑𝑌𝑟𝑤(𝑡)

𝑌𝑟𝑤
2 (𝑡)

+
[𝑑𝑌𝑟𝑤(𝑡)]

2

𝑌𝑟𝑤
3 (𝑡)

                                                                                                               (45) 

From (39), we have 

[𝑑𝑌𝑟𝑤(𝑡)]
2 = [0.2𝜋𝑠(𝑡)√𝜂(𝑡)]

2
𝑑𝑡 + [0.2𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡) + 0.5𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)]

2
𝑑𝑡 
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Hence,  

𝑑𝑓(𝑌𝑟𝑤(𝑡)) = −
𝑑𝑌𝑟𝑤(𝑡)

𝑌𝑟𝑤
2 (𝑡)

+
[𝑑𝑌𝑟𝑤(𝑡)]

2

𝑌𝑟𝑤
3 (𝑡)

 

                      = {
1

𝑌𝑟𝑤
3 (𝑡)

([0.2𝜋𝑠(𝑡)√𝜂(𝑡)]
2
+ [0.2𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡) + 0.5𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)]

2
)  

    −[0.2𝜋𝑠(𝑡)(𝑟(𝑡) + 𝜐𝜂(𝑡) + 𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡))  +0.5𝜋𝑙(𝑡)(𝑟(𝑡) + 𝑏1𝜆𝑟𝑘1𝑟(𝑡))]
1

𝑌𝑟𝑤
2 (𝑡)

} 𝑑𝑡 

          −
1

𝑌𝑟𝑤
2 (𝑡)

{0.2𝜋𝑠(𝑡)√𝜂(𝑡)𝑑𝑤𝑠(𝑡) + [0.2𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡) + 0.5𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)] 𝑑𝑤𝑟(𝑡)} 

Now, returning back to (44) we have 

𝑑𝑍(𝑡) =  𝑓(𝑌𝑟𝑤(𝑡))𝑑𝐾(𝑡) + 𝐾(𝑡)𝑑𝑓(𝑌𝑟𝑤(𝑡)) 

             =
𝑘(𝑡)𝑑𝑡

𝑌𝑟𝑤(𝑡)
+ {

𝐾(𝑡)

𝑌𝑟𝑤
3 (𝑡)

([0.2𝜋𝑠(𝑡)√𝜂(𝑡)]
2
+ [0.2𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡) + 0.5𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)]

2
)  

                −[0.2𝜋𝑠(𝑡)(𝑟(𝑡) + 𝜐𝜂(𝑡) + 𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡))+0.5𝜋𝑙(𝑡)(𝑟(𝑡) + 𝑏1𝜆𝑟𝑘1𝑟(𝑡))]
𝐾(𝑡)

𝑌𝑟𝑤
2 (𝑡)

} 𝑑𝑡 

               − [
𝐾(𝑡)

𝑌𝑟𝑤
2 (𝑡)

0.2𝜋𝑠(𝑡)√𝜂(𝑡)] 𝑑𝑤𝑠(𝑡) 

              − [
𝐾(𝑡)

𝑌𝑟𝑤
2 (𝑡)

(0.2𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡) + 0.5𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡))] 𝑑𝑤𝑟(𝑡)                                                     (46) 

Proposition 2 (SDE for the Capital Required to Maintain Total Capital Ratio at 𝟖% 𝐚𝐧𝐝 𝟏𝟓%) 

Given that the capital adequacy ratio is: 

CAR = 𝑍(𝑡) =
𝐾(𝑡)

𝑌𝑟𝑤(𝑡)
, then the dynamics of the capital required to maintain  

the total capital ratio at 8% and 15% are:  

𝑑𝐾1(𝑡)   = {0.016𝜋𝑠(𝑡)(𝑟(𝑡) + 𝜐𝜂(𝑡) + 𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡)) + 0.04𝜋𝑙(𝑡)(𝑟(𝑡) + 𝑏1𝜆𝑟𝑘1𝑟(𝑡))}𝑑𝑡 

                    +0.016𝜋𝑠(𝑡)√𝜂(𝑡)𝑑𝑤𝑠(𝑡) + [0.016𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡) + 0.04𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)] 𝑑𝑤𝑟(𝑡)      (47)   

and  

𝑑𝐾2(𝑡)   = {0.03𝜋𝑠(𝑡)(𝑟(𝑡) + 𝜐𝜂(𝑡) + 𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡)) + 0.075𝜋𝑙(𝑡)(𝑟(𝑡) + 𝑏1𝜆𝑟𝑘1𝑟(𝑡))}𝑑𝑡 

                     +0.03𝜋𝑠(𝑡)√𝜂(𝑡)𝑑𝑤𝑠(𝑡) +[0.03𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡) + 0.075𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)] 𝑑𝑤𝑟(𝑡)       (48)  

respectively. 

Proof: 

For 8% total capital ratio 

𝐾1(𝑡)

𝑌𝑟𝑤(𝑡)
= 0.08, this implies that 𝐾1(𝑡) = 0.08𝑌𝑟𝑤(𝑡)  

Therefore, the dynamics of the capital required to maintain total capital ratio at 8% is: 

𝑑𝐾1(𝑡) = 0.08𝑑𝑌𝑟𝑤(𝑡) 

              = 0.08(0.2𝜋𝑠(𝑡)[(𝑟(𝑡) + 𝜐𝜂(𝑡) + 𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡))𝑑𝑡 + 𝜎𝑠𝜎𝑟√𝑟(𝑡)𝑑𝑤𝑟(𝑡) 

                +√𝜂(𝑡)𝑑𝑤𝑠(𝑡)] + 0.5𝜋𝑙(𝑡)[(𝑟(𝑡) + 𝑏1𝜆𝑟𝑘1𝑟(𝑡))𝑑𝑡 + 𝑏1𝜎𝑟√𝑟(𝑡)𝑑𝑤𝑟(𝑡)])   

             = 0.08{[0.2𝜋𝑠(𝑡)(𝑟(𝑡) + 𝜐𝜂(𝑡) + 𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡)) + 0.5𝜋𝑙(𝑡)(𝑟(𝑡) + 𝑏1𝜆𝑟𝑘1𝑟(𝑡))]𝑑𝑡 

                +0.2𝜋𝑠(𝑡)√𝜂(𝑡)𝑑𝑤𝑠(𝑡) + [0.2𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡) + 0.5𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)] 𝑑𝑤𝑟(𝑡)}     

            = {0.016𝜋𝑠(𝑡)(𝑟(𝑡) + 𝜐𝜂(𝑡) + 𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡)) + 0.04𝜋𝑙(𝑡)(𝑟(𝑡) + 𝑏1𝜆𝑟𝑘1𝑟(𝑡))}𝑑𝑡 

                +0.016𝜋𝑠(𝑡)√𝜂(𝑡)𝑑𝑤𝑠(𝑡) + [0.016𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡) + 0.04𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)] 𝑑𝑤𝑟(𝑡)          (49)  

Similarly, the dynamics of the capital required to maintain total capital ratio at 15% is: 

𝑑𝐾2(𝑡) = 0.15𝑑𝑌𝑟𝑤(𝑡) 

𝑑𝐾2(𝑡)   = {0.03𝜋𝑠(𝑡)(𝑟(𝑡) + 𝜐𝜂(𝑡) + 𝜎𝑠𝜆𝑟𝑘1𝑟(𝑡)) + 0.075𝜋𝑙(𝑡)(𝑟(𝑡) + 𝑏1𝜆𝑟𝑘1𝑟(𝑡))}𝑑𝑡 

                    +0.03𝜋𝑠(𝑡)√𝜂(𝑡)𝑑𝑤𝑠(𝑡) + [0.03𝜋𝑠(𝑡)𝜎𝑠𝜎𝑟√𝑟(𝑡) + 0.075𝜋𝑙(𝑡)𝑏1𝜎𝑟√𝑟(𝑡)] 𝑑𝑤𝑟(𝑡)         (50)  

Numerical Examples 

Here, we present the numerical simulation for the evolution of the optimal investment strategy, Total risk weighted – assets, Basel 

II CAR and, capital required to maintain CAR at 8% and 15%. We assume that the investment period 𝑇 = 10 years, 𝑘 = 0. The 

remaining parameters: 𝑎 = 0.0187, 𝑏 = 0.2339, 𝑟0 = 0.05, 𝜂0 = 1, 𝛽 = −2, 𝜆𝑟 = 1, 𝑘1 = 0.0073, 𝜎𝑟 = 0.0854,𝛼 = 2, 𝛿 =
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0.3, 𝜌 = 0.5, 𝜎𝜂 = 1, 𝜐 = 1.5, 𝑏1 = 0.7, 𝜎𝑠 = 0.02,𝐾(0) = 1, 𝑌𝑟𝑤(0) = 1.4, 𝑍1(0) = 0.08, 𝑍2(0) = 0.15 are gotten from 

(Deelstra et al, 2003, Hui et al, 2013, Grant and Peter, 2014 and Ugo, 2014) . Graphs plotted from the numerical examples are 

given below: 

Fig.1 The effect of time on the optimal investment strategy Fig.2 The total risk – weighted assets, 𝑌𝑟𝑤(𝑡)

 
Fig.3 The capital, 𝐾(𝑡), required to maintain the   capital 

adequacy ratio at 8% and 15% 

 
Fig. 4 The behavior of the capital adequacy ratio at 8% and 

15% 

 

Figure 1 illustrates the trends of how the optimal proportion of 

the wealth invested in the three assets change with time. From 

Figure 1, there is a positive relationship between optimal 

investment in the treasury and time. That is, as time increases so 

also the optimal investment in the treasury. However, the 

optimal proportion invested in the security almost remains 

unchanged and the optimal proportion invested loan decreases. 

It also shows that the optimal proportion invested in the treasury 

is negative at the beginning of the investment horizon which 

indicates that the investor takes a short position within this 

period but toward the end of the investment period, the investor 

invests more in the treasury to reach the optimal investment 

strategy. Hence, the optimal investment strategy is to diversify 

the financial institution portfolio away from the risky assets and 

towards the riskless asset. 

Figure 2 illustrates how the evolution of the risk weighted – 

asset is affected by the stochastic variables characterizing the 

economy. By Basel II standard and Nigeria CBN, the financial 

institution is considered to be strongly capitalized and 

guaranteed the ability to absorb unexpected losses as shown in 

Figure 4. Therefore, as shown in Figure 4, the higher the CAR 

the more resilient the financial institution but this also has its 
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down side as shown in figure 3. From Figure 3, we observed that 

more capital is needed to maintain the capital adequacy ratio at 

15% than 8%. Therefore, the higher the percentage of the capital 

adequacy ratio, the more capital needed to maintain the 

prescribed capital adequacy ratio by the financial institution. 

This would tie up capital needed for investment by the investor. 

Therefore, prescribed capital adequacy ratio should be kept in a 

range such that the financial institution is well capitalized and 

guarantee that the financial institution can absorb reasonable 

unexpected losses, and also relieve fund for investor for 

investment which is important to the shareholders and the 

economy. 

 

CONCLUSION  

In this paper, we considered portfolio optimization problem of 

a financial institution where the interest rate is driven by 

stochastic affine interest rate model and the volatility of the 

security is described by the Heston stochastic volatility model. 

Therefore, the investor has to deal with the risk of both interest 

rate and volatility. Here, the investor objective is to maximize 

the terminal wealth. Under the portfolio optimization problem, 

the financial market consists of three assets namely; security, 

loan and treasury. We derived the optimal investment strategy 

for the case of CRRA utility function, obtained the explicit 

solution of the resulted Hamilton – Jacobi – Bellman equation 

for the optimal asset allocation problem. We also derived an 

explicit stochastic differential equation (SDE) for the capital 

adequacy ratio (CAR) which is the ratio of the financial 

institution total capital to the total risk – weighted assets under 

Basel II Accord, SDE for TRWA, and SDE for the capital 

needed to maintain the capital adequacy ratio at 8% and 15% 

and solved the SDEs numerically using Euler – Maruyama 

method. Analyze the behavior of the optimal portfolio and CAR 

via some numerical examples with interpretation of its 

economic meanings in the real market. 

 

REFERENCES  

Basel Committee on Banking Supervision (2004). International 

Convergence of Capital Measurements and Capital Standard: A 

revised Framework. Bank for International Settlements. 

www.bis.org/bcbs   

Debajyoti, G. R., Bindya, K. and Swati, K. (2013). Basel I to 

Basel II to Basel III: A risk management journey in Indians 

Banks. AIMA Journal of Management and Research. 7(2/4): 

474 – 497.  

Dangl, J. P. and Lehar, B. (2004). Value at risk vs. building 

block regulation in banking. Journal of Financial 

Intermediation. 13: 132 – 155.  

Decamps, J. P., Rochet, J. C. and Roger, B. (2004). The three 

pillars of Basel II: Optimizing the mix. Journal of Financial 

Intermediation. 13: 96 – 131. 

Deelstra, G., Grasselli, M. and Koehl, P. F. (2003). Optimal 

investment strategies in the presence of a minimum guarantee. 

Insurance: Mathematics and Economics. 33: 189 – 207.  

Diamond, D.W. and Rajan, R.G. (2000). A theory of bank 

capital. The Journal of Finance. 55(6): 2431 – 2465. 

Fouche, C. H., Mukuddem – Petersen, J. and Petersen, M. A. 

(2006). Continuous – time stochastic modeling of capital 

adequacy ratio for banks. Applied Stochastic Model in Business 

and Industry. 22(1): 41 – 71.     

Grant, E. M. and Peter, J. W. (2014). An optimal portfolio and 

capital management strategy for Basel III Compliant 

Commercial Banks. Journal of Applied Mathematics. Vol. 

2014, Article ID 723873, 11 pages. 

Hui, Z., Ximm, R. and Yonggan, Z. (2013). Optimal excess – of 

– loss reinsurance and investment problem for an insurer with 

jump – diffusion risk process under Heston model. Insurance: 

Mathematics and Economics. 53: 504 – 514.                 

Investopedia (2019). Basel Accord. Available at 

http://www.investopedia.com/items/b/basel_accord.asp 

(Accessed 27 November 2019).  

 Mukuddem – Petersen, J. and Petersen, M. A. (2008). 

Optimizing asset and capital adequacy management in banking. 

Journal of Optimization Theory and Applications. 137(1): 205 

– 230. 

Munk, C., Sorensen, C. and Vinther, T. N. (2004). Dynamic 

asset allocation under mean – reverting returns, stochastic 

interest rates and inflation uncertainty. Are popular 

recommendations consisted with rational behavior? 

International Review of Economics and Finance. 13: 141 – 166. 

Merton, R. C. (1969). Lifetime portfolio selection under 

uncertainty: The continuous case. Review of Economics and 

Statistics. 51: 247 – 257. 

Merton, R. C. (1971). Optimal consumption and portfolio rules 

in a continuous time model. Journal of Economics Theory. 3: 

373 – 413. 

Peter, J. W., Garth, J. V. S. and Grant, E. M. (2011). An optimal 

investment strategy in bank management. Mathematical 

Methods in the Applied Sciences. 34: 1606 - 1617. 

http://www.bis.org/bcbs
http://www.investopedia.com/items/b/basel_accord.asp


OPTIMAL INVESTMENT… Danjuma, Chinwenyi and Tyokyaa FJS 

FUDMA Journal of Sciences (FJS) Vol. 4 No. 1, March, 2020, pp 528  - 538 
538 

Von Thadden, E. L. (2004). Bank capital adequacy regulation 

under the new Basel accord. Journal of Financial 

Intermediation. 13(2): 90 – 95. 

Ugo Obi – Chukwu (2014). Meaning of Capital Adequacy Ratio 

as Defined by Central Bank of Nigeria. www.nairametrics.com 

Wachter, J. A. (2002). Portfolio and consumption decisions 

under mean – reverting returns: An exact solution for complete 

markets. Journal of  Financial and Quantitative Analysis. 37(1): 

63 – 91. 

 

http://www.nairametrics.com/

