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ABSTRACT 

In this paper, we study the concept of chains soft sets and set-valued function of chains soft sets. The 

definitions of chains soft sets or linear order or total order soft set are given. The notions of binary relation 

of comparability of the elements of set-valued functions are also discussed. Linearization’s of a partial order 

soft set are also defined. The definition and some algebraic structure of soft semilattice are also given. 
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Chains Soft Sets 

The set value functions 𝐹(𝑥) and 𝐺(𝑦)  are comparable in a 

preorder when either 𝐹(𝑥) ≤ 𝐺(𝑦) or 𝐹(𝑦) ≤ 𝐹(𝑥), and 

otherwise are incomparable. The binary relation of 

comparability may be seen to be reflexive and symmetric but 

not in general transitive. 

Definition 2.1:  

A chain soft sets or linear order or total order soft set 

symbolically denoted as 𝐹(𝑥) ≤ 𝐺(𝑦) or 𝐹(𝑦) ≤ 𝐹(𝑥), is a 

partial order soft set in which all pairs of elements that is the 

set-valued functions are comparable. 

Definition 2.2: 

A pre-order soft set (𝐹, 𝐴) of a pre-order (𝑌, ≤′) augments a 

pre-order soft set (𝐺, 𝐵) of pre-order (𝑋, ≤) when 𝑌 = 𝑋 and 

𝐹(𝑥) ≤ 𝐺(𝑦) implies  𝐹(𝑥) ≤′ 𝐺(𝑦). Hence a chain soft set 

(𝐹, 𝐴) can be described as a partial order soft set with no proper 

augment that is a partial order soft set. (But a chain soft set can 

always be augmented to a clique.) 

Definition 2.3: 

A linearization of a partial order soft set (𝐹, 𝐴) is a chain soft 

set augmenting (𝐹, 𝐴) i.e., a maximal antisymmentric augment 

of (𝐹, 𝐴) . 

Theorem 2.1: 

Every partial order soft set (𝐹, 𝐴) over partial order (𝑋, ≤) in 

which 𝐹(𝑥) and 𝐹(𝑦) are incomparable has an augment in 

which they are comparable. 

Proof:  

Form ≤′ by adding to ≤ all pairs (𝐹(𝑥′), (𝑦′) ) for which 

𝐹(𝑥′) ≤ 𝐹(𝑥) and  𝐹(𝑦) ≤ 𝐹(𝑦′). The result contains 

(𝐹(𝑥), 𝐹(𝑦)) since 𝐹(𝑥) ≤ 𝐹(𝑥) and 𝐹(𝑦) ≤ 𝐹(𝑦). It remains 

reflexive since nothing is removed. It is transitive because for 

any triple 𝐹(𝑥′) ≤ 𝐹(𝑦′) ≤ 𝐹(𝑧) where 𝐹(𝑥′) ≤ 𝐹(𝑦′) is one 

of the added pairs, we have 𝐹(𝑦) ≤ 𝐹(𝑦′) ≤ 𝐹(𝑧), whence 

(𝐹(𝑥′), 𝐹(𝑧) ) will also have been added, and similarly for 

𝐹(𝑧) ≤ 𝐹(𝑥′) ≤′ 𝐹(𝑦′). It is antisymmentric because if 

𝐹(𝑥′) ≤′ 𝐹(𝑦′) ≤′ 𝐹(𝑥′) then 𝐹(𝑦) ≤ 𝐹(𝑦′) ≤′ 𝐹(𝑥′) ≤

𝐹(𝑥) contradicting incomparability of 𝐹(𝑥) and 𝐹(𝑦). 

Hence it is a partial order soft set extending (𝑋, ≤) and 

containing (𝐹(𝑥), 𝐹(𝑦)). 

Lemma 2.1:  

Every soft lattice-theoretical term denoted by  𝜑 is equivalent 

to a normal term, with the equivalence holding in every 

distributive lattice and hence being an equation of the theory of 

distributing lattices. 

Proof: 

Given any soft lattice (𝐹, 𝐴) where 𝐹(𝑥),  𝐹(𝑦)  and 𝐹(𝑧) are 

set -value function of the soft lattice, then we begin by “pushing 

down the ′⋀′s.” Choose any subterm of 𝜑 of the form 

𝐹(𝑥)⋀( 𝐹(𝑦)⋁𝐹(𝑧)) such that 𝐹(𝑥) does not contain subterms 

of that form (otherwise we would choose the latter subterm ), 

and rewrite it as (𝐹(𝑥)⋀𝐹(𝑦))⋁(𝐹(𝑥)⋀𝐹(𝑧)). 

This transformation is justified by the distributivity law in the 

sense that, for any distributive soft lattice (𝐹, 𝐴) over a lattice 

L and any assignment of element of L to variables of 𝜑, the 

transformation leaves unchanged the value of every subterm. 

Now define an inversion of 𝜑 to be a pair consisting of an 

occurrence of a ⋀ above an occurrence of ⋁ in the parse tree of 

𝜑, not necessarily immediately above. A rewriting step of the 

above kind eliminates the inversion at the top of the rewritten 

subterm, and creates no new inversions. (Although 𝑥 is 

duplicated, it contains no inversion, and although the ⋀ is 

duplicated no inversion is associated with that ⋀ is duplicated.) 

Hence this transformation can be repeated only as many times 

as there were inversion in 𝜑 at the outset. The result of so 
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transforming 𝜑 exhaustively is a term of the form ψ(𝜇1, … , 𝜇𝑘) 

where the operations of ψ are all ⋁ and those of the 𝜇𝑖′𝑠 are all 

⋀. 

Duplicate variables within each meet may now be eliminated 

by associativity and commutativity laws to bring the duplicates 

together, and then eliminating them using idempotence of ⋀. 

The same technique permits duplicate meets to be eliminated. 

We now have a subset of 2⋁ which we must make as order filter. 

If there exists a meet 𝜇𝑖 and a variable 𝑝 of 𝜑 such that 𝜇𝑖⋀𝑝 ≠

𝜇𝑗  for any 𝑖 ≤ 𝑗, then expand the set of 𝜇′𝑠 by taking 𝜇𝑘+1 =

𝜇𝑖⋀𝑝. 

This step is justified by 𝐹(𝑥) = 𝐹(𝑥)⋁(𝐹(𝑥)⋀𝐹(𝑦)) with 

𝐹(𝑥) = 𝜇𝑖 and 𝐹(𝑦) = 𝑝, and we say that 𝜇𝑖  𝑠𝑢𝑏𝑠𝑢𝑚𝑒𝑠 𝜇𝑖⋀𝑝. 

Iterate until the set is closed under conjugation with variables 

of 𝜑. The result is now a normal term equivalent in every 

distributive soft lattice to the one we started with. 

Soft ordered sets 

A partial ordered set, or more briefly just ordered set, is a 

system ℘ = (𝑃, ≤) where 𝑃 is a nonempty set and ≤ is a binary 

relation on 𝑃 satisfying, for all 𝑥, 𝑦, 𝑧 ∈ 𝑃, 

(i) 𝑥 ≤ 𝑥                                                       (reflexivity) 

(iii) 𝑖𝑓𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧, then 𝑥 ≤ 𝑧              (transitivity) 

Throughout this section, ℘ is a partial ordered set and A is any 

nonempty set. R will refer to an arbitrary binary relation 

between elements of A and elements of ℘. i.e., 𝑅 ⊆ 𝐴 × ℘. A 

set- value function 𝐹: 𝐴 ⟶ 𝜙(℘) can be defined as 𝐹(𝑥) =

{𝑦 ∈ ℘/𝑥𝑅𝑦}. the pair (𝐹, 𝐴) is a soft set over ℘.  

Definition 3.1: 

Let (𝐹, 𝐴) be a soft set over ℘. Then (𝐹, 𝐴) is said to be a soft 

partial order set if 𝐹(𝑥) is a partial ordered subset of ℘ for all 

𝑥 ∈ 𝐴. 

The sets of all soft partial ordered set is given as ℌ𝑝(℘). 

 More generally, if (𝐹, 𝐴) is a soft ordered set and 𝐴 ⊆ 𝐵, then 

the restriction of ⊆ to 𝐴 is a soft partial order set, leading to a 

new soft ordered set (𝐺, 𝐵). 

The set ℝ of real numbers as a parameters, with its natural order 

is an example of a rather special type of soft partial ordered set, 

namely a totally soft ordered set, or soft chain. 

𝑆𝐶 is a soft chain if for every set-valued function 𝐹(𝑥), 𝐹(𝑦) ∈

𝑆𝐶, either 𝐹(𝑥) ⊆ 𝐹(𝑦) or 𝐹(𝑦) ⊆ 𝐹(𝑥) for 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥. 

At the opposite extreme we have soft antichains, soft ordered 

sets in which ⊆ concides with the equality relation =. 

We say that a set-valued function 𝐹(𝑥) covered by another set-

valued function 𝐹(𝑦) in ℘, written 𝐹(𝑥) ≺ 𝐹(𝑦), if 𝐹(𝑥) ⊆

𝐹(𝑦) for 𝑥 ≤ 𝑦 and there is no 𝑧 ∈ 𝐴 with 𝐹(𝑥) ⊂ 𝐹(𝑧) ⊂

𝐹(𝑦). It is clear that the covering relation determines the soft 

partial order in a finite ordered set ℘. In fact, the order ⊆ is the 

smallest reflexive, transitive relation containing ≺ . We can use 

this to define a Hasse diagram for a finite ordered set ℘; the 

elements of 𝐴 are represented by points in the plane, and a line 

is drawn from 𝑥 up to 𝑦 prescription is not precise, but it is close 

enough for government purposes. 

The natural maps associated with the category of soft ordered 

sets are the soft order preserving maps, those satisfying the 

condition 𝐹(𝑥) ⊆ 𝐹(𝑦) implies𝑓(𝐹(𝑥)) ⊆ 𝑓(𝐹(𝑦)). We say 

that (𝐹, 𝐴) is isomorphic to (𝐺, 𝐵), written (𝐹, 𝐴) ≅ (𝐺, 𝐵), if 

there is a map 𝑓: 𝐴 ⟶ 𝐵 which is one-to-one, onto, and 𝑓 and 

𝑓−1 are soft order preserving, i.e., 𝐹(𝑥) ⊆ 𝐹(𝑦)  iff 𝑓(𝐹(𝑥)) ⊆

𝑓(𝐹(𝑦)).   

Theorem 3.1: 

Let (𝐹, 𝐴) be a soft ordered set and let 𝜙: 𝐴 ⟶ 𝛽(℘) be defined 

by 𝜙(𝑥) = {𝑦 <∈ ℘: 𝑦 ≤ 𝑥}. Then ℘ is isomorphic to the 

range of 𝜙 order by ⊆. 

Proof: 

If 𝑥 ≤ 𝑦, then 𝑦 ≤ 𝑧 implies 𝑥 ≤ 𝑧 by transitivity law, and 

hence 𝜙(𝑥) ⊆ 𝜙(𝑦). Since 𝑥 ∈ 𝜙(𝑥) by reflexivity law, 

𝜙(𝑥) ⊆ 𝜙(𝑦) implies 𝑥 ≤ 𝑦. Thus 𝑥 ≤ 𝑦 iff 𝜙(𝑥) ⊆ 𝜙(𝑦). 

That 𝜙 is one-to-one then follows by antisymmetry. 

Definition 3.1: 

The soft ordered set (𝐹, 𝐴) has a maximal ( or greatest) element 

if there exist 𝑥 ∈ 𝐴 such that  𝐹(𝑥) ⊆ 𝐹(𝑦) for all 𝑦 ∈ 𝐴. An 

element 𝑥 ∈ 𝐴 is maximal if there is no element 𝑦 ∈ 𝐴 with 

𝐹(𝑦) ⊇ 𝐹(𝑥). Clearly there concept are different. Minimum 

and minimal elements are defined dually. 

Lemma 3.1: 

Given any soft ordered set (𝐹, 𝐴), the following are equivalent. 

(1) Every nonempty subset 𝐵 ⊆ 𝐴 contain an element minimal 

in 𝐵. 

(2) (𝐹, 𝐴) contains no infinite descending chain,𝑎0 > 𝑎1 >

𝑎2 > ⋯ > 𝑎𝑛 

(3) If 𝑎0 ≥ 𝑎1 ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑛  in (𝐹, 𝐴), then there exists 𝑘 

such that 𝑎𝑛 = 𝑎𝑘 for all 𝑛 ≥ 𝑘.  

Proof: 
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The equivalence of (2) and (3) is clear, and likewise that (1) 

implies (2). There is, however, a subtlety in the (2) implies (1). 

Suppose (𝐹, 𝐴) fails (1) and that 𝐵 ⊆ 𝐴 has no minimal 

element. In order to find an infinite descending chain in 𝐵, 

rather than just arbitrarity long finite chains, we must use the 

Axiom of choice. One way to do this is as follows: 

Let 𝑓 be a choice function on the subsets of 𝐵, i.e., 𝑓 assigns to 

each nonempty subset 𝐶 ⊆ 𝐵 an element 𝑓(𝑐) ∈ 𝐶. 

Let 𝑎0 = 𝑓(𝐵), and for each 𝑖 ∈ 𝑤 define 𝑎𝑖+1 = 𝑓({𝑏 ∈

𝐵: 𝑏 < 𝑎𝑖}); argument of 𝑓 in this expression is nonempty 

because 𝐵 has no minimal elemet. The sequence so defined is 

an infinite descending chain, and hence (𝐹, 𝐴) fails (2). 

The conditions described by the preceding lemma are called the 

descending chain condition (DCC). The dual notion is called 

the ascending chain condition (ACC). 

Lemma 3.2:  

Let (𝐹, 𝐴) be a soft ordered set satisfying the descending chain 

condition (DCC). If ∅(𝑥) is a statement such that; 

(1)   ∅(𝑥) holds for all minimal elements of 𝐴, and 

(2) whenever ∅(𝑦) holds for all 𝑦 < 𝑥, then ∅(𝑥) is true for 

every element of 𝐴. 

Proof: Note that (1) is in fact a special case of (2). It is included 

in the statement of the lemma in practice minimal elements 

usually require a separate argument. The proof is immediate. 

The contrapositive of (2) states that the set 𝐹 = {𝑥 ∈ 𝐴 ∶

∅(𝑥) is false} has no minimal element. Since (𝐹, 𝐴) satisfies 

the DCC,  𝐹 must therefore be empty.              

 We now turn our attention more specifically to the structure of 

soft ordered sets. 

Definition 3.2: The width of a soft ordered set (𝐹, 𝐴) denoted 

by 𝐹𝐴 is defined by 𝜔(𝐹𝐴) =

𝑆𝑢𝑝{|𝐴|: 𝐴 𝑖𝑠 𝑎 𝑠𝑜𝑓𝑡 𝑎𝑛𝑡𝑖𝑐ℎ𝑎𝑖𝑛 𝑖𝑛 𝐹𝐴. } where |𝐴| denotes the 

cardinality of 𝐴.  

A second invariant is the soft chain covering number c(𝐹𝐴), 

defined to be the least cardinal 𝛾 such that 𝐴 is the union of 𝛾 

chains in 𝐹𝐴. Because no soft chain can contain more than one 

element of a given soft antichain, we must have |𝐴| ≤ |𝐼| 

whenever 𝐴 is an antichain in 𝐹𝐴 and 𝐴 =  ⋃𝑖∈𝐼𝐶𝑖  is a chain 

covering. Therefore 𝜔(𝐹𝐴) ⊆ c(𝐹𝐴) for any soft ordered set 𝐹𝐴. 

The following result, due to R. P. Dilworth, says in particular 

that if 𝐹𝐴 is finite, then 𝜔(𝐹𝐴) = c(𝐹𝐴). 

Theorem 3.2:  

If 𝜔(𝐹𝐴) is finite, then 𝜔(𝐹𝐴) = c(𝐹𝐴). 

Proof: In the finite case.  We need to show 𝜔(𝐹𝐴) ⊆ c(𝐹𝐴) , 

which is done by induction on |𝑃|. Let 𝜔(𝐹𝐴) = 𝑘, and let 𝐺𝐵 

be a maximal soft chain in 𝐹𝐴. If  𝐹𝐴 is a soft chain, 𝜔(𝐹𝐴) = 

c(𝐹𝐴) = 𝐼, so assume 𝐺𝐵 ≠ 𝐹𝐵. Because 𝐺𝐵 can contain at most 

one element of any maximal antichain, the width 𝜔(𝐹𝐴 − 𝐺𝐵) 

is either 𝑘 or 𝑘 − 1, and both possibilities can occur. If 

𝜔(𝐹𝐴 − 𝐺𝐵) = 𝑘, and let 𝐴 = {𝑎1, … , 𝑎𝑘} be a maximal 

antichain in 𝐹𝐴 − 𝐺𝐵 .  As |𝑃| = 𝑘, it is also a maximal antichain 

in 𝐹𝐴. Set 

 𝐿 = {𝑥 ∈ 𝑃 ∶ 𝑥 ≤ 𝑎𝑖  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖} 

𝑈 = {𝑥 ∈ 𝑃 ∶ 𝑥 ≤ 𝑎𝑗  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑗}. 

Since every element of 𝑃 is comparable with some element of 

𝐴, we have 𝑃 = 𝐿⋃𝑈, while 𝐴 = 𝐿⋂𝑈. Moreover, the 

maximality of 𝐺𝐵 insures that the largest element of 𝐺𝐵 does 

not belong to 𝐿 ( remember 𝐴 ⊆ 𝐴 − 𝐺𝐵), so |𝐿| < |𝐴|. dually, 

|𝑈| < |𝐴|also. Hence 𝐿 is a union of 𝑘 chains, as a union of 

chains. By renumbering, if necessary, we may assume that 𝑎𝑖 ∈

𝐷𝑖⋂𝐸𝑖 for 1 ≤ 𝑖 ≤ 𝑘, so that 𝐺𝐵𝑖
= 𝐷𝑖⋃𝐸𝑖 is a soft chain. Thus 

𝐴 = 𝐿⋂𝑈 = 𝐺𝐵𝑖
⋃ … ⋃𝐺𝐵𝑘

 is a union of  𝑘 chain. 

Theorem 3.3: 

Let 𝐹𝐴 be a soft ordered set. Then 

(1) 𝑑(𝐹𝐴) is the smallest cardinal 𝛾 such that 𝐹𝐴 can be 

embedded into the direct product of 𝛾 chain. 

(2)𝑑(𝐹𝐴) ⊆ 𝑐(𝐹𝐴). 

Proof: 

First suppose ⊆ is the intersection of total soft order ⊆𝑖 (𝑖 ∈ 𝐼) 

on 𝐴. If we let 𝐺𝐵𝑖
 be the soft chain (𝐴, ⊆𝑖), then it easy to see 

that the natural map 𝜙: 𝐴 ⟶ Πi∈I𝐺𝐵𝑖
, with (𝜙(𝑥))𝑖 = 𝑥 for all 

𝑥 ∈ 𝐴, satisfies 𝑥 ≤ 𝑦 iff 𝜙(𝑥) ⊆ 𝜙(𝑦). Hence 𝜙 is an 

embedded. 

Conversely, assume 𝜙: 𝐴 ⟶ Πi∈I𝐺𝐵𝑖
 is an embedded of 𝐴 into 

a direct product of chains. We want to show that this leads to a 

representation of ⊆ as the intersection of |𝐼| total soft orders. 

Define 

𝑥𝑅𝑖𝑦 𝑖𝑓 {

𝑥 ≤ 𝑦
𝑜𝑟

  𝜙(𝑥) ⊆ 𝜙(𝑦)
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We notice that 𝑅𝑖 is a partial order extending ⊆. To see that ⊆ 

is the intersection of the ⊆𝑖 𝑠, suppose 𝑥 ⊈ 𝑦. Since 𝜙 is an 

embedding, then 𝜙(𝑥)𝑖 ⊈ 𝜙(𝑦)𝑖  for some 𝑖. Thus 𝜙(𝑥)𝑖 ⊃

𝜙(𝑦)𝑖 implying 𝑦𝑅𝑖𝑥 and 𝑦 ⊆𝑖 𝑥 or equivalently 

𝑥 ⊆𝑖 𝑦 (𝑎𝑠 𝑥 ≠ 𝑦), as desired. 

Thus the order on 𝐹𝐴 is the intersection of 𝑘 total soft orders if 

and only if 𝐹𝐴 can be embedded into the direct product of 𝑘 

chains, yielding (1). 

For (2), assume 𝐹𝐴 = ⋃𝑗∈𝐽𝐺𝐵𝑗
 with each 𝐺𝐵𝑗

 a soft chain. Then, 

for each 𝑗 ∈ 𝐽, the soft ordered set 𝜗(𝐺𝐵𝑗
) of order ideals of 𝐺𝐵𝑗

 

is also a soft chain. Define a map 𝜙: 𝐴 ⟶ Πi∈I𝜗(𝐺𝐵𝑖
)  by 

(𝜙(𝑥))𝑗 = {𝑦 ∈ 𝐺𝐵𝑗
: 𝑦 ⊆ 𝑥}. (Note  𝜃 ∈ 𝜗(𝐺𝐵𝑖

), and 

(𝜙(𝑥))𝑗 = 𝜃 is certainly possible.) The 𝜙 is clearly soft order-

preserving. On the other hand, if 𝑥 ⊈ 𝑦 in 𝐴 and 𝑥 ∈ 𝐺𝐵𝑗
, then 

𝑥 ∈ (𝜙(𝑥))𝑗  and 𝑥 ∉ (𝜙(𝑦))𝑗, so (𝜙(𝑥))𝑗 ⊈ (𝜙(𝑦))𝑗  and 

𝜙(𝑥) ⊈ 𝜙(𝑦). Thus 𝐴 can be embedded into a direct product of 

|𝐽| soft chain. Using (1), this shows 𝑑(𝐴) ⊆ 𝑐(𝐴). 

SOFT SEMILATTICES 

A semi lattice is an algebra 𝑆 = (𝒮, ∗) satisfying, for all 

𝑥, 𝑦, 𝑧 ∈  𝒮, 

(i) 𝑥 ∗ 𝑥 = 𝑥, 

(ii) 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥, 

(iii) 𝑥 ∗ (𝑦 ∗ 𝑧) = (𝑥 ∗ 𝑦) ∗ 𝑧 

In other words, a semilattice is an idempotent commutative 

semigroup. The symbol ∗  can be replaced by any binary 

operation symbol, and in fact we will most often use one of ∧,

∨, + 𝑜𝑟 ∙, depending on the setting. The most natural example 

of a semilattice is (β(𝑥), n), or more generally any collection 

of subsets of 𝑋 closed under intersection. In this section, we 

give the definition of soft semilattice. Throughout this section, 

𝒮 is a semilattices and 𝐴 is any nonempty set . 𝑅 will refer to an 

arbitrary binary relation between elements of 𝐴 and elements of 

𝒮. That is, 𝑅 ⊆ 𝐴 × 𝒮. A set-valued function 𝐹: 𝐴 ⟶ 𝒫(𝒮) can 

be defined as 𝐹(𝑥) = {𝑦 ∈ 𝒮/𝑥𝑅𝑦}. The pair (𝐹, 𝐴) is a soft set 

over 𝒮. 

Definition 4.1:  

Let (𝐹, 𝐴) be a soft set over 𝒮. Then (𝐹, 𝐴) is said to be a soft 

semilattice over 𝒮 if 𝐹(𝑥) is sub-semilattice of 𝒮, for all 𝑥 ∈ 𝐴. 

Theorem 4.1:  

In a soft semilattices (𝐹, 𝐴), define 𝐹(𝑥) ⊆ 𝐹(𝑦) if and only 

if 𝐹(𝑥) ∨ 𝐹(𝑦) = 𝐹(𝑥). Then ((𝐹, 𝐴), ⊆) is an ordered soft set 

in which every pair of element has a greatest lower bound. 

Conversely, given an ordered soft set ((𝐺, 𝐵), ⊆) with that 

property, define 𝐺(𝑥) ∨ 𝐺(𝑦) = 𝑔. 𝑙. 𝑏 (𝐺(𝑥), 𝐺(𝑦)). Then (𝐴,

∨) is a soft semilattice. 

Proof:  

Let (𝐹, 𝐴) be a soft semilattice, and define ⊆ as above. First we 

check that ⊆  is a partial order. 

(1) (𝐹(𝑥) ∨ 𝐹(𝑥) implies 𝐹(𝑥) ⊆ 𝐹(𝑥), ∀𝑥 ∈ 𝐴, and 𝐹(𝑥) =

{𝑧 ∈ 𝒮: 𝑧𝑅𝑥}. 

 

(2) if 𝐹(𝑥) ⊆ 𝐹(𝑦) and 𝐹(𝑦) ⊆ 𝐹(𝑥), then 𝐹(𝑥) = 𝐹(𝑥) ∨

𝐹(𝑦) = 𝐹(𝑦) ∨ 𝐹(𝑥) = 𝐹(𝑦). 

(3) if 𝐹(𝑥) ⊆ 𝐹(𝑦) ⊆ 𝐹(𝑧), then 𝐹(𝑥) ∨ 𝐹(𝑧) = (𝐹(𝑥) ∨

𝐹(𝑦)) ∨ 𝐹(𝑧) = 𝐹(𝑥) ∨ 𝐹(𝑦) = 𝐹(𝑥), so 𝐹(𝑥) ⊆ 𝐹(𝑧). 

Since (𝐹(𝑥) ∨ 𝐹(𝑦)) ∨ 𝐹(𝑧) = 𝐹(𝑥) ∨ (𝐹(𝑥) ∨ 𝐹(𝑦)) =

(𝐹(𝑥) ∨ 𝐹(𝑥)) ∨ 𝐹(𝑦) = 𝐹(𝑥) ∨ 𝐹(𝑦), we have 𝐹(𝑥) ∨

𝐹(𝑦) ⊆ 𝐹(𝑥); similarly, 𝐹(𝑥) ∨ 𝐹(𝑦) ⊆ 𝐹(𝑦). Thus 𝐹(𝑥) ∨

𝐹(𝑦) is a lower bound for {𝐹(𝑥), 𝐹(𝑦)}.  To see that it is the 

greatest lower bound, suppose 𝐹(𝑧) ⊆ 𝐹(𝑥) and 𝐹(𝑧) ⊆

𝐹(𝑦).Then 𝐹(𝑧) ∨ (𝐹(𝑥) ∨ 𝐹(𝑦)) = (𝐹(𝑧) ∨ 𝐹(𝑥)) ∨ 𝐹(𝑦)  =

𝐹(𝑧) ∨ 𝐹(𝑦) = 𝐹(𝑧), so 𝐹(𝑧) ⊆ 𝐹(𝑥) ∨ 𝐹(𝑦),as desired. The 

proof of the converse is likewise a direct application of the 

definition.                    

CONCLUSION 

In this paper we have introduced the concept of chains soft sets 

and the concept of set-valued function. The notion of soft semi 

lattices and its algebraic structures are also discussed. 
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