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ABSTRACT 

Modeling the relationship between some climatic determinants in the wet or cropping season of 

Makurdi, Benue State, Nigeria requires data aggregation. The consequence of this aggregation is the 

reduction in data sample size. This poses serious challenge of lack of model-fit when the Classical 

Linear Regression Modeling Approach is employed. The Bayesian Normal Regression Modeling 

Approach was therefore employed in surmounting this problem. Three Bayesian Normal Regression 

Models were fitted namely; the Solar radiation, Total Rainfall Amount and the Number of Dry Days 

model. Each model result was compared with that of its Classical model counterpart. The discrepancies 

observed were blamed on the sample size reduction. The results of the Bayesian models revealed that; 

Solar radiation increases by 0.791 MJ/m2 for each unit increase in the natural logarithm of Relative 

humidity. While it increases by 0.895 MJ/m2 for each unit increase in the natural logarithm of Wind 

speed. Total Rainfall Amount increases by 66.280 mm for each unit increase in the natural logarithm 

of the Number of Dry Days while it increases by 2.912 mm for each unit increase in the natural 

logarithm of the Number of Wet Days. Furthermore, the Number of Dry Days decreases by 6.905 days 

for each unit increase in the natural logarithm of Number of Wet days, while it increases by 2.028 days 

for each unit increase in the natural logarithm of Total Rainfall Amount. The study affirmed that the 

cropping season climate of Makurdi is becoming warmer and drier and that the Bayesian Normal 

Regression Modelling approach be employed when sample size reduction due to data aggregation is a 

concern.  
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INTRODUCTION 

Statistical modeling using individual – level data is 

paramount for obtaining accurate estimation most especially 

in Normal Regression Modeling (Moineddin and Urquia, 

2014). However, there are some circumstances where 

individual – level data are not available due to confidentiality 

concerns or the research problem requires that data be 

aggregated. The latter is the case with modeling the 

relationship between some climatic determinants in the wet 

or cropping season of Makurdi, Benue State, Nigeria – the 

focus of this research. The wet season is the cropping season 

of the area whose inhabitants are predominantly farmers. 

These farmers can control for most productivity variables, 

except for climatic determinants, which have been stated to 

be out of their control due to the impact of climate change 

(Agada, Imande and Amedu, 2018). It therefore becomes 

paramount to understand how these climatic determinants 

interplay in the cropping season. This we believe can be 

achieved by modeling the relationship among them in the 

aforementioned season. Moreover, seasonal relationship 

among these determinants will require aggregating 

(averaging) data over each rainy month of the year (March – 

October) and over the entire data period of 34 years (1977-

2010). The consequence of this aggregation is the reduction 

in the sample size to eight (8). This poses serious challenge 

of lack of model-fit or incorrect fit when the Classical Linear 

Regression Modeling Approach is employed. A way of 

surmounting this obstacle is by employing the Bayesian 

Normal Regression Modeling Approach; a method proven to 

be efficient in handling cases of modeling with incomplete 

and sparse data (Taeryon, Mark, Ketra and Mitchell, 2008; 

Agada, Udoumoh and Gboga, 2019; Tripathi, Singh and 

Singh, 2019). This was implemented on the Windows 

Bayesian Inference Using Gibbs Sampling (WinBUGS) 

platform. 

Some researchers (Moineddin et al, 2014) have demonstrated 

that Normal Regression Modeling using aggregate data yield 

similar regression coefficients as the individual-level data 

based models. Other researchers such as Aymen and 

Mohammed (2019) argued that aggregating both the 

dependent and independent variable values smoothes out 

variation at the individual level and therefore, synthetically 

inflate the correlation coefficient values. They also opined 

that, assuming that relationships observed for groups 

necessarily holds for  individuals is an ecological fallacy, 

therefore models fit into group (aggregate) level data cannot 

be applied to datasets at the individual level. Other supporters 

of this claim include; Dias, Sutton, Welton and Aides (2013). 

Aymen and Mohammed (2019) therefore recommended that 

partial aggregation of data should be done to wade off the 

aforementioned problem. In the same vein, Robinson (1950) 

stated that the correlation between the properties of 

individual-level data have no bearing on the properties of 

groups or aggregates. Furthermore, Eric, Hanushek, John, 
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Jackson and Kain (1974) expanded the scope of Robinson’s 

independent variables of Negro or White race to include 

Mexican and Indian born, as well as elementary school age 

population at the state level.  They proved Robinson’s 

conclusion wrong stating that individual- level data or not is 

not the problem, but improper model specification. This is 

because their expanded model better estimated the literacy 

rate of a race than that of Robinson. The authors emphasized 

that since individual-level data may not always be available 

due to confidentiality concerns, difficulties associated with 

the use of aggregate data should be dealt with through proper 

model specification. 

A recent research in the study area by Agada et al. (2018) 

revealed that the area is becoming warmer and drier. The 

authors could neither identify and specify the climatic 

determinants nor quantify the magnitude of their effects on 

the warming and dry climate. This gap in literature we have 

been able to identify and intend to fill. From the 

aforementioned researches, the problems we must surmount 

for using aggregate data is that of inflated correlations among 

independent variables and that of improper model 

specification. This we have handled by proper data 

transformation and the use of correlation matrix of the 

climatic determinants in identifying independent 

determinants that correlate significantly with the dependent 

determinant and or with themselves. Pathan (2015) 

emphasized the use of the correlations among climatic 

variables in accomplishing the aforementioned task. The 

implication of this study to crop farming in the area, led us to 

fitting three normal regression models namely; the Solar 

Radiation, Total Rainfall Amount and the Number of Dry 

Days Model. Results of the Classical and Bayesian models 

employed in the study were compared. The rest of the paper 

is sectioned into; Methodology, Results, Discussion, 

Conclusion and Recommendations. 

MATERIALS AND METHOD 

Source of data and transformation 

The data for this work is a 34 year (1977 – 2010) daily data 

on some climatic variables or determinants of the city of 

Makurdi, Nigeria. The climatic variables or determinants are; 

Solar radiation (MJm-2day-1), Relative humidity (%), Air 

temperature (0 C), Wind speed (m/s), Sunshine Duration 

(hrs), Total Rainfall Amount (mm), Number of wet days and 

Number of dry days. The number of Wet and Dry days were 

respectively determined  by counting the number of times the 

rainfall amount of a particular day is greater than or equal to 

0.85mm and less than 0.85mm respectively. This correspond 

to rainfall state transformations 1 and 0 respectively which 

were used for the counts. The minimum and maximum Air 

temperature and Relative humidity data primary were 

averaged and used as Air temperature and Relative Humidity 

data in the study. Using the entire dataset, the climatic 

variables or determinants were aggregated (averaged) over 

the rainy months of Makurdi, Nigeria (March, April, May, 

June, July, August, September and October). This was done 

to reflect their association or interplay in the wet or cropping 

season of the area. 

The associations among these determinants were determined 

from their matrix of bivariate correlation coefficient. This 

was non – parametrically obtained using the Spearman Rank 

Correlation Statistic. The reason for adopting the Spearman 

Rank Correlation Statistic is that unlike its Pearson 

counterpart, it is not distribution dependent. The specification 

of the right variables in the Bayesian Normal model 

employed in this work is greatly eased by the correlation 

between the climatic determinants. This is because, predictor 

variables or determinants that relate significantly with the 

response variables can be easily identified and those that 

correlate with themselves identified for logarithm 

transformation in order to reduce multicolinearity. 

Normal regression model specification in the Bayesian 

framework 

Bayesian regression notations according to Ioannis (2009) 

were adopted. The response variable Y is considered to be a 

continuous random variable defined on the whole set of real 

numbers following the normal distribution with mean  𝜇 and 

variance 𝜎2. The model is summarized as follows; 

𝑌~  𝑁(𝜇(𝛽, 𝑋1, 𝑋2, … 𝑋𝑝), 𝜎2)         (1) 

With  

𝜇(𝛽, 𝑋1, 𝑋2, … 𝑋𝑝) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2, … + 𝛽𝑝𝑋𝑝      (2) 

Where  𝜎2 and  𝛽 = (𝛽0, 𝛽1 , 𝛽2 … 𝛽𝑝) 𝑇 are regression parameter under estimation and 𝑋1, 𝑋2, … 𝑋𝑝 are the explanatory or 

predictor variables. 

Alternatively, the model in (1) can be specified as; 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2, … + 𝛽𝑝𝑋𝑝 + 𝜀, 𝜀~𝑁(0, 𝜎2)     (3) 

where 𝜀 represent the error term or residuals. 

Specifying the likelihood  

Observe a sample of size n with response values y = (𝑦1, 𝑦2, … 𝑦𝑝)𝑇  and  𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑖𝑝 the values of the explanatory variables 

𝑋1, 𝑋2, … 𝑋𝑝 for individuals 𝑖 = 1, 2, … , 𝑛. Then the likelihood is expressed as  

𝑌𝑖~ 𝑁(𝜇𝑖 ,𝜎
2)           (4) 

𝜇𝑖 =  𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2, … + 𝛽𝑝𝑥𝑖𝑝    for 𝑖 = 1, 2, … , 𝑛    (Ioannis,  2009) 

Within WinBUGS the normal distribution is defined in terms of its precision 𝜏 =  𝜎−1. Details of the implementation are 

shown in the program codes.  

Specifying the independent prior distributions  

According to Ioannis (2009), the simplest approach to normal regression modeling is to assume that all parameters are a priori 

independent having the structure;  
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𝑓(𝛽, 𝜏) = ∏ 𝑓(𝛽)𝑓(𝜏),

𝑝

𝑗=0

  

𝛽𝑗~  𝑁(𝜇𝛽𝑗
, 𝑐𝑗

2 )   𝑓𝑜𝑟 𝑗 = 0, 1, … 𝑝 and       (5) 

𝜏 ~ 𝑔𝑎𝑚𝑚𝑎 (𝑎, 𝑏)  

where 𝜇𝛽𝑗
,  𝑐𝑗

2 ,a and b are respectively; the mean of the 𝛽𝑗′𝑠, the variance of the 𝛽𝑗′𝑠, the location and scale parameter of the 

gamma distribution. 

The gamma prior of the precision parameter 𝜏 induces prior mean and variance given by  

𝐸[𝜏] =  
𝑎

𝑏
  𝑎𝑛𝑑 𝑉𝑎𝑟[𝜏] =  

𝑎

𝑏2
   respectively. 

In this prior setup, we ensure compatibility with the WinBUGS notation by substituting the variance 𝜎2  by the corresponding 

precision parameter 𝜏. The gamma prior used for 𝜏 corresponds to an inverse gamma prior distribution for the original variance 

parameter with prior mean and variance given by;  

𝐸[𝜎2] =  
𝑏

𝑎−1
  𝑎𝑛𝑑  𝑉𝑎𝑟[𝜎2] =  

𝑏2

(𝑎−1)2(𝑎−2)
  

respectively. When no information is available, a usual choice for the prior mean is the zero value (𝜇𝛽𝑗
= 0).  This prior choice 

centers our prior beliefs around zero, which corresponds to the assumption of no effect of X, on Y. 

The prior variance  𝑐𝑗
2 of the effect 𝛽𝑗  is set equal to a large value (e.g., 104) to represent high uncertainty or prior ignorance. 

Similarly, for  𝜏, equal low prior parameter values is used, setting in this way its prior mean equal to one and its prior variance 

large. If for instance  𝑎 = 𝑏 = 0.01, this result in to 𝐸[𝜏] =  1  𝑎𝑛𝑑 𝑉𝑎𝑟[𝜏] =  100.    (Ioannis, 2009) 

Interpretation of the regression coefficients 

Each regression coefficient 𝛽𝑗  pertains to the effect of explanatory variable 𝑋𝑗  on the mean of the response variable Y adjusted 

for the remaining covariates. The inference concerning the model parameters were made by giving answers to the following 

questions posed by Ioannis (2009). 

Is the effect of X, important for the prediction or description of Y?  

To find answer to this question, posterior distribution of   𝛽𝑗 , is examined to see if it is scattered around zero (or not). Posterior 

distributions far away from the zero value indicate an important contribution of X, on the prediction of the response variable. 

This can be judged by examining the proportion of times that 𝛽𝑗  exceed zero [p(𝛽𝑗  > 0)] or the proportion of times that 𝛽𝑗  is 

less than zero [𝑝(𝛽𝑗 < 0)]. This analysis offers a first and reliable tool for tracing important variables in the model. 

What is the association between Y and X, (positive or negative)?  

The task here is to identify whether the relationship is positive or negative. This we base on the signs of the posterior summaries 

of central and relative location (e.g., mean, median, 2.5% and 97.5% percentiles). If it happens that all of them are positive or 

negative, then the corresponding association can be concluded. Positive association means that changes of the explanatory 

variable X, cause changes in the same direction for variable Y while negative association means that changes of the explanatory 

variable X, cause changes in the opposite direction for variable Y. Within this analysis, we a posteriori calculate the posterior 

probability:  

𝜋0 = min{𝑓( 𝛽𝑗 < 0∖ 𝑦), 𝑓(𝛽𝑗 > 0 ∖ 𝑦)}        (6) 

When the zero value lies at the center of the posterior distribution, then the value shown above will be close to indicating that 

there is no clear positive or negative effect of X, on Y. When 𝜋0 is low (e.g., lower than 2.5%, 1%, or 0.5%), then we may 

conclude positive or negative association depending on the sign of the posterior location summaries. Within WinBUGS we 

calculate the posterior probability 𝑓(𝛽𝑗 > 0 ∖ 𝑦) using the syntax  

𝑝. 𝑏𝑒𝑡𝑎 𝑗 < −𝑠𝑡𝑒𝑝(𝑏𝑒𝑡𝑎 𝑗)                     (7) 

this creates a binary node 𝑝. 𝑏𝑒𝑡𝑎 𝑗 taking values equal to one when 𝛽𝑗, is positive and zero  otherwise. Obtaining the posterior 

mean via the sample monitor tool provides us the estimate of the posterior probability 𝑓(𝛽𝑗 > 0 ∖ 𝑦). 

What is the magnitude of the effect of X, on Y?  

The magnitude of the effect of variable 𝑋𝑗  on  𝑌 is given by the posterior distribution of 𝛽𝑗    (𝑓𝑜𝑟 𝑗 = 1, 2, … , 𝑝) since  

△ 𝜇𝑋𝑗
= 𝜇(𝛽, 𝑋1, 𝑋2, … 𝑋𝑗−1, 𝑋𝑗 = 𝑥 + 1, 𝑋𝑗+1, … , 𝑋𝑝) – 𝜇(𝛽, 𝑋1, 𝑋2, … 𝑋𝑗−1, 𝑋𝑗 = 𝑥, 𝑋𝑗+1, … , 𝑋𝑝)  

= 𝛽0+ 𝛽𝑗(𝑥 + 1)+ ∑ 𝛽𝑘𝑋𝑘 −
𝑝
𝑘≠𝑗;𝑘=1 𝛽0 − 𝛽𝑗𝑥 − ∑ 𝛽𝑘𝑋𝑘

𝑝
𝑘≠𝑗;𝑘=1  = 𝛽𝑗  

It therefore follows that the posterior mean or median of 𝛽𝑗 , will correspond to the corresponding posterior measures of the 

expected change of the response variable  𝑌. Hence, an increase of one unit of  𝑋𝑗 , given that the remaining covariates will 

remain stable, induces an a posteriori average change on the expectation of  𝑌 equal to the posterior mean of 𝛽𝑗  (Ioannis, 2009). 

Structural assumptions of the Bayesian normal model and general goodness of fit  

Structural assumptions of the Bayesian normal model 
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We verify graphically, the assumptions of the Bayesian normal models using the history, density and autocorrelation plots of 

the residuals computed from the WinBUGS program code. The normality of errors assumption is verified by examining the 

density plot obtained for each month of the season to see if they follow a normal distribution about mean zero and constant 

variance. The homogeneity or equal variance assumption of errors is checked, by observing the history plots of the residuals 

for each month.  A rectangular band with approximately constant width is an indication of equal or constant variance. The 

independence assumption of errors is checked by observing the autocorrelation plots for each month to see if the bars cut-off 

for each lag. If this happens, it is an indication of zero autocorrelation at each lag. This implies independence of the errors. 

The idea of using this graphical approach in the check of model assumption was stimulated from the Stationerity, 

Autocorrelation function (ACF) and Partial Autocorrelation (PACF) concepts in time series modeling. Stationariety of time 

series is graphically determined by plotting the actual or historic data (history plot) to see if it exhibits a constant mean and 

variance while the PACF and ACF plots are used to graphically determine the order (p) of  the AR(p) and the order (q) of the  

MA (q) components of an ARMA (p,q)  or ARIMA (p,q) process. This principle is based on the dependency property of the 

series (Klaus, 2016). 

General goodness of fit. 

The general goodness of the Bayesian model-fit is determined using the model’s coefficient of determination (𝑅𝐵
2) computed 

using the WinBUGS code. Since the precision parameter 𝜏 and the variance 𝜎2 indicates the precision of the model (if the 

precision 𝜏 is high and its variance low, then the model can accurately predict (or describe) the expected values of  𝑌. Using 

the coefficient of determination (𝑅𝐵
2), this can be rescaled as: 

𝑅𝐵
2 = 1 −

𝜏−1

𝑠𝑌
2            (8) 

where 𝑠𝑌
2 is the sample variance of  𝑌. The quantity 𝑅𝐵

2  can be interpreted as the proportional reduction of uncertainty 

concerning the response variable Y achieved by incorporating the explanatory variables 𝑋𝑗  in the model. Moreover, it can be 

regarded as the Bayesian analog of the adjusted coefficient of determination 𝑅𝑎𝑑𝑗
2  (used in the frequentist approach of the 

normal regression model). It is given by: 

 𝑅𝑎𝑑𝑗
2 = 1 −

�̂�2

𝑠𝑌
2        where  �̂�2 =  

1

𝑛−𝑝
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖  and  

 �̂�𝑖 =  �̂�0 + ∑ 𝑥𝑖𝑗�̂�𝑗
𝑝
𝑖=1           (9) 

The  �̂�𝑗′𝑠 are the maximum likelihood estimates of   𝛽𝑗  . In order to calculate 𝑅𝐵
2  in WinBUGS, we use the codes 

𝑠𝑦2 < − 𝑝𝑜𝑤 (𝑠𝑑(𝑦[ ], 2) and 𝑅2𝐵 < −(1 − 𝑠2
𝑠𝑦2⁄ )                       (10) 

or we can directly incorporate the precision parameter and use it as follows  

𝑅2𝐵 < − (1 −   1
(𝑡𝑎𝑢 ∗ 𝑠𝑦2)⁄ ) (Ioannis,  2009)                (11) 

We state here that the model equation (9) is the classical version of the Bayesian normal model. We implement the model on 

the datasets using the Statistical Package for Social Science (SPSS) version 21 to enable us compare its results of and those of 

the Bayesian normal model.  

The Bayesian normal model convergence diagnostics 

Model convergence diagnostics was done using history plots, density plots and autocorrelation plots of the beta coefficients. 

The plots were produced when the model parameters and measures were monitored on the run of the WinBUG program. Our 

approach for investigating convergence issues is by inspecting the mixing and time trends within the chains of individual 

parameters. The history plots are the most accessible convergence diagnostics and are easy to inspect visually. The history plot 

of a parameter plots the simulated values for the parameter against the iteration number. The history plot of a well-mixing 

parameter should traverse the posterior domain rapidly and should have nearly constant mean and variance. The density plots 

of the model parameters were checked against their actual probability distributions to see whether the right distribution is 

simulated.  

Samples simulated using MCMC methods are correlated. The smaller the correlation, the more efficient the sampling process. 

Though, the Gibbs, MCMC algorithm typically generates less-correlated draws, there is a need to monitor the autocorrelation 

of each parameter to ensure samples are independent. The autocorrelation plot that comes from a well-mixing chain becomes 

negligible fairly quickly, after a few lags. This was achieved for each of the model parameters and measures.  

RESULTS AND DISCUSSION 

As earlier mentioned, the specification of the right variables in the Bayesian Normal model employed in this work is greatly 

eased by the correlations among the climatic determinants. The reason been that, the independent variables or determinants 

that relate significantly with the dependent variable can be easily identified and those that correlate with themselves identified 

for logarithm transformation in order to reduce multicolinearity. Table 1 below shows that Solar radiation only correlate with 

Relative humidity and Wind speed, while Relative humidity correlates with Wind speed and Solar radiation. Observe also that 

Total Rainfall Amount correlate with Number of Wet Days and Number of Dry Days while Number of Dry Days correlates 

with Total Rainfall Amount and Number Wet Days. Air temperature and Sunshine hours did not correlate with any climatic 

determinant. This correlation structure, informed the specification of the three (3) climatic models; Solar radiation model as a 

function of Relative humidity and Wind speed, Total Rainfall Amount model as a function of Number of Wet Days and 

Number of Dry Days and finally the Number of Dry Days model as a function of Total Rainfall Amount and Number of Wet 

Days. Correlation structure was used in specifying model variables as suggested by Pathan (2015).  
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Table 1: Degree of Association Between Climatic Determinants in the Wet Season  

   Solar 

radiation 

Air 

temperature 

Relative 

humidity 

Sunshine 

hours 

Number of dry 

days 

Wind 

speed Rainfall total amount Number of wet days 

 Solar radiation Correlation Coefficient 1.000 .595 -.714* -.262 .240 .810* -.024 -.228 

Sig. (2-tailed) . .120 .047 .531 .568 015 .955 .588 

Air temperature Correlation Coefficient .595 1.000 -.310 -.262 .132 .571 .167 -.156 

Sig. (2-tailed) .120 . .456 .531 .756 .139 .693 .713 

Relative humidity Correlation Coefficient -.714* -.310 1.000 .452 .347 -.810* -.476 -.383 

Sig. (2-tailed) .047 .456 . .260 .399 .015 .233 .349 

Sunshine hours Correlation Coefficient -.262 -.262 .452 1.000 -.096 -.310 -.024 .012 

Sig. (2-tailed) .531 .531 .260 . .821 .456 .955 .978 

Number of dry days Correlation Coefficient .240 .132 .347 -.096 1.000 -.060 -.946** -.988** 

Sig. (2-tailed) .568 .756 .399 .821 . .888 .000 .000 

Wind speed Correlation Coefficient .810* .571 -.810* -.310 -.060 1.000 .214 .036 

Sig. (2-tailed) .015 .139 .015 .456 .888 . .610 .933 

Rainfall total amount Correlation Coefficient -.024 .167 -.476 -.024 -.946** .214 1.000 .946** 

Sig. (2-tailed) .955 .693 .233 .955 .000 .610 . .000 

Number of wet days Correlation Coefficient 
-.228 -.156 -.383 .012 -.988** .036 .946** 1.000 

Sig. (2-tailed) .588 .713 .349 .978 .000 .933 .000 . 

*. Correlation is significant at the 0.05 level 

 (2-tailed). 

        

**. Correlation is significant at the 0.01 level  

(2-tailed). 
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The results of each Bayesian Normal Regression Model 

coefficients and those of its Classical counterpart are captured in 

table 2, 3 and 4 for the Solar radiation, Total Rainfall Amount and 

the Number of Dry Days model respectively.  Table 2 shows for 

the Bayesian approach, that the Solar radiation model relates 

positively and significantly with Relative humidity and Wind 

speed (with prob (beta > 0) equals 1 for each variable). For this 

approach it can be inferred from the table that, in the wet or 

cropping season of Makurdi, Solar radiation increases by 0.791 

MJ/m2 for each unit increase in the natural logarithm of Relative 

humidity, while, it increases by 0.895 MJ/m2 for each unit 

increase in the natural logarithm of Wind speed. The result for its 

Classical counterpart shows that Solar radiation neither relate 

significantly with Relative humidity nor Wind speed (p values > 

0.05). Although the coefficient of determination is over 65 % for 

both models, this discrepancy still exist. Observe for the Bayesian 

model on table 3 shows that Total Rainfall Amount relates 

positively and significantly with Number of Wet Days and 

Number of Dry Days (with prob (beta > 0) equals 1 for each 

variable). 

Further result reveal for the Bayesian model that, Total Rainfall 

Amount increases by 66.280 mm for each unit increase in the 

natural logarithm of Number of Dry Days while it increases by 

2.912 mm for each unit increase in the natural logarithm of the 

Number of Wet Days. The result for its Classical counterpart on 

the same table shows that Total Rainfall Amount relates 

negatively and significantly with Number of Wet days (p value < 

0.05) but has no significant relationship with Number of Dry 

Days (p value > 0.05). This result differs from that of the Bayesian 

model despite the fact that its coefficient of determination is as 

high as 96 %. A good coefficient of determination may not always 

mean a good – fit. 

Table 3 reveals different results for the Bayesian and Classical 

models despite their coefficient of determination of over 90%. 

For the Bayesian model, the Number of Dry Days relates 

negatively and significantly with the Number of Wet Days ( prob 

(beta < 0) equals 1) and positively and significantly with Total 

Rainfall Amount (prob (beta > 0) equals 1). Further result on this 

shows that in the wet or cropping season of Makurdi, the Number 

of Dry Days decreases by 6.905 days for each unit increase in the 

natural logarithm of Number of Wet days while it increases by 

2.028 days for each unit increase in the natural logarithm of Total 

Rainfall Amount. The result for its Classical counterpart on the 

same table shows that Number of Dry Days neither relate 

significantly with the Number of Wet Days nor Total Rainfall 

Amount. 

Model in table 2 indicate that increase in Relative humidity and 

Wind speed increases Solar radiation while the model in table 3 

shows that the frequency of dry days increases with increase in 

Total Rainfall Amount in the area. This result is consistent with 

Agada et al. (2018) and Fabiyi et al. (2013). 

 

Table 2:  Classical and Bayesian Regression statistics for Solar Radiation (SR) model  

 

 

                    Classical Multiple Linear 

                          Regression Model  

 Bayesian Multiple Linear 

          Regression Model 

Model Beta 

Coefficients 

P 

value 

R2 (%) 95 % Confidence 

interval 

Beta 

Coefficients 

Prob (Beta 

>0) 

R2 (%) 95 %  Credible 

interval 

Constant 267.728 0.050  (0.220, 535.236) 13.310 1.000  (-46.900, 73.76) 

Ln(REL) -58.371 0.610 (66.300) (-120.560, 3.818) 0.791 1.000 (65.400) (-13.300, 14.810) 

Ln(WS) 0.695 0.167  (-0.410, 1.800) 0.859 1.000  (-0.560, 2.264) 

 

 

Table 3:  Classical and Bayesian Regression statistics for Total Rainfall Amount (TRA) Model 

 

 

 

                     Classical Multiple Linear 

                          Regression Model  

 Bayesian Multiple Linear 

          Regression Model 

    

Model Beta 

Coefficients 

P 

value 

R2 (%) 95 % Confidence 

interval 

Beta 

Coefficients 

Prob (Beta 

>0) 

R2 (%) 95 %  Credible 

interval 

Constant 1170.345 0.0120  (388.644, 1952.045) 8.506 1.000  (-50.900, 

67.780) 

Ln(NW) -339.563 0.0120 (96.100) (-565.081, -114.044) 66.280 1.000 (63.840) (30.160, 

90.020) 

Ln(ND) 10.359 0.610  (-38.620, 59.339) 2.912 1.000  (-20.370, 

30.420) 
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Table 4:  Classical and Bayesian Regression statistics for Number of Dry Days (ND) Model 

                     Classical Multiple Linear 

                          Regression Model  

 Bayesian Multiple Linear 

          Regression Model 

Model Beta 

Coefficients 

P 

value 

R2 (%) 95 % Confidence 

interval 

Beta 

Coefficients 

Prob (Beta 

>0) 

R2 (%) 95 %  Credible 

interval 

Constant 27.730 0.023  (5.615, 49.946) 25.770 1.000  (-4.425, 44.070) 

Ln(NW) -6.147 0.154 (90.400) (-15.667,3.268) -6.905 0.000 (94.160) (-15.960, 0.982) 

Ln(TRA) 1.306 0.706  (-7.085, 9.695) 2.028 1.000  (-4.097,10.09) 

 

We also state that the reason for the discrepancies in the results 

of the Bayesian models and their Classical counterparts lie on the 

aggregation of the entire dataset of 34 years into an eight (8) - 

Sample size dataset. This amounts to an incorrect fit with the 

Classical approach. As earlier mentioned, researchers have 

affirmed that the Classical or Frequentist Regression Modeling 

approach may not yield good results with sparse or incomplete 

datasets (Taeryon, et al, 2008; Agada, et al, 2019; Tripathi, et al, 

2019). According to these authors, this is not the case with the 

Bayesian modeling approach as it does not depend chiefly on data 

sampling but on model parameter sampling. 

We certified the correctness of the Bayesian Normal Model via 

the satisfaction of structural assumptions, goodness of fit test and 

model diagnostic checks. We adopt a graphical approach, in the 

verification of the assumptions of the Bayesian normal models. 

The history, density and autocorrelation plots of the residuals 

computed from the WinBUGS program code were employed for 

this purpose. For the normality of errors assumption, observe for 

each model, that the density plots of residuals obtained for each 

month of the season follow a normal distribution in the 

neighborhood of a zero mean as seen in Fig. 1.  The homogeneity 

or equal variance assumption of errors can be checked, by 

examining the history plots of the residuals for each model and 

for each month. Observe a rectangular band with approximately 

constant width which characterizes each plot (see Fig. 2). This is 

an indication of equal or constant variance. The independence 

assumption of errors can be checked by examining the 

autocorrelation plots for each model and for each month. Observe 

that the bars cut-off at each lag (Fig. 3). This is an indication of 

zero autocorrelation at each lag signifying the independence of 

the errors. 

We judge the goodness of fit of the Bayesian models from the 

value of the Coefficient of Determination (R2) for each model. 

Tables 2, 3 and 4 reveal R2 values of 65.40, 63.84 and 94.16 

percent respectively for the Solar radiation, Total Rainfall 

Amount and the Number of Dry Days model. This shows that 

good percentage variability is explained by the models. Hence a 

good model fit.  After the development of the model, convergence 

diagnostic checks were conducted for each model parameter and 

measure in order to ascertain model adequacy. The history plot, 

density plots and autocorrelation plots were used for this purpose. 

See Figs. 4 – 6 for the respective plots of the parameters for each 

model.  Observe that the history plots shows that the model 

parameters and measures are well – mixed. This is because they 

traverse the posterior domain rapidly with nearly constant mean 

and variance. The model prior distributions for the beta 

coefficients are normal (0, 0.001). The normal density plots of 

these priors reflect these normal (0, 0.001) distributions. This 

further validates each model. The autocorrelation plots of each 

parameter and measure depict the independence of the samples 

generated. This is because the autocorrelations become negligible 

fairly quickly, after a few lags.

 

 

Figure 1: Normal density plots of residuals for the Total Rainfall Amount Model for each month 



A BAYESIAN APPROACH… Agada, Ogwuche and Abagwalatu FJS 

FUDMA Journal of Sciences (FJS) Vol. 5 No.3, September, 2021, pp 129 - 140 
136 

 

 

 

 

Figure 2:  History plots of residuals for the Solar Radiation Model in each month 
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   Figure 3:  Autocorrelation plots of residuals for the Number of Dry Days Model in each month 
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  Figure 4:  History plots of Regression coefficients for the Solar Radiation (a), Total Rainfall Amount (b) and Number of Dry Days 

(c) models 

 

 

 

 

Figure 5 : Normal density plots of Regression coefficients for the Solar Radiation (a), Total Rainfall Amount (b) and Number of Dry 

Days (c) models 
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(a) 

(b) 

(c) 

Figure 6: autocorrelation plots of Regression coefficients for the Solar Radiation (a), Total Rainfall Amount (b) and Number of Dry Days (c) 

models 
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CONCLUSION AND RECOMMENDATIONS 

Conclusion 

The Bayesian Normal Regression Climatic Model is more 

adequate in modeling the wet or cropping season climate of 

Makurdi than its Classical counterpart. Solar radiation increases 

by 0.791 MJ/m2 for each unit increase in the natural logarithm of 

Relative humidity while it increases by 0.895 MJ/m2 for each unit 

increase in the natural logarithm of Wind speed. Total Rainfall 

Amount increases by 66.280 mm for each unit increase in the 

natural logarithm of Number of Dry Days while it increases by 

2.912 mm for each unit increase in the natural logarithm of the 

Number of Wet Days. The number of Dry Days decreases by 

6.905 days for each unit increase in the natural logarithm of the 

Number of Wet days while it increases by 2.028 days for each 

unit increase in the natural Total Rainfall Amount. Moreover, the 

wet or cropping season climate of Makurdi is becoming warmer 

and drier. 

Recommendations 

 The Bayesian Normal Regression Climatic Models should be 

employed in modeling the relationships between climatic 

determinants in the wet or cropping season of Makurdi, Nigeria 

when sample size reduction due to data aggregation is a concern. 

Furthermore, climate change impact on the warming and dry 

climate in the cropping season should be checked if the area is to 

retain its potentials for crop production in the long run. 
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