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ABSTRACT 

In this paper, two analytical–numerical algorithms are formulated based on homotopy perturbation method and 

new iterative method to obtain numerical solution for temperature distribution 𝑢(𝑥, 𝑡) in a thin rod over a 

given finite interval. The effects of different parameters such as the coefficient 𝛽 which accounts for the heat 

loss and the diffusivity constant 𝜙 are examined when initial temperature distribution 𝑢(𝑥, 0) (trigonometry 

and algebraic functions) are considered. The error in both algorithms approaches to zero as the computational 

length 𝑃 increases. The proposed algorithms have been demonstrated to be quite flexible, robust and accurate. 

Thus, the algorithms are established as good numerical tools to solve several problems in applied mathematics 

and other related field of sciences. 
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INTRODUCTION 

The heat equations model the flow of heat through materials. 

They arise from interpretation of models of physical phenomena 

to reality in applied sciences and engineering such as in fluid 

mechanics, thermodynamics, vibration analysis, electrical 

engineering and applied physics. In a thin rod with non-uniform 

temperature, thermal energy is transferred from regions of higher 

temperature to regions of lower temperature. Heat diffusion 

equation is a parabolic partial differential equation (PDE) which 

describes the heat distribution in a given region and provides the 

basic tool for heat conduction analysis. The numerical solutions 

for this type of equation provide understanding knowledge of the 

temperature distribution which may then be used with Fourier’s 

law to determine the heat flux as elucidated in the works of 

Guenther and Lee (1996), Cannon and Browder (1984) and 

Bergman et al. (2011). Seeking of analytic-numerical methods 

has gained the interest of researchers for finding approximate 

solutions to PDEs. This interest is driven by demand of 

applications both in industries and sciences which leads to 

investigate analytical and numerical methods for solving initial 

and boundary value problems as expressed by Cheniguel (2014).  

In this paper, the temperature distribution  𝑢(𝑥, 𝑡) is sought in a 

thin rod over the finite interval  𝐼 = {𝑥|0 < 𝑥 < 1} whose lateral 

surface is not insulated. The rod is experiencing a heat loss 

proportional to the difference between the rod temperature and 

the surrounding temperature at zero degrees. Adopting the form 

of the homogeneous partial differential equation expressed by 

Articolo (2009), we have the second order heat equation as: 

 

                                  
 Figure 1: A thin rod of length L not insulated on its sides along x-coordinate at time t.  
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 Ttxk  0,10,0,       (1) 

with the initial temperature used in the works of Articolo (2009) and Moore (2005):  

 

𝑢(𝑥, 0) = {

4 sin(𝑥) + 2 sin(2𝑥) + 7 sin(3𝑥)

1 −
𝑥2

3

                                                                                            (2) 

 

The initial and boundary conditions are: 

                  {
𝑢𝑡(𝑥, 0) = 0

𝑢(1, 𝑡) + 𝑢𝑡(1, 𝑡) = 0
                                                                                                                                           (3) 

 

The left end of the rod is insulated and the right end is losing heat by convection into a zero temperature surrounding where 

coefficient 𝛽 accounts for the heat loss and ϕ is called the thermal diffusivity of the medium under consideration. This constant is 

equal:  

 

                            ϕ =
K

ρCp
                                                                                                                                                         (4)  

where Cp the specific heat of the medium at constant pressure, ρ is the mass density and K is the thermal conductivity of the medium.  

By convention, it could be said that heat is a diffusion process whereby heat flows from high-temperature regions to low-

temperature regions similar to how salt in a water solution diffuses from high-concentration regions to low-concentration regions. 

The magnitude of the thermal diffusivity ϕ is an indication of the ability of the medium to conduct heat from one region to another. 

In this paper, 𝑢(𝑥, 𝑡) denotes the temperature at the point 𝑥-metres along the rod at time 𝑡 (in seconds) and the authors are interested 

in how the temperature along the rod varies with time which is subjected to initial temperature distribution 𝑢(𝑥, 0) (in the forms of 

trigonometry, exponential and logarithm functions). 

Recently, Wegrzyn-Skrzypczak and Skrzypczak (2017) presented the results of analytical and numerical solutions for the problem 

of heat transport in the rod of finite length employing Fourier series and Finite Element Method (FEM). They addressed the 

compatibility of both solutions and distribution of the temperature for selected time moments. Among many researchers who 

investigated the heat transfers in solid media is Makhtoumi (2017). He presented a numerical method for the heat equation over 

one dimensional rod region. Al-Huniti et al. (2002) studied dynamic response of a rod due to a moving heat source under the 

hyperbolic heat conduction model. Also, Haggkvisk (2009) considered a practical and theoretical approach to the problem of plate 

thermometer, which is a robust and simple instrument to be used to handle fierce environmental conditions, as a mean of calculating 

incident heat radiation. He (1999) presented a study for the numerical solution of three-dimensional second order partial differential 

equation that occurs in a thin plate vibration behaviour using homotopy perturbation algorithm.  

The aim of this paper is to formulate and employ two computational algorithms based on homotopy perturbation method and new 

iterative method to obtain temperature distribution 𝑢(𝑥, 𝑡) in a thin rod over a given finite interval whose lateral surface is not 

insulated. 

 

COMPUTATIONAL TECHNIQUES 

Homotopy Perturbation Method (HPM) 

He (1999) proposed a new perturbation technique coupled with the homotopy technique, which is called the homotopy perturbation 

method (HPM). Hemeda (2012) and Falade et al. (2020) respectively applied homotopy perturbation method for solving systems 

of nonlinear coupled equations and solve some systems of partial differential equations, viz: the systems of coupled Burgers’ 

equations in one and two dimensions and the system of Laplace’s equation. Furthermore, Xiao et al. (2015) proposed a local 

fractional homotopy perturbation method which was an extended form of the classical homotopy perturbation method. Singh and 

Chatterjee (2017) presented numerical solutions of one dimensional space and time fractional advection- dispersion equation by 

homotopy perturbation method. 

In this paper, we present the homotopy perturbation method (HPM) as a numerical technique for solving functional equation of the 

form:  

𝐴(𝑢) − 𝑓(𝜎) = 0,       𝜎 𝜖 Ω                                                                                                             (6) 

with boundary conditions:  

𝐵 (𝑢,
𝜕𝑢

𝜕𝜎
) = 0,      𝜎 𝜖 Γ                                                                                                                    (7) 
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where 𝐴 is a general operator, 𝐵 is a boundary operator, 𝑓(𝜎) is a known analytic function, and  Γ is the boundary of the domain 

Ω. 𝐴 can further be divided into two parts 𝐿 and 𝑁 where 𝐿 is the linear part of 𝐴 and 𝑁 if the nonlinear part of 𝐴. Eq. (6) can now 

be expressed as:  

𝐿(𝑢) + 𝑁(𝑢) − 𝑓(𝜎) = 0,       𝜎 𝜖 Ω                                                                                              (8) 

By constructing the homotopy 𝑣(𝜎, 𝑝): Ω × [0,1] → ℝ, which satisfies: 

𝐻(𝑣, 𝑝) = (1 − 𝑝)[𝐿(𝑣) − 𝐿(𝑢0)] + 𝑝[𝐴(𝑣) − 𝑓(𝜎)] = 0,       𝑝𝜖[0,1], 𝜎𝜖Ω                      (9) 

 𝑢0 is the initial approximation Eq. (6), the homotopy parameter is then used to expand;  

𝑣 = 𝑣0 + 𝑝𝑣1 + 𝑝
2𝑣2 +⋯ = ∑𝑝𝑗𝑣𝑗

∞

𝑗=0

                                                                                         (10) 

Take   𝑝 = 1, then  

𝑢(𝜎) = lim
p=1

v =∑𝑝𝑗𝑣𝑗

∞

𝑗=0

                                                                                                                 (11) 

Formulation of six steps homotopy perturbation algorithm (HPA) 

In order to formulate homotopy perturbation algorithm (HPA), we consider Eq. (1) coupled with initial and boundary conditions 

and Eq. (6) - Eq. (11) using MAPLE 18 commands as follows: 

restart:  

Step 1:  

𝐷𝑖𝑔𝑖𝑡𝑠 ≔ 30; 
ϕ ≔ [0.1554 , 0.0554 ] 
𝛽 ≔ 0.3333; 
𝑃 ≔ 20; 

𝑢(𝑥, 0):=

{
 
 

 
 
4 sin(𝑥) + 2 sin(2𝑥) + 7 sin(3𝑥)

1 −
𝑥2

3

2 sin (
𝜋𝑥

2
) + sin(2𝜋𝑥) + 4sin(2𝜋𝑥)

7 log10(𝑥)

; 

 

𝑢𝑡(𝑥, 0) ≔ 0; 
𝑢(1, 𝑡) + 𝑢𝑡(1, 𝑡):=0; 

𝑢[0] ≔ 𝑢(𝑥, 0) + 𝑡 ∗ (𝑢(1, 𝑡) + 𝑢𝑡(1, 𝑡)); 
 

Step 2: 

𝒇𝒐𝒓 𝒊 𝒇𝒓𝒐𝒎 𝟎 𝒕𝒐 𝟎 𝒅𝒐 

𝐴[1] ≔ 𝑑𝑖𝑓𝑓(𝑢[0], 𝑥) − ϕ ∗ 𝑑𝑖𝑓𝑓(𝑢[0], 𝑥, 𝑥) − 𝛽 ∗ 𝑢[0]; 
𝐴[2] ≔ −𝐼𝑛𝑡(𝐴[1], 𝑡); 
𝑢[𝑖 + 1] ≔ 𝑣𝑎𝑙𝑢𝑒(𝐴[2]); 
end do 

 

Step 3: 

𝒇𝒐𝒓 𝒊 𝒇𝒓𝒐𝒎 𝟏 𝒕𝒐 𝑷 𝒅𝒐 

𝐵[1] ≔ −ϕ ∗ 𝑑𝑖𝑓𝑓(𝑢[𝑖], 𝑥, 𝑥) − 𝛽 ∗ 𝑢[𝑖]; 
𝐵[2] ≔ −𝐼𝑛𝑡(𝐵[1], 𝑡); 
𝑢[𝑖 + 1] ≔ 𝑣𝑎𝑙𝑢𝑒(𝐵[2]); 
𝒆𝒏𝒅 𝒅𝒐 

 

Step 4: 

𝑢[𝐻𝑃𝐴] ≔ 𝑒𝑣𝑎𝑙𝑓(𝑠𝑢𝑚(𝑢[𝑗], 𝑗 = 0…𝑃 + 1));                                                  (12) 

𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 0.0, 𝑡 = 0.0]); 
 𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 0.1, 𝑡 = 0.1]); 
𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 0.2, 𝑡 = 0.2]); 
𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 0.3, 𝑡 = 0.3]); 
𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 0.4, 𝑡 = 0.4]); 
𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 0.5, 𝑡 = 0.5]); 
𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 0.6, 𝑡 = 0.6]); 
𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 0.7, 𝑡 = 0.7]); 
𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 0.8, 𝑡 = 0.8]); 
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𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 0.8, 𝑡 = 0.8]); 
𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 0.9, 𝑡 = 0.9]); 
 𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 1.0, 𝑡 = 1.0]); 
 

Step 5: 

𝑇[0] ≔ 𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 0]); 
𝑇[2] ≔ 𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 2]); 
𝑇[4] ≔ 𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 4]); 
𝑇[6] ≔ 𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 6]); 
𝑇[8] ≔ 𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 8]); 
𝑇[10] ≔ 𝑒𝑣𝑎𝑙(𝑢[𝐻𝑃𝐴], [𝑥 = 10]); 
 

Step 6: 

𝑚[3𝐷𝑝𝑙𝑜𝑡] ≔ 𝑝𝑙𝑜𝑡3𝑑(𝑢[𝐻𝑃𝐴], 𝑡 = −10𝜋…10𝜋, 𝑥 = −10𝜋…10𝜋, 𝑔𝑟𝑖𝑑 = [100,100], 𝑐𝑜𝑙𝑜𝑟); 

𝑚[2𝐷𝑝𝑙𝑜𝑡] ≔ 𝑝𝑙𝑜𝑡([𝑇[0], 𝑇[2], 𝑇[4], 𝑇[6], 𝑇[8], 𝑇[10]]), 𝑡 = 0…10, 𝑐𝑜𝑙𝑜𝑟 =
[𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑏𝑙𝑎𝑐𝑘, 𝑝𝑢𝑟𝑝𝑙𝑒], 𝑎𝑥𝑒𝑠 = 𝐵𝑂𝑋𝐸𝐷, 𝑡𝑖𝑡𝑙𝑒 = 𝑐𝑎𝑠𝑒𝑠), 
𝑚[𝑃𝑜𝑙𝑎𝑟𝑝𝑙𝑜𝑡] ≔ (𝑢[𝐻𝑃𝐴], 𝑡 = −10𝜋…10𝜋, 𝑥 = −10𝜋…10𝜋); 
𝑚[𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑝𝑙𝑜𝑡] ≔ (𝑢[𝐻𝑃𝐴], 𝑡 = −10𝜋…10𝜋, 𝑥 = −10𝜋…10𝜋); 
Output: Tables 1,2,3 and Figures:1,,2,3....,16  

where P is the computational length. 

 
New Iterative Method 

New iterative method (NIM) was proposed by Daftardar-Gejji and Jafari (2006). NIM is simple in its principles and easy to 

implement on computer using symbolic computation packages such as Maple. This method is better a numerical method as it is 

free from rounding off errors and does not require large computer space as evident in the works of Bhalekar and Gejji (2008) and 

Allawee (2018). 

 

Consider new iterative method (NIM) as a numerical technique for solving functional equation of the form  

𝑢(�̅�) = 𝑓(�̅�) + 𝑁(𝑢(�̅�))                                                                                                        (13) 

where 𝑁 a nonlinear operator from a Banach space 𝐵 → 𝐵 and 𝑓(�̅�) is a known function. 

 �̅� = (𝑥1, 𝑥2,  𝑥3, . . . , 𝑥𝑛). We need to obtain the solution 𝑢(�̅�) of Eq. (13) having the series of the form:  

𝑢(�̅�) =∑𝑢𝑖(�̅�)

∞

𝑖=0

                                                                                                             (14) 

The nonlinear operator which is on the right-hand side of Eq. (13) can be decomposed as follow: 

𝑁(∑𝑢𝑖(�̅�)

∞

𝑛=0

) = 𝑁(𝑢0) +∑{𝑁(∑𝑢𝑗

𝑖

𝑗=0

) − 𝑁(∑𝑢𝑗

𝑖−1

𝑗=0

)}                                    (15)

∞

𝑖=1

 

Substituting equations Eq. (13) and Eq. (14) into the equation Eq. (15) and becomes: 

∑𝑢𝑖(�̅�) = 𝑓(�̅�) + 𝑁(𝑢0) + ∑{𝑁(∑𝑢𝑗

𝑖

𝑗=0

)− 𝑁(∑𝑢𝑗

𝑖−1

𝑗=0

)}                               (16)

∞

𝑖=1

∞

𝑖=0

 

The recurrence relation is given by      

 

{
 
 

 
 

𝑢0 = 𝑓,
𝑢1 = 𝑁(𝑢0)

⋮
𝑢𝑚+1 = 𝑁(𝑢0 + 𝑢1 +⋯+ 𝑢𝑚) − 𝑁(𝑢0 + 𝑢1 +⋯+ 𝑢𝑚−1)

𝑚 = 1,2,3,… 

                                                                (17) 

Then 
(𝑢1 + 𝑢2 +⋯+ 𝑢𝑚+1) = 𝑁(𝑢0 + 𝑢1 +⋯+ 𝑢𝑚),             𝑚 = 1,2,3, …               (18) 

 

and  

∑𝑢𝑖 = 𝑓 + 𝑁(∑𝑢𝑖

∞

𝑖=0

)                                                                                                  (19)

∞

𝑖=0

 

The 𝑞 −term approximate solution of Eq. (13) is given by; 

𝑢 = 𝑢0 + 𝑢1 +⋯+ 𝑢𝑞−1                                                                                                  (20) 

 

Formulation of seven steps New Iterative Algorithm (NIA)  

In this section, we consider Eq. (1) coupled with initial conditions (2) and Eq. (13) to Eq. (20) and formulate five steps algorithm 

using MAPLE 18 commands to solve Eq. (1) as follows: 
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restart:  

Step 1: 

𝐷𝑖𝑔𝑖𝑡𝑠 ≔ 30; 
ϕ ≔ [0.1554 , 0.0554 ]; 
𝛽 ≔ 0.3333; 
𝑃 ≔ 20; 

𝑢(𝑥, 0):=

{
 
 

 
 
4 sin(𝑥) + 2 sin(2𝑥) + 7 sin(3𝑥)

1 −
𝑥2

3

2 sin (
𝜋𝑥

2
) + sin(2𝜋𝑥) + 4sin(2𝜋𝑥)

7 log10(𝑥)

; 

 

𝑢𝑡(𝑥, 0) ≔ 0; 
𝑢(1, 𝑡) + 𝑢𝑡(1, 𝑡):=0; 

𝑢[0] ≔ 𝑢(𝑥, 0) + 𝑡 ∗ (𝑢(1, 𝑡) + 𝑢𝑡(1, 𝑡)); 

Step 2: 

𝒇𝒐𝒓 𝒏 𝒇𝒓𝒐𝒎 𝟎 𝒕𝒐 𝑷 𝒅𝒐 

𝑢[𝑛 + 1] ≔ 𝑣𝑎𝑙𝑢𝑒(𝑖𝑛𝑡(ϕ ∗ 𝑑𝑖𝑓𝑓(𝑢[𝑛], 𝑥, 𝑥) + 𝛽 ∗ 𝑢[𝑛], 𝑡 = 0. . 𝑡)); 
end do 

 

Step 3: 

𝑓𝑜𝑟 𝑛 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑃 + 1  𝑑𝑜  
𝑢[𝑛] ≔ 𝑢[𝑛]; 
𝑒𝑛𝑑 𝑑𝑜 

Step 4: 

𝑆𝑢𝑚 𝑼 ≔ 𝑠𝑢𝑚(𝑢[𝑗]), 𝑗 = 0…𝑃 + 1; 
𝑆𝑖𝑚𝑝𝑼 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦(𝑠𝑢𝑚𝑼); 
𝑢[𝑁𝐼𝐴] ≔ 𝑒𝑣𝑎𝑙𝑓(𝑠𝑖𝑚𝑝𝑼); 
𝒆𝒏𝒅 𝒅𝒐  

    

Step 5: 

 𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 0.0, 𝑡 = 0.0]);                                                                                (21) 

𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 0.1, 𝑡 = 0.1]); 
𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 0.2, 𝑡 = 0.2]); 
𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 0.3, 𝑡 = 0.3]); 
𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 0.4, 𝑡 = 0.4]); 
𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 0.5, 𝑡 = 0.5]); 
𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 0.6, 𝑡 = 0.6]); 
𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 0.7, 𝑡 = 0.7]); 
𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 0.8, 𝑡 = 0.8]); 
𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 0.8, 𝑡 = 0.8]); 
𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 0.9, 𝑡 = 0.9]); 
 𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 1.0, 𝑡 = 1.0]); 
Step 6: 

𝑇[0] ≔ 𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 0]); 
𝑇[2] ≔ 𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 2]); 
𝑇[4] ≔ 𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 4]); 
𝑇[6] ≔ 𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 6]); 
𝑇[8] ≔ 𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 8]); 
𝑇[10] ≔ 𝑒𝑣𝑎𝑙(𝑢[𝑁𝐼𝐴], [𝑥 = 10]); 
 

Step 7: 

𝑚[3𝐷𝑝𝑙𝑜𝑡] ≔ 𝑝𝑙𝑜𝑡3𝑑(𝑢[𝑁𝐼𝐴], 𝑡 = −10𝜋…10𝜋, 𝑥 = −10𝜋…10𝜋, 𝑔𝑟𝑖𝑑 = [100,100], 𝑐𝑜𝑙𝑜𝑟); 

𝑚[2𝐷𝑝𝑙𝑜𝑡] ≔ 𝑝𝑙𝑜𝑡([𝑇[0], 𝑇[2], 𝑇[4], 𝑇[6], 𝑇[8], 𝑇[10]]), 𝑡 = 0…10, 𝑐𝑜𝑙𝑜𝑟 =
[𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑏𝑙𝑎𝑐𝑘, 𝑝𝑢𝑟𝑝𝑙𝑒], 𝑎𝑥𝑒𝑠 = 𝐵𝑂𝑋𝐸𝐷, 𝑡𝑖𝑡𝑙𝑒 = 𝑐𝑎𝑠𝑒𝑠), 
𝑚[𝑃𝑜𝑙𝑎𝑟𝑝𝑙𝑜𝑡] ≔ (𝑢[𝑁𝐼𝐴], 𝑡 = −10𝜋…10𝜋, 𝑥 = −10𝜋…10𝜋); 
𝑚[𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑝𝑙𝑜𝑡] ≔ (𝑢[𝑁𝐼𝐴], 𝑡 = −10𝜋…10𝜋, 𝑥 = −10𝜋…10𝜋); 
Output: Tables 1,2,3 and Figures:1,,2,3....,16  

                                                                                                                                                                         

where P is the computational length. 
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Absolute error (𝐸𝑡) 

In order to determine the error involved in the proposed algorithms, we consider the absolute error as follows: 

    𝐸𝑡 = |u(𝑥, t)𝑒𝑥𝑎𝑐𝑡 − u(𝑥, t)𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙|.                                                                            (22)                                               

 

DISCUSSION OF RESULTS 

In order to demonstrate the two proposed algorithms, we consider ϕ  thermal diffusivity of the medium under consideration as  ϕ =
0.1554w/mk  𝑎𝑛𝑑 ϕ = 0.0554w/mk  and heat loss coefficient  𝛽 = 0.3333. Applying equations (12) and (21), we obtain the 

numerical solutions in Table 1 and Table 2.   

 

Table 1: The temperature distribution 𝒖(𝒙, 𝒕) in a thin rod over the finite interval  𝑰 = {𝒙|𝟎 < 𝒙 < 𝟏}. 

u(x, t) Solutions 

Case  1 

ϕ = 0.1554 , 𝛽 = 0.3333  
𝑢(𝑥, 0) = 4 sin(𝑥) + 2 sin(2𝑥) + 7 sin(3𝑥) 

𝑢𝑡(𝑥, 0) = 0, 𝑢(1, 𝑡) + 𝑢𝑡(1, 𝑡) = 0 

 

                                Case 2 

ϕ = 0.0554 , 𝛽 = 0.3333  
𝑢(𝑥, 0) = 4 sin(𝑥) + 2 sin(2𝑥) + 7 sin(3𝑥) 

𝑢𝑡(𝑥, 0) = 0, 𝑢(1, 𝑡) + 𝑢𝑡(1, 𝑡) = 0 

 

(0.1, 0.1) 

Exact 2.652149575768369295763157416588224528 2.847031061042312283931233894399942570 

HPA 2.652149575768369295763157416588224529 2.847031061042312283931233894399942569 

NIA 2.652149575768369295763157416588224528 2.847031061042312283931233894399942568 

(0.2, 0.2) Exact 4.752703401718577536973126984101481214 5.460164175942352431784834563700304958 

HPA 4.752703401718577536973126984101481212 5.460164175942352431784834563700304955 

NIA 4.752703401718577536973126984101481211 5.460164175942352431784834563700304957 

(0.3, 0.3) Exact 6.265917447557375649263515906620396957 7.669937879454570257988149872413261105 

HPA 6.265917447557375649263515906620336238 7.669937879454570257988149872413261105 

NIA 6.265917447557375649263515906620336237 7.669937879454570257988149872413261102 

(0.4, 0.4) Exact 7.211599577509807524347373576425499025 9.346802884863210657793451408640557162 

HPA 7.211599577509807524347373576385181928 9.346802884863210657793451408640557162 

NIA 7.211599577509807524347373576385181927 9.346802884863210657793451408640557161 

(0.5, 0.5) Exact 7.652155276518404096642478938061559869 10.41018369646774717315787179663105448 

HPA 7.652155276518404096642478932240362089 10.41018369646774717315787179663105449 

NIA 7.652155276518404096642478932240362084 10.41018369646774717315787179663105448 

(0.6, 0.6) Exact 7.678430024541219539966930597939121475 10.83299728963176763009584805445439358 

HPA 7.678430024541219539966930285608543774 10.83299728963176763009584805445439358 

NIA 7.678430024541219539966930285608543782 10.83299728963176763009584805445439358 

(0.7, 0.7) Exact 7.395852697596453832863434645604999267 10.64140829431193631307248108079255998 

HPA 7.395852697596453832863426458853494421 10.64140829431193631307248108079255997 

NIA 7.395852697596453832863426458853494414 10.64140829431193631307248108079255998 

(0.8, 0.8) Exact 6.912062935046146396938268629563419771 9.910023243171636434640129168176145072 

HPA 6.912062935046146396938148272752921511 9.910023243171636434640129168176145060 

NIA 6.912062935046146396938148272752921512 9.910023243171636434640129168176145062 

(0.9, 0.9) Exact 6.326839559802494119265891626973337282 8.753116908098037989175449988891887809 

HPA 6.326839559802494119264879820906180314 8.753116908098037989175449988891887649 

NIA 6.326839559802494119264879820906180314 8.753116908098037989175449988891887649 
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Table 2: The temperature distribution 𝒖(𝒙, 𝒕) in a thin rod over the finite interval  𝑰 = {𝒙|𝟎 < 𝒙 < 𝟏}. 

u(x, t) Solutions 

                                  Case 3 

ϕ = 0.1554 , 𝛽 = 0.3333  

𝑢(𝑥, 0) = 1 −
𝑥2

3
 

𝑢𝑡(𝑥, 0) = 0, 𝑢(1, 𝑡) + 𝑢𝑡(1, 𝑡) = 0 

               Case 4 

ϕ = 0.0554 , 𝛽 = 0.3333  

𝑢(𝑥, 0) = 1 −
𝑥2

3
 

𝑢𝑡(𝑥, 0) = 0, 𝑢(1, 𝑡) + 𝑢𝑡(1, 𝑡) = 0                  

(0.1,0.1) 

Exact 1.019734243972716468494282330684589162 1.026596056743723131053823183345899768 

HPA 1.019734243972716468494282330684589162 1.026596056743723131053823183345899768 

NIA 1.019734243972716468494282330684589162 1.026596056743723131053823183345899768 

(0.2,0.2) Exact 1.032531282501371545306117024025157942 1.046720903756481453457365224141398932 

HPA 1.032531282501371545306117024025157943 1.046720903756481453457365224141398932 

NIA 1.032531282501371545306117024025157943 1.046720903756481453457365224141398932 

(0.3,0.3) Exact 1.037656701780686252993428477575609077 1.059664525010099770187399767045015571 

HPA 1.037656701780686252993428477575609078 1.059664525010099770187399767045015572 

NIA 1.037656701780686252993428477575609078 1.059664525010099770187399767045015572 

(0.4,0.4) Exact 1.034326089885997016541275218117628917 1.064668070766782892609132404320329611 

HPA 1.034326089885997016541275218117628917 1.064668070766782892609132404320329612 

NIA 1.034326089885997016541275218117628918 1.064668070766782892609132404320329613 

(0.5,0.5) Exact 1.021702213894932897667976583727712352 1.060921087918769668521863156759094001 

HPA 1.021702213894932897667976583727712352 1.060921087918769668521863156759094001 

NIA 1.021702213894932897667976583727712352 1.060921087918769668521863156759094001 

(0.6,0.6) Exact 0.998892053692859697178763107923441174 1.047558609385673953174190057993126009 

HPA 0.998892053692859697178763107923441177 1.047558609385673953174190057993126010 

NIA 0.998892053692859697178763107923441177 1.047558609385673953174190057993126014 

(0.7,0.7) Exact 0.964943685671467128640632964723325906 1.023658095883069631314040326999792559 

HPA 0.964943685671467128640632964723325974 1.023658095883069631314040326999792576 

NIA 0.964943685671467128640632964723325973 1.023658095883069631314040326999792573 

(0.8,0.8) Exact 0.918843009223403815439357111250741531 0.988236223073918692314110706596718844 

HPA 0.918843009223403815439357111250742810 0.988236223073918692314110706596719188 

NIA 0.918843009223403815439357111250742809 0.988236223073918692314110706596719189 

(0.9,0.9) Exact 0.859510308616053748177622094402613561 0.940245506799336893560988696551675838 

HPA 0.859510308616053748177622094402630813 0.940245506799336893560988696551680575 

NIA 0.859510308616053748177622094402630813 0.940245506799336893560988696551680575 

 

           Table 3: Absolute error 

u(x, t) Algorithm Case  1 Case  2 Case  3 Case  4 

(0.1,0.1) 
 

HPA𝐸𝑡 1.1000 − E36 1.1000 − E36 2.1000 − E37 0.000000000 

NIA𝐸𝑡 1.1000 − E36 1.1000 − E36 0.000000000 0.000000000 

(0.2, 0.2) 
 

HPA𝐸𝑡 2.1000 − E36 3.1000 − E36 0.000000000 0.000000000 

NIA𝐸𝑡 3.1000 − E36 1.1000 − E36 1.1000 − E36 0.000000000 

(0.3, 0.3) 
 

HPA𝐸𝑡 6.0719 − E32 3.1000 − E36 1.1000 − E37 0.000000000 

NIA𝐸𝑡 6.0720 − E32 3.1000 − E36 1.1000 − E36 0.000000000 

(0.4, 0.4) 
 

HPA𝐸𝑡 2.0317 − E29 0.00000000 0.000000000 1.1000 − E36 

NIA𝐸𝑡 4.0317 − E29 1.1000 − E36 1.0000 − E36 1.1000 − E36 

(0.5, 0.5) 
 

HPA𝐸𝑡 5.8211 − E27 1.1000 − E35 0.000000000 0.000000000 

NIA𝐸𝑡 5.8212 − E27 0.00000000 0.000000000 0.000000000 

(0.6, 0.6) 
 

HPA𝐸𝑡 3.1233 − E23 0.00000000 2.6000 − E36 1.1000 − E36 

NIA𝐸𝑡 3.1233 − E25 0.00000000 3.1000 − E36 1.1000 − E36 

(0.7, 0.7) 
 

HPA𝐸𝑡 8.1868 − E24 1.1000 − E35 6.7500 − E35 1.1000 − E35 

NIA𝐸𝑡 8.1868 − E24 0.00000000 6.7500 − E35 1.1000 − E35 

(0.8, 0.8) 
 

HPA𝐸𝑡 1.2036 − E22 1.2100 − E35 1.2788 − E33 3.4310 − E34 

NIA𝐸𝑡 1.2036 − E22 1.1000 − E35 1.2783 − E33 3.4311 − E34 

(0.9, 0.9) 
 

HPA𝐸𝑡 1.0118 − E21 1.6000 − E34 1.7252 − E32 4.7362 − E33 

NIA𝐸𝑡 1.0118 − E21 1.6000 − E34 1.7252 − E32 4.7363 − E33 
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Plots’ Representation 

In this section, we present behavioural pattern of temperature distribution  𝑢(𝑥, 𝑡) in a thin rod in the 3D, 2D, polar plot, and density 

plots phase. 

 

3D plots temperature distribution 𝑢(𝑥, 𝑡) solutions in a thin rod 

 

            
 

 

          

 

                   2D plots temperature distribution 0 ≤ 𝑡 ≤ 10  
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Polar plot temperature distribution 𝒖(𝒙, 𝒕) in a thin rod 
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Density plot temperature distribution 𝐮(𝐱, 𝐭) in a thin rod 

 

 

 

 
CONCLUSION 

The parabolic heat equation (1) was used to determine 

temperature distribution 𝑢(𝑥, 𝑡) in a thin rod whose lateral 

surface is not insulated and rod is experiencing a heat loss 

proportional to the difference between the rod temperature and 

the surrounding temperature at zero degrees. Four numerical 

experiments are considered to examine the relationship between 

coefficient 𝛽 which accounts for the heat loss in equation (1) and 

ϕ thermal diffusivity of the thin rod over the finite interval  𝐼 =
{𝑥|0 < 𝑥 < 1}. The proposed algorithms have been 

demonstrated to be quite flexible, robust, efficiency and accurate 

in which the results obtained confirm the versatility, simplicity 

and efficiency of proposed techniques. Thus, the algorithms are 

suggested as good numerical tools to solve several problems in 

applied mathematics and other related field of sciences.  

The aim of this paper is achieved from computational solutions 

of temperature distribution 𝑢(𝑥, 𝑡) in a thin rod which are 

presented in Table 1 and Table 2 for four cases of trigonometric 

and algebraic functions that are considered for initial 

temperature conditions. The following observations are made as 

follows: 

i. Table 1 shows the numerical solutions obtained 

at higher the value of ϕ = 0.1554 k/𝑠𝑚2, 

thermal diffusivity gives less temperature 

distribution  𝑢(𝑥, 𝑡) in a thin rod under the same 

initial and boundary conditions. Conversely, as 

the value ϕ = 0.0554 k/𝑠𝑚2 decreases, thermal 

diffusivity gives higher temperature 

distribution 𝑢(𝑥, 𝑡) in a thin rod; 

ii. In the same vain, Table 3 shows the numerical 

solutions obtained at higher the value of ϕ =
0.1554 k/𝑠𝑚2. In this case, thermal diffusivity 

gives less temperature distribution  𝑢(𝑥, 𝑡) in a 

thin rod under the same initial and boundary 

conditions. In contrast, as the value of ϕ =
0.0554 k/𝑠𝑚2 becomes less, thermal diffusivity 

gives higher temperature distribution 𝑢(𝑥, 𝑡) in a 

thin rod; 

iii. The absolute error Table 3 indicates the 

efficiency of the two proposed algorithms; 

iv. The plot representations depict the numerical 

solutions of temperature distribution 𝑢(𝑥, 𝑡) in a 

thin rod in 3D plot solutions of Figure 1, Figure 

2, Figure 3 and Figure 4; 

v. 2D plot solutions in Figure 5, Figure 6, Figure 7 

and Figure 8 of temperatures ranges  00 ≤ 𝑡 ≤
100 are presented; 

vi.  Temperature distribution  𝑢(𝑥, 𝑡) in a thin rod is 

presented in polar-plots (Figure 9, Figure 10, 

Figure 11 and Figure 12) and the density plot is 

displayed in (Figure 13, Figure 14, Figure 15 and 

Figure 16).  

Hence, the reduction of ϕ thermal diffusivity enhances 

more temperature distribution 𝑢(𝑥, 𝑡) in a thin rod. 
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