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ABSTRACT  

Panel data estimators can strongly be biased and inconsistent in the presence of heteroscedasticity and anomalous 

observations called influential observations (IOs) in Random effect (RE) panel data model. The existing methods 

(LWS, WLSF, WLSDRGP) address only the problem of IO but fail to remedy the combine problem of 

heteroscedasticity and IOs.  Therefore, in this research we develop a method that will remedy the combine 

problem of heteroscedasticity and IOs based on robust heteroscedasticity consistent covariance matrix (RHCCM) 

estimator and fast improvised influential distance (FIID) weighting method denoted by WLSFIID. The 

simulation and numerical evidences show that our proposed estimation method is more efficient than the existing 

methods by providing smallest bias, and smallest standard error of HC4 and HC5. 

 

Keywords: Heteroscedasticity; Influential observations; Panel Data; Random Effect Model; RHCCM; Weighted Least 
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INTRODUCTION 

Panel data is a data that has two dimensionalities (time series 

and cross-section dimensions). It is usually used in the field of 

economics and finance to analyze a number of questions that 

cannot possibly be analyze using cross-sectional or time series 

analysis (Baltagi, 2005). The panel data model given by 

Muhammad et al. (2019) is; 

 

  and    

        (1) 

where,  are the response variables,  is the kth 

explanatory variables,  is the unobserved time-invariant 

effects and  is the error term (idiosyncratic error) that is 

assumed to be normal, uncorrelated across individual units and 

time. 

 

Panel data estimators can strongly be biased and inconsistent in 

the presence of heteroscedasticity and influential observations 

(Bramati and Croux, 2007). Rousseeuw and Zomeren (1990) 

pointed out that in panel data influential observations usually 

occur in y-axis (vertical outlier) or in x-axis (high leverage 

point). The most dangerous type of influential observation (IO) 

is the high leverage points (HLPs). There are two major models 

for analyzing a panel data, which are random effect (RE) and 

fixed effect (FE). The major difference between these two 

models is the assumption of the time invariant effect. 

 

The random effect (RE) model estimation technique is the 

same as FE model estimation except in the data transformation. 

In RE model there is no correlation between unobserved time 

invariant effect and regressor i.e. . The 

RE model uses partially demeaned transformation instead of 

demeaned transformation used in FE model. The estimation 

technique in RE model is to apply OLS to the partially 

demeaned transformed data (Crowder and Hand, 1990). 

 

Indeed, the OLS approach is known to be very sensitive to 

HLPs which causes bias in the parameter estimates. The 

problem of heteroscedasticity was addressed by many 

researchers in linear regression (Habshah et al., 2017; Furno, 

1996; Rana et al., 2012). In recent years, researchers developed 

robust estimators in panel data regression models in order to 

provide more consistent and efficient estimator (Muhammad et 

al., 2019; Maronna et al., 2006; Bramati and Croux, 2007; 

Baltagi, 2008; Baltagi et al., 2009; Verardi and Wagner, 2011; 

Mazlina and Habshah, 2015, Habshah and Sani, 2018). 

Nevertheless, their techniques do not take into consideration 

the combined problem of heteroscedasticity and IO.  

 

Recently, Visek (2015) used the least weighted squares (LWS) 

to estimate the parameters of the FE and RE models in panel 

data by employing classical centering method (mean centering) 

to transform the data and apply LWS, where the weight is 

defined by the residual order statistic. The limitation of this 

method is that, when there exist heteroscedasticity of unknown 

structure it is inefficient and produces large variances which 

lead to inconsistency of the Variance-covariance matrix. 

Moreover, the mean centering used by Visek (2015) is easily 

affected by the presence of IO. These shortcomings motivated 

us to propose a new estimation technique for RE panel data 

model based on fast improvised influential distance (FIID) of 

Habshah et al., (2021) and robust heteroscedasticity consistent 

covariance matrix (RHCCM). 

In this paper, we used a numerical data and Monte Carlo 

simulation studies to assess the performance of the proposed 

estimation technique (WLSFIID) and the existing methods; 
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Least weighted squares (LWS), Furno’s weighting method (F) 

and Diagnostic Robust Generalize Potential’s weighting 

method (DRGP) for RE panel data model. 

 

MATERIALS AND METHODS 

The partially demeaned centering transforms a panel data within each time series by subtracting some component of the average 

in each time series. As mentioned earlier, RE model assumed that  and  is part of the error term for all i 

= 1, 2, ...,n,  t = 1, 2, ...,T. i.e  , ,  and 

 for all  (see  Judge et al., 1985; Baltagi, 2001).  

 

Proposed Demeaned Centering based on MM estimator 

 

The MM centering for RE model based on partially demeaned transformation has the same procedure as that of partially 

demeaned transformation based on OLS method. The only difference is that, the demeaned transformed data within each time 

series by MM centering which is now given as:  

                                                                    (2) 

for 1 ,1 and1 , where  is the explanatory variables.  

 

1) Proposed Robust RE Estimation Method 

 

The new estimation method was design to remedy the effect of heteroscedasticity of unknown structure and IO based on robust 

HCCM estimator and detection measure (FIID). The algorithm of the proposed technique is summarized as follows: 

 

Step 1. Use partially demeaned centering based on MM-centering method to transform the data. 

 

Step 2. Compute the weight function  based on FIID method. 

 

Step 3. Fit a weighted least square (WLS) to the transformed data in Step1 using weight  obtained in Step2, calculate the 

residuals  and coefficient of estimates. 

 

Step 4. Compute the RHCCM estimator using the residuals  obtained in Step3. 

 

a) Monte Carlo Simulation Study 

 

We employed a simulation technique of Visek (2015) and Lima et. al. (2009) to assess the performances of the new proposed 

weighting method (WLSFIID) in RE panel data model. Let consider the following RE panel data model,  

 

     and      (3) 

Three explanatory variables ( ) and  were generated from normal distribution. We set the true parameters 

, . Three sample sizes  5, 10 and 15 with the corresponding  10, 15 

and 20 were replicated twice to form  10, 20, 30 and  20, 30, 40 respectively, in order to create heteroscedasticity.  The 

degree of heteroscedasticity is assess by . The skedastic function was set based on Lima et al., 

(2009) as , where  which gives the value of  and will be constant for all the 

sample sizes considered. The value of  indicate the level of heteroscedasticity present in the data, whereby for 

homoscedasticity, . Regular data points in both response and explanatory variables were replaced with data points 

generated from k-variate normal distribution  at 0%, 5% and 10% contamination level for all the sample sizes 

considered at an average of 1000 replications.  

 

Artificial heteroscedastic RE panel data 

 

An artificial heteroscedastic RE panel data set with n=6 and t=20 number of observations was generated. The independent and 

response variable were generated from N  and  respectively. The 

heteroscedasticity was created as in the Monte Carlo Simulation. 
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RESULTS AND DISCUSSION 

Tables 1-3 shows the performance of the proposed method (WLSFIID) and the existing methods (LWS, WLSF and WLSDRGP), in a 

simulated heteroscedastic random effect panel data with different sample sizes and IO contamination level. The results show that 

the new proposed method WLSFIID is more efficient than the existing methods, by providing less standard error of the estimates, 

less variances of HC4 and HC5, and also produce the coefficient of estimates that is closed to the true parameter coefficient. 

Justification using standard error of the estimates here is inappropriate and inefficient, as the form of heteroscedasticity is 

unknown. Therefore, the estimation will be based on HC4 and HC5 method employed. Figure 1 clearly shows the performance of 

all the methods at different sample sizes, where WLSFIID is the best followed by WLSDRGP, WLSF, and finally LWS.  

 

 

 

 
 

 
Figure 1: Plot of variance of HC5 for 10% HLPs contamination level with different sample sizes 
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Table 1: Simulation result of RE panel data estimates for  n = 10, t=20 

Con. Level Estimator Coeff. of 

Estimates 

Standard error 

of Estimates 

Variance 

HC4 HC5 

 

 

 

 

 

 

 

0 % HLPs 

 

LWS                

 

 

 

1.0004 

0.9999 

0.9918 

1.0000 

0.1180 

0.1075 

0.1081 

0.1082 

0.0148 

0.0214 

0.0115 

0.0122 

0.0148 

0.0214 

0.0115 

0.0122 

WLSF                      

 

 

 

1.0003 

0.9809 

0.9888 

0.9920 

0.1039 

0.0979 

0.0976 

0.0981 

0.0111 

0.0126 

0.0090 

0.0091 

0.0111 

0.0126 

0.0090 

0.0091 

WLSDRGP  

 

 

 

1.0002 

0.9814 

0.9896 

0.9920 

0.1041 

0.0960 

0.0956 

0.0959 

0.0112 

0.0130 

0.0091 

0.0092 

0.0112 

0.0130 

0.0091 

0.0092 

 WLSFIID                 

 

 

 

1.0000 

0.9917 

0.9895 

0.9890 

0.0641 

0.0960 

0.0890 

0.0956 

0.0102 

0.0141 

0.0090 

0.0091 

0.0102 

0.0141 

0.0090 

0.0091 

 LWS                

 

 

 

0.8989 

0.9864 

0.9548 

0.9320 

0.2859 

0.2519 

0.2537 

0.2529 

0.0524 

0.0403 

0.0383 

0.0385 

0.0524 

0.0403 

0.0383 

0.0385 

 

 

 

5% HLPs 

WLSF                       

 

 

 

0.9748 

0.9629 

0.9453 

0.9453 

0.2593 

0.2395 

0.2426 

0.2362 

0.0218 

0.0219 

0.0226 

0.0219 

0.0216 

0.0216 

0.0226 

0.0219 

 WLSDRGP              

 

 

 

0.9982 

0.9888 

0.9966 

0.9835 

0.2213 

0.2145 

0.2165 

0.2134 

0.0178 

0.0174 

0.0171 

0.0171 

0.0183 

0.0177 

0.0174 

0.0174 

 WLSFIID                 

 

 

 

0.9993 

0.9896 

0.9950 

0.9958 

0.1906 

0.1901 

0.1897 

0.1891 

0.0122 

0.0166 

0.0165 

0.0171 

0.0122 

0.0166 

0.0165 

0.0171 

 LWS                

 

 

 

0.8365 

0.9312 

0.9335 

0.9375 

0.2913 

0.2523 

0.2531 

0.2523 

0.0503 

0.0756 

0.0709 

0.0634 

0.0503 

0.0756 

0.0709 

0.0634 

 

 

10% HLPs 

WLSF                       

 

 

 

0.9566 

0.9184 

0.9292 

09374 

0.2832 

0.2534 

0.2542 

0.2510 

0.0327 

0.0235 

0.0250 

0.0195 

0.0327 

0.0235 

0.0250 

0.0195 

 WLSDRGP              

 

 

 

0.9901 

0.9776 

0.9836 

0.9871 

0.2479 

0.2248 

0.2267 

0.2212 

0.0220 

0.0164 

0.0176 

0.0147 

0.0220 

0.0164 

0.0176 

0.0147 

 WLSFIID                 

 

 

 

0.9982 

0.9876 

0.9960 

0.9952 

0.1806 

0.1900 

0.1797 

0.1792 

0.0132 

0.0134 

0.0141 

0.0115 

0.0132 

0.0134 

0.0141 

0.0115 
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Table 2: Simulation result of RE panel data estimates for  n = 20, t=30 

Con. Level Estimator Coeff. of 

Estimates 

Standard 

error of 

Estimates 

Variance 

HC4 HC5 

 

 

 

 

 

 

 

 

0 % HLPs 

 

LWS                

 

 

 

1.0044 

0.9882 

1.0178 

0.9884 

0.1095 

0.1099 

0.0999 

0.1099 

0.0200 

0.0340 

0.0170 

0.0221 

0.0200 

0.0340 

0.0170 

0.0221 

WLSF                        

 

 

 

1.0008 

1.0090 

0.9968 

0.9925 

0.0972 

0.0993 

0.0956 

0.1016 

0.0092 

0.0129 

0.0091 

0.0100 

0.0092 

0.0129 

0.0091 

0.0100 

WLSDRGP                

 

 

 

1.0008 

1.0092 

0.9915 

0.9980 

0.0977 

0.0974 

0.0940 

0.0995 

0.0094 

0.0136 

0.0094 

0.0100 

0.0094 

0.0136 

0.0094 

0.0100 

 WLSFIID                   

 

 

 

1.0007 

1.0081 

0.9960 

0.9942 

0.0973 

0.0971 

0.0942 

0.0993 

0.0090 

0.0129 

0.0091 

0.0103 

0.0090 

0.0129 

0.0091 

0.0103 

 LWS                 

 

 

 

0.8789 

0.8864 

0.8648 

0.9020 

0.2859 

0.2519 

0.2537 

0.2529 

0.0524 

0.0403 

0.0383 

0.0385 

0.0524 

0.0403 

0.0383 

0.0385 

 

 

 

  5% HLPs 

WLSF                        

 

 

 

0.9072 

0.9251 

0.9350 

0.9213 

0.2519 

0.2322 

0.2324 

0.2320 

0.0231 

0.0211 

0.0211 

0.0211 

0.0223 

0.0210 

0.0211 

0.0210 

 WLSDRGP                

 

 

 

0.9748 

0.9895 

0.9989 

0.9955 

0.1445 

0.1351 

0.1354 

0.1351 

0.0187 

0.0127 

0.0126 

0.0126 

0.0187 

0.0127 

0.0126 

0.0126 

 WLSFIID                    

 

 

 

0.9927 

0.9966 

0.9916 

0.9902 

0.1385 

0.1258 

0.1260 

0.1263 

0.0100 

0.0101 

0.0118 

0.0109 

0.0100 

0.0101 

0.0118 

0.0109 

 LWS                 

 

 

 

0.8365 

0.7712 

0.8135 

0.8075 

0.2913 

0.2523 

0.2530 

0.2522 

0.0503 

0.0756 

0.0709 

0.0634 

0.0503 

0.0756 

0.0609 

0.0604 

 

 

10%  HLPs 

WLSF                        

 

 

 

0.8901 

0.9134 

0.9086 

0.9047 

0.2644 

0.2352 

0.2349 

0.2343 

0.0275 

0.0183 

0.0180 

0.0178 

0.0275 

0.0183 

0.0180 

0.0178 

 WLSDRGP                

 

 

 

0.9737 

0.9855 

0.9822 

0.9710 

0.1532 

0.1431 

0.1419 

0.1425 

0.0201 

0.0137 

0.0133 

0.0134 

0.0201 

0.0137 

0.0133 

0.0134 

 WLSFIID                  

 

 

 

0.9998 

0.9948 

0.9922 

0.9967 

0.1347 

0.1342 

0.1339 

0.1240 

0.0113 

0.0116 

0.0096 

0.0096 

0.0113 

0.0116 

0.0096 

0.0096 
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Table 3: Simulation result of RE panel data estimates for  n = 30, t=40 

Con. Level Estimator Coeff. of 

Estimates 

Standard 

error of 

Estimates 

Variance 

HC4 HC5 

 

 

 

 

 

 

 

0 % HLPs 

 

LWS          

 

 

 

1.0010 

0.9897 

0.9918 

1.0020 

0.1190 

0.1085 

0.1091 

0.1092 

0.0208 

0.0262 

0.0165 

0.0170 

0.0208 

0.0262 

0.0165 

0.0170 

WLSF             

 

 

 

1.0013 

0.9809 

0.9988 

0.9920 

0.1049 

0.0989 

0.0986 

0.0991 

0.0113 

0.0116 

0.0080 

0.0081 

0.0113 

0.0116 

0.0080 

0.0081 

WLSDRGP      

 

 

 

1.0002 

0.9914 

0.9996 

0.9920 

0.1052 

0.0971 

0.0966 

0.0959 

0.0102 

0.0127 

0.0083 

0.0086 

0.0102 

0.0127 

0.0083 

0.0086 

 WLSFIID        

 

 

 

1.0000 

0.9970 

0.9948 

0.9970 

0.0929 

0.0858 

0.0955 

0.0954 

0.0075 

0.0151 

0.0070 

0.0068 

0.0075 

0.0151 

0.0070 

0.0068 

 LWS          

 

 

 

0.9046 

0.9144 

0.9116 

0.9158 

0.2168 

0.1965 

0.1965 

0.1969 

0.0182 

0.0157 

0.0146 

0.0146 

0.0182 

0.0157 

0.0146 

0.0146 

 

 

5% HLPs 

WLSF             

 

 

 

0.9381 

0.9426 

0.9431 

0.9415 

0.1403 

0.1583 

0.1581 

0.1582 

0.0040 

0.0039 

0.0038 

0.0039 

0.0040 

0.0039 

0.0038 

0.0039 

 WLSDRGP      

 

 

 

0.9632 

0.9750 

0.9665 

0.9604 

0.1235 

0.1295 

0.1294 

0.1194 

0.0024 

0.0022 

0.0020 

0.0021 

0.0023 

0.0022 

0.0020 

0.0021 

 WLSFIID        

 

 

 

0.9846 

0.9950 

0.9947 

0.9942 

0.1163 

0.1264 

0.1153 

0.1155 

0.0012 

0.0015 

0.0014 

0.0015 

0.0012 

0.0015 

0.0014 

0.0015 

 LWS          

 

 

 

0.8584 

0.7932 

0.8835 

0.8840 

0.1906 

0.1735 

0.1734 

0.1741 

0.0167 

0.0129 

0.0120 

0.0122 

0.0167 

0.0129 

0.0120 

0.0122 

 

 

10%  HLPs 

WLSF             

 

 

 

0.9404 

0.9460 

0.9464 

0.9456 

0.1800 

0.1682 

0.1679 

0.1686 

0.0094 

0.0081 

0.0087 

0.0087 

0.0094 

0.0081 

0.0087 

0.0087 

 WLSDRGP      

 

 

 

0.9765 

0.9883 

0.9897 

0.9993 

0.1776 

0.1634 

0.1622 

0.1614 

0.0090 

0.0073 

0.0072 

0.0072 

0.0090 

0.0073 

0.0072 

0.0072 

 WLSFIID        

 

 

 

0.9844 

0.9901 

0.9957 

0.9907 

0.1728 

0.1556 

0.1584 

0.1598 

0.0081 

0.0068 

0.0060 

0.0059 

0.0081 

0.0068 

0.0060 

0.0059 
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b) Real Data Example (Artificial Data set) 

 

Figure 2 shows that there is  presence of heteroscedasticity in the artificial data set by producing a systematic funnel shape in the 

plot and Figure 3 shows the presence of IO, in which observation 73 is declared as IO, while observations 41, 42, 67, 68 and 74 

are declared as GLO. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2: Plot of pooled OLS residuals versus fitted values for the artificial data set 

 

 
Figure 3: Plot of FIID for artificial data set 

 
Table 4 presents the result of the artificial data set, which clearly shows that with the effect of only one IO the proposed 

(WLSFIID) outperformed all the other methods by producing the smallest variances of HC4 and HC5, lowest values of standard 

error of the estimate.  

 

This artificial data set was also modified by introducing more IOs, such that observations 10, 42 and 73 were inflated by 10 for 

. Table 4 presents the result of the modified data, where the WLSFIID was found to be the best method as compared 

with the existing by providing the lowest values of variances of HC4 and HC5 and lowest values of standard error of the 

estimate. This is due to the fact that FIID only down weight the bad HLPs whereas, the DRGP down weight both good and bad 

HLPs. Consequently its efficiency decreases.  
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Table 4: Regression estimates for the artificial and modified artificial RE panel data set 

 

 

 

 

 

 

 

Artificial 

data 

 

Estimator 

Coeff. of 

Estimates 

 

Standard 

Error of        

Estimates 

Variance 

  

HC4 

 

HC5 

 

LWS               

 

 

 

-41.29 

-167.61 

-3.59 

180.55 

2694.44 

106.47 

110.97 

94.55 

 8577593.75 

19618.99 

12035.53 

49105.40 

8577593.75 

19618.99 

12035.53 

49105.40 

 

WLSF                     

 

 

 

-1151.89 

-74.59 

65.29 

93.34 

2413.67 

96.61 

109.41 

98.24 

 5259038.35 

7482.40 

9446.21 

12335.18 

5259038.35 

7482.40 

9446.21 

12335.18 

 

WLSDRGP             

 

 

 

-1517.43 

-69.52 

67.70 

114.19 

2324.99 

94.66 

104.50 

94.97 

 4754610.66 

8002.45 

8265.38 

14091.77 

4754610.66 

8002.45 

8265.38 

14091.77 

 

WLSFIID                

 

 

 

-1178.49 

-50.66 

70.96 

65.13 

2212.55 

91.16 

98.65 

91.65 

 4749616.14 

6755.11 

7869.05 

9171.87 

4749616.14 

6755.11 

7869.05 

9171.87 

 

 

 

 

 

 

Modified 

artificial 

data 

LWS                

 

 

 

-65.07 

-186.66 

-4.10 

201.89 

2539.97 

105.22 

109.38 

93.36 

 7222619.91 

23719.80 

11791.70 

59439.83 

7222619.91 

23719.80 

11791.70 

59439.83 

 

WLS                

 

 

 

-1272.01 

-78.69 

58.40 

112.61 

2196.47 

94.44 

104.10 

97.52 

 3888665.68 

6999.69 

8047.03 

11115.67 

3888665.68 

6999.69 

8047.03 

11115.67 

 

WLSDRGP              

 

 

 

-1416.04 

-82.85 

57.54 

129.09 

2204.16 

93.91 

103.61 

94.99 

 3834424.62 

7983.33 

7781.96 

13508.27 

3834424.62 

7983.33 

7781.96 

13508.27 

 

WLSFIID                 

 

 

 

-1179.39 

-51.75 

69.95 

65.66 

1812.90 

89.51 

90.98 

92.01 

 1768172.50 

7220.55 

5456.56 

10941.64 

1768172.50 

7220.55 

5456.56 

10941.64 

 

 

 
CONCLUSION 

This paper addresses the combine problem of Influential 

Observations (IO) and Heteroscedasticity in random effect 

(RE) panel data model. It is now evident that a very low level 

of contamination by means of high leverage points and 

heteroscedasticity in RE panel data set has an effect to the 

existing robust estimation techniques. The use of hat matrix 

weighting method in WLSF suffers tremendous effects due to 

masking and swamping effect. More efficient robust method 

for HLPs or IOs detection is needed in order to reduce the 

effect of swamping and masking. The proposed robust 

estimation method for RE panel data model used residuals 

from weighted least square (WLS) based on IO detection 

measure (FIID) weighting methods in computing RHCCM 

estimator. The results based on both simulation and numerical 

examples indicate that the proposed estimation methods 

outperformed the existing methods by providing smallest bias, 

smallest standard error of HC4 and HC5. The reason behind, is 

the good performance of FIID for not only allowing good 

HLPs to contribute in the estimation but also, the less 

swamping and masking effect of FIID. We conclude that FIID 

weighting method was found to be the best among all the 

method considered in this study. 
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