FUDMA Journal of Sciences (FJS)
ISSN online: 2616-1370
ISSN print: 2645-2944
Vol. 5 No. 2, June, 2021, pp 574-578
DOI: $\underline{\text { https://doi.org/10.33003/fjs-2021-0502-672 }}$

ON COEFFICIENT BOUNDS AND FUNCTIONALS OF ANALYTIC FUNCTIONS ON A UNIT DISC

Ajai P. Terwase ${ }^{\boldsymbol{a}}$, Opoola T.O. ${ }^{\boldsymbol{b}}$ and Babalola K.O. ${ }^{\boldsymbol{b}}$
${ }^{a}$ Department of Mathematics, Faculty of Physical Sciences, Plateau State University Bokkos, Nigeria,
${ }^{b}$ Department of Mathematics, University of Ilorin,Ilorin, Nigeria. corresponding author's email: philipajai2k2@yahoo.com

Abstract

We introduce and investigate a new subclasses of the function class Σ of biunivalent functions defined in the open unit disk, which are associated with linear combinations of some geometric expressions, satisfying subordinate conditions. Coefficients and Fekete-Szegö functional for the class are obtained.

AMS Subject Classification: 30C45

Keywords: Analytic functions, univalent functions, subordination, Hadamard product, linear combination

INTRODUCTION

Let \mathcal{A} denote the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

Where $z \epsilon C$.
We denote by S the subclass of \mathcal{A} consisting of functions which are univalent and analytic (holomorphic) in the unit disk E.

Definition 1

Let $f(z)$ and $g(z)$ be analytic in E , we say that $f(z)$ is subordinate to $g(z)$ writhen as $f(z)<g(z)$, if there exist an analytic function $w(z)$ (not necessarily univalent) in E, satisfying $w(0)=0$ and $|w(z)|<1$ such that

$$
\begin{equation*}
f(z)=g(w(z)), \quad|z|<1 \tag{2}
\end{equation*}
$$

Definition 2

The class P is the class of all functions of the form

$$
\begin{equation*}
p(z)=1+z+p_{2} z^{2}+\cdots \tag{3}
\end{equation*}
$$

which are analytic in E such that for $z \in E, \operatorname{Rep}(z)>0, p(0)=1$. Using subordination principle, $p(z) \in P$ iff

$$
\begin{equation*}
p(z)<\frac{1+z}{1-z} . \tag{4}
\end{equation*}
$$

Its known that, if $f(z)$ is analytic univalent function from a domain D_{1} on to a domain D_{2}, then the inverse function $\mathrm{g}(\mathrm{z})$ defined by

$$
g(f(z))=z, z \in D_{1} .
$$

is an analytic and univalent mapping from D_{2} onto D_{1}. It is also well known by Koebe one- quarter theorem that the image of E under every function $f \in S$ contains a disk of radius $\frac{1}{4}$. Thus clearly every univalent function in E has an inverse f^{-1} satisfying the following conditions:

$$
f^{-1}(f(z))=z, \quad z \in E .
$$

and

$$
f^{-1}(f(w))=w, \quad\left(|w|<r_{0}(f) ; r_{\circ}(f) \geq \frac{1}{4}\right) .
$$

The inverse of the function $f(z)$ has a series expansion of the form:

$$
\begin{equation*}
f^{-1}(w)=w+\gamma_{2} w^{2}+\gamma_{3} w^{3}+\ldots \tag{5}
\end{equation*}
$$

A function $f(z)$, which is univalent in a neighborhood of the origin, and its inverse $f^{-1}(w)$ satisfy the following condition;

$$
f^{-1}(f(w))=w,
$$

or, equivalently

$$
\begin{equation*}
w=f^{-1}(w)+a_{2}\left[f^{-1}(w)\right]^{2}+a_{3}\left[f^{-1}(w)\right]^{3}+\cdots \tag{6}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{7}
\end{equation*}
$$

We denote by Σ the class of all functions $f(z)$ which are biunivalent in E and are given by (1)
Notable example of the class Σ are $; \frac{z}{1-z},-\log (1-z), \frac{1}{2} \log \left(\frac{1+z}{1-z}\right)$. For more write up on biunivalent functions, an interested reader can see $[6,7,8,9,10,11,12]$

2.Preliminary results

Ruscheweyh [5] introduced the operator $\mathcal{D}^{n}, n \in \mathbb{N} \cup\{0\}$ defined as

$$
\begin{equation*}
\mathcal{D}^{n} f(z)=\frac{z}{(1-z)^{n+1}} * f(z)=\frac{z \cdot\left(z^{n-1} f(z)\right)^{n}}{n!} \tag{8}
\end{equation*}
$$

and used it to generalize the concept of starlikeness and convexity of functions in the unit disk by defining classes of functions for which the geometric quantities

$$
\begin{equation*}
\frac{\mathcal{D}^{n+1} f(z)}{\mathcal{D}^{n} f(z)}, n \in \mathbb{N} \cup\{0\} \tag{9}
\end{equation*}
$$

have some positive real part.
Babalola [1] established the univalency of the geometric combination involving \mathcal{D}^{n} as stated below as follows:

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda) \frac{\mathcal{D}^{n} f(z)}{f(z)}+\lambda \frac{\mathcal{D}^{n+1} f(z)}{\mathcal{D}^{n} f(z)}\right\}>\beta, z \in E \tag{10}
\end{equation*}
$$

He proves that if $f(z)$ satisfy (10) then $\operatorname{Re}\left(\frac{\mathcal{D}^{n} f(z)}{z}\right)>0$ in E. For all such $\lambda \geq 0$ such $\lambda \leq \beta \leq 1$, for $n \geq 1$, univalency is implied by the results.

We denote class of functions satisfying (10) by $B_{\lambda}^{n}(\beta)$ that is:

$$
\begin{equation*}
B_{\lambda}^{n}(\beta)=\left\{f \in A: \operatorname{Re}\left[(1-\lambda) \frac{\mathcal{D}^{n} f(z)}{z}+\lambda \frac{\mathcal{D}^{n+1} f(z)}{\mathcal{D}^{n} f(z)}\right]>\beta, z \in E\right\} \tag{11}
\end{equation*}
$$

where \mathcal{D}^{n} is the Ruscheweyh differential operator and $0 \leq \lambda \leq \beta<1$.
Equivalently, we have the above as:

$$
\begin{equation*}
B_{\lambda}^{n}(\beta)=\left\{f \in A:(1-\lambda) \frac{\mathcal{D}^{n} f(z)}{z}+\lambda \frac{\mathcal{D}^{n+1} f(z)}{\mathcal{D}^{n} f(z)}<\frac{1+(1-2 \beta) z}{1-z}, z \in E\right\} \tag{12}
\end{equation*}
$$

Definition 3

A function $f \in \sum$ given by the function (1) is said to be in the class $B_{\lambda}^{n} \Sigma(\beta)$ if the following conditions are satisfied:

$$
\begin{equation*}
\operatorname{Re}\left((1-\lambda) \frac{\mathcal{D}^{n} f(z)}{z}+\lambda \frac{\mathcal{D}^{n+1} f(z)}{\mathcal{D}^{n} f(z)}\right)>\beta, 0 \leq \beta<1, \lambda \geq 1 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left((1-\lambda) \frac{\mathcal{D}^{n} g(w)}{w}+\lambda \frac{\mathcal{D}^{n+1} g(w)}{\mathcal{D}^{n} g(w)}\right)>\beta, 0 \leq \beta<1, \lambda \geq 1 \tag{14}
\end{equation*}
$$

where the function g is the inverse of f given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{15}
\end{equation*}
$$

Lemma 1[4]

If $p \in P$, then $\left|c_{k}\right| \leq 2$ for each k given, where P is the family of all functions p analytics in E for which $\operatorname{Re} p>$ $0, p(z)=1+c_{z}+c_{2} z^{2}+\cdots$ for $z \in U$.

Lemma 2 [2]
Let $p \in P$.
Then we have the sharp inequalities
(i) for any real number σ

$$
\left|p_{2}-\sigma \frac{p_{1}^{2}}{2}\right| \leq\left\{\begin{array}{l}
2(1-\sigma), \text { if } \delta \leq 0 \tag{16}\\
2, \text { if } 0 \leq \delta \leq 2 \\
2(\sigma-1), \text { if } \delta \geq 2
\end{array}\right.
$$

(ii) for any complex number δ

$$
\left|p_{2}-\sigma \frac{p_{1}^{2}}{2}\right| \leq\left\{\begin{array}{l}
2, \quad \text { if } \quad|1-\delta| \leq 1 \tag{17}\\
2|1-\sigma|, \quad \text { if }|1-\delta| \geq 1
\end{array}\right.
$$

Main Results .

Theorem 1
Let $f(z)$ given by (1) be in the class $B_{\lambda}^{n} \sum(\beta), 0 \leq \beta<1, \lambda \geq 1$. then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2(1-\beta)}{1+(1-\lambda) n} \tag{18}
\end{equation*}
$$

$$
\left|a_{3}\right| \leq\left\{\begin{array}{l}
\frac{4(1-\beta)}{G}-\frac{4(1-\beta)^{2}}{(1+n(1-\lambda))^{2}}, \quad \text { if } \quad 0 \leq \lambda \leq \frac{n+1}{n-1}, \quad n \neq 0 \tag{19}\\
\frac{4(1-\beta)}{G} \quad \text { if } \quad \frac{n+1}{n-1} \leq \lambda \leq \lambda_{\circ}, \quad n \neq 0 \\
\frac{4(1-\beta)^{2}}{(1+n(1-\lambda))^{2}} \quad \text { if } \lambda \leq \lambda_{0}
\end{array}\right.
$$

where

$$
G=(n+2)[2 \lambda+(1-\lambda)(n+1)]
$$

and λ_{0} is the positive root of

$$
\lambda^{2} n-\lambda[(1-\beta)(n+2)(n+3)+2 n(n+1)]-(1-\beta)(n+2)(n+1)+2 n+n^{2}+1=0
$$

Proof:
By (13) and (14) we have

$$
\begin{equation*}
(1-\lambda) \frac{\mathcal{D}^{n} f(z)}{z}+\lambda \frac{\mathcal{D}^{n+1} f(z)}{\mathcal{D}^{n} f(z)}=\beta+(1-\beta) p(z) \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left((1-\lambda) \frac{\mathcal{D}^{n} g(w)}{w}+\lambda \frac{\mathcal{D}^{n+1} g(w)}{\mathcal{D}^{n} g(w)}=\beta+(1-\beta) q(z)\right. \tag{21}
\end{equation*}
$$

expanding (20) and (21) we have

$$
\begin{gather*}
1+\left[\lambda a_{2}+(1-\lambda)(n+1) a_{2}\right] z+\left[\left[(n+2) a_{3}-(n+1) a_{2}^{2}\right]+(1-\lambda) \frac{(n+1)(n+2)}{2!} a_{3}\right] z^{2}+\cdots= \\
1+(1-\beta) p_{1} z+(1-\beta) p_{2} z^{2}+\cdots \tag{22}\\
1+\left[\lambda a_{2}+(1-\lambda)(n+1) a_{2}\right] w+ \\
{\left[(1-\lambda) \frac{(n+1)(n+2)}{2!}\left(2 a_{2}^{2}-a_{3}\right)+\lambda\left[a_{2}^{2}(n+3)-(n+2) a_{3}\right]\right] w^{2}=} \\
1+(1-\beta) q_{1} w+(1-\beta) q_{2} w^{2} \tag{23}
\end{gather*}
$$

Equating coefficients

$$
\begin{gather*}
{[\lambda+(1-\lambda)(n+1)] a_{2}=(1-\beta) p_{1}} \tag{24}\\
\lambda(n+2) a_{3}-\lambda(n+1) a_{2}^{2}+(1-\lambda) \frac{(n+1)(n+2)}{2!} a_{3}=(1-\beta) p_{2} \tag{25}\\
-[(1-\lambda)(n+1)+\lambda] a_{2}=(1-\beta) q_{1} \tag{26}\\
(1-\lambda)\left(2 a_{2}^{2}-a_{3}\right) \frac{(n+1)(n+2)}{2!}+\lambda\left[a_{2}^{2}(n+3)-(n+2) a_{3}\right]=(1-\beta) q_{2} \tag{27}
\end{gather*}
$$

From (24) and (26) we have

$$
p_{1}=-q_{1}
$$

and

$$
\begin{equation*}
[1+n(1-\lambda)] a_{2}=(1-\beta) p_{1} \tag{28}
\end{equation*}
$$

applying lemma (1) on $\left(p_{1}\right)$ we have the desired result.

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2(1-\beta)}{1+n(1-\lambda)} \tag{29}
\end{equation*}
$$

Making use of (25),(27) and a_{2}^{2} after a simplification we have

$$
\begin{equation*}
a_{3}=\frac{(1-\beta) p_{2}}{G}+\frac{(1-\beta)}{G}\left[\frac{2(1-\beta) G}{(1+n(1-\lambda))^{2}} \frac{q_{1}^{2}}{2}-q_{2}\right] \tag{30}
\end{equation*}
$$

Applying lemma (1) and (2) on p_{1}, p_{2} and q_{2} we have the desired result.
Let S be a class of univalent and analytic functions given by (1) defined in the unit disk. Then the classical Fekete-Szegö inequality [cf [3]], for coefficient of $f \in S$ is given as:

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq 1+2 \exp \left(\frac{-2 \mu}{(1-\mu)}\right) \tag{31}
\end{equation*}
$$

As $\mu \rightarrow 1^{-}$, we have the inequality $\left|a_{3}-\mu a_{2}^{2}\right| \leq 1$. Moreso ,the coefficient functional,

$$
\nabla_{\mu}(f)=a_{3}-\mu a_{2}^{2}
$$

on functions given by (1) in the unit disk E plays an important role in the function theory. For instance, the quantity $a_{3}-a_{2}^{2}$ represent $s_{f}(0)$ where s_{f} denotes the Schwarzian derivative

$$
\frac{\left(\frac{f \prime \prime}{f \prime}\right)^{\prime}-\left(\frac{f^{\prime}}{f \prime \prime}\right)^{2}}{2}
$$

of locally univalent functions f in the unit disk E. Example $\nabla_{1}(f)=a_{3}-a_{2}^{2}$. Its observed that the first two non trivial coefficients of the n-th root transform

$$
\begin{equation*}
\left\{f\left(z^{n}\right)\right\}^{\frac{1}{n}}=z+c_{n+1} z^{n+1}+c_{2 n+1} z^{2 n+1}+\cdots \tag{32}
\end{equation*}
$$

of functions represented by (1)are given by

$$
\begin{equation*}
c_{n+1}=\frac{a_{2}}{n} \text { and } c_{2 n+1}=\frac{\left(\nabla_{\frac{(n-1)}{}(f)}^{n}\right)}{n}=\frac{a_{3}}{n}-\frac{(n-1) a_{2}^{2}}{2 n^{2}} . \tag{33}
\end{equation*}
$$

Thus it is not out of place to investigate on the inequalities for ∇_{μ} corresponding to subclasses of normalized univalent functions defined by the functional class Σ in the unit disk. The problem of maximizing the absolute value of the functional $\nabla_{\mu}(f)$ is called the Fekete-Szegö problem.

Theorem 2

Let $f(z)$ given by (1) be in the class $B_{n, \lambda} \sum(\beta), 0 \leq \beta<1, \lambda \geq 1$.Then
(i)For any real number μ

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{4(1-\beta)}{G Q}[Q-(1-\beta)(1-\mu) G], \text { if } \quad \mu \leq 1 \tag{34}\\
\frac{4(1-\beta)}{G}, \text { if } 1 \leq \mu \leq \frac{2 Q+(1-\beta) G}{(1-\beta) G} \\
\frac{4(1-\beta)}{G Q}[(1-\beta)(\mu-1) G-Q], \text { if } \mu \geq \frac{2 Q+(1-\beta) G}{(1-\beta) G}
\end{array}\right.
$$

(ii) For any complex number μ

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{4(1-\beta)}{G}, \quad \text { if } \quad\left|\frac{Q-(\mu-1)(1-\beta) G}{Q}\right| \leq 1 \tag{35}\\
\frac{4(1-\beta)}{G}\left|\frac{Q-(\mu-1)(1-\beta) G}{Q}\right|, \text { if }\left|\frac{Q-(\mu-1)(1-\beta) G}{Q}\right| \geq 1
\end{array}\right.
$$

where,

$$
G=(n+1)[2 \lambda+(1-\lambda)(n+1)]
$$

$$
Q=[1+(1-\lambda) n]^{2}
$$

and

$$
\delta=\frac{(\mu-1)(1-\beta) G}{Q}
$$

Proof.
From (25),(27) and (28) we have the following;

$$
\begin{gather*}
a_{2}=\frac{(1-\beta) p_{1}}{1+n(1-\lambda)} \tag{36}\\
a_{3}=\frac{(1-\beta)^{2} p_{1}^{2}}{[1+n(1-\lambda)]^{2}}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{(n+2)[2 \lambda+(1-\lambda)(n+1)]} \tag{37}
\end{gather*}
$$

and

$$
\begin{gather*}
a_{3}-\mu a_{2}^{2}=\frac{(1-\beta)^{2} p_{1}^{2}}{[1+n(1-\lambda)]^{2}}+\frac{2(1-\beta) p_{2}}{(n+2)[2 \lambda+(1-\lambda)(n+1)]}-\frac{\mu(1-\beta)^{2} p_{1}^{2}}{[1+n(1-\lambda)]^{2}} \tag{38}\\
\left|a_{3}-\mu a_{2}^{2}\right|=\frac{2(1-\beta)}{G}\left|p_{2}-\frac{p_{1}^{2}}{2}\left[(\mu-1) \frac{G(1-\beta)}{Q}\right]\right| \tag{39}
\end{gather*}
$$

Choose

$$
\delta=\frac{(\mu-1)(1-\beta) G}{Q}
$$

and applying lemma (2) we have our desired result.

References

Babalola, K.O. (2009) On linear combination of some geometric expressions , Indian journal of Mathematics, Special Memorial, 51, 1-8.

Babalola, K.O. (2005). On certain family of analytic functions defined by Salagean derivative [Ph.D. thesis],University of Ilorin, Ilorin , Nigeria.

Bhowmik, B.,Ponnusamy, S., Wirths, K.J. (2011). On the Fekete-Szegö problem for concave univalent functions, Journal of Math. Analysis and appl. 373(2) 432-438.

Chichra, P. N. (1977). New subclasses of the class of close-toconvex functions, Proc. Amer. Math. Soc. 62 (1), 37-43.

Ruscheweyh,S. (1975). New criteria for univalent functions, Proc. Amer. Math. Soc. 49(1) 109-115.

Saurabh, P., Darus M. (2013). On a new subclass of biunivalent functions Journal of the Egyptian Maths. Soc 21 190-193.
H. M. Srivastava, G. (2013). Murugusundaramoorthy and N. Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Global J. Math. Anal. 1 (2) 67-73.
H. M. Srivastava, Sevtap S.E., Rosihan M.A. Coeffcient bounds for a certain class of analytic and bi-univalent functions
D. Styer and J. Wright (1981). Result on bi-univalent functions, Proc. Amer. Math. Soc. 82 243-248.
T. S. Taha, (1981). Topics in Univalent Function Theory, Ph.D. Thesis, University of London.
D.L. Tan, (1984). Coefficient estimates for bi-univalent functions, Chinese Ann. Math. Ser. A 559-568.
H. Tang, G.-T. Deng and S.-H. Li (2013). Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, J. Inequal. Appl 317, 110.

©2021 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International license viewed via https://creativecommons.org/licenses/by/4.0/which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is cited appropriately.

