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ABSTRACT 

The present study compared the performance of two different models for streamflow simulation namely: 

Soil Water Assessment Tool (SWAT) and the Artificial Neural Network (ANN). During the calibration 

periods, the Nash-Sutcliff (NS) and Coefficient of Determination (R2) for SWAT was 0.74 and 0.81 

respectively, whereas for ANN, it was 0.99 and 0.85 respectively. The ANN performs better during the 

validation period as the result revealed with NS and R2 having 0.98 and 0.89 respectively, while for the 

SWAT model it was 0.71 and 0.74 respectively. Based on the recommended comparison of graphical and 

statistical evaluation performances of both models, the ANN model performed better in estimating peak 

flow events than the SWAT model in the Upper Betwa Basin. Furthermore, the rigorous time required and 

expertise for calibration of the SWAT is much less as compared with the ANN. Moreover, the results 

obtained from both models demonstrate the performances of the models in terms of NS and R2 and other 

model performance indices were satisfactory. Hence, the ANN (black-box model) might emerge as a faster 

model to implement on water resources management especially in data scarce basins. 
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INTRODUCTION  

Transforming rainfall into runoff is a key process in the 

hydrological cycle. This process is complex in nature, involving 

a non-linear relationship between rainfall, runoff, other 

hydrological processes and watershed characteristics. Runoff 

not only depends on rainfall but it also depends on various 

hydrological processes such as interception, evaporation and 

infiltration (Singh, 1988). These hydrological processes further 

depend on catchment characteristics and climatic phenomenon. 

Further, there is considerable amount of uncertainties along with 

the spatial and temporal variability attributed to the land use and 

climate change (Rajurkar et al., 2004; Ozturk, et al., 2013; 

Niedda et al., 2014).  Accurate and reliable estimates of rainfall-

runoff generation over a given scale is of paramount requirement 

as part of the information sets that help policy makers make 

informed decision on water planning and development of water 

resources (Vaze et al., 2012). Rainfall-runoff modeling is used 

for water resources assessment, drought and flood analysis over 

a given scale (Moradkhani & Sorooshian, 2009). Moreover, 

rainfall-runoff relationships are essential for designing of 

hydraulic structures such as dam, barrages, flood inundation and 
flood forecasting studies (Vaze et al., 2012). 

Traditionally, empirically models which were based on 

empirical relationship obtained using historical rainfall and 

stream flow data were used for hydrological modelling. These 

models do not give any meaningful insight into the governing 

process and does not consider the spatial and temporal 

variability in the rainfall- runoff process. Therefore, the 

conceptual and physically based models have gained popularity 

over the empirical models. Unlike the physically based model, a 

conceptual model involves partial representation of the physical 

dynamics of the hydrological system. Physically based models 

are based on physical process governing the rainfall-runoff 

transformation. These models transform rainfall into runoff by 

solving a number of mathematical equations over the domain 
and therefore are data extensive. 

The recent advancement in technology (hardware and software) 

have immensely revolutionized the method of hydrologic 

systems inquiry irrespective of the type of model (e.g., physical-

based, conceptual-based, and black-box). There are a number of 

hydrological models developed for hydrologic modeling and 

water resources management applications such as MIKE-SHE 

(Refsgaard & Storm 1995), SWAT (Arnold et al., 1998), 

HRCDHM (Carpenter et al., 2001), PAWS (Shen & 

Phanikumar, 2010) and CREST (Wang, et al., 2011).  

Amongst the numerous hydrological models developed in the 

past, SWAT model has been commonly used for the simulation 

of the hydrological processes. The SWAT model is a process 

based semi-distributed model which is capable of simulating 

many hydrological processes. In last few decades, artificial 

intelligence (AI) techniques have been widely used to simulate 

the hydrological processes (Rajurkar et al., 2004; Nayak et al., 

2004). Artificial Intelligence (AI) techniques such as the ANN 

have emerged as an alternate to the conventional hydrological 

models. The ability of ANNs to represent the nonlinear 

relationship between the input variables and the output variables 

without the necessary knowledge of the underlying system, is 

arguably their strongest suit, which makes them often more 
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attractive than the other methods (Sivakumar & Berndtsson, 

2010). ANN based models have been widely used to simulate 

various hydrological processes such as rainfall-runoff and 

sediment yield (Tokar and Johnson, n.d.). ANN models have 

also been used for flood and reservoir inflow forecasting 
(Lohani et al., 2012).   

A wide range of applicability of ANN and physically based 

distributed models such as SWAT rises a debate over which 

model is superior over the other. However, no single model 

exists that demonstrates a superior performance for all 

catchments (Nayak et al., 2005). There are a number of studies 

in literature which compare AI based models with the semi-

distributed hydrological models. However, there are few studies 

which compare process-based model (SWAT) and the empirical 
based model (ANN) (Singh et al., 2012). 

Most of the researches reported that the ANN model performed 

better than the process-based model (SWAT) during low flow, 

whereas, the SWAT model performed better during the peak 
flow (Morid et al., 2002). 

Most of the studies compare the performance of SWAT and 

ANN model for the sediment yield prediction. However, for the 

rainfall-runoff modeling such studies are limited. In light of this, 

the main objective of the present study is to compare two models 

namely: physically based semi-distributed model (SWAT) and 

an Artificial Neural Network ANN model to provide reliable and 

accurate estimates of water resource status for informed 

decision-making in the Upper Betwa Basin, Madhya Pradesh, 
India. 

MATERIALS AND METHODS 

Study Area 

The Betwa River basin lies between 22° 54' – 26° 00'N and 

77°10' – 80°20'E latitudes and longitudes respectively. It 

originates from the district of Raisen (Madhya Pradesh) at an 

elevation of about 576 m above mean see level (Figure 1).  

 

Figure 1: The Upper Betwa Basin, India. 

The River has a total length of about 590 km from its origin to 

the Yamuna River and the total catchment area of the basin is 

about 44,335 square km. However, the present study will focus 

on the Upper part of the basin, rather the entire basin. 

The climate of the basin is governed by a monsoon weather. The 

three prevailing seasons are summer (March-May), southwest 

monsoon (June-September) and winter (November-February),  

(Ayyar, 2015). The summer is characterized by hot, dry, and 

windy; low temperatures average at about 25 °C, while high 

temperatures typically reach about 40 °C. The average annual 

rainfall is about 1,100m (Ayyar, 2015). Soils in Madhya Pradesh 

can be classified into two major groups. Fertile black soils are 

found in the Malwa Plateau, the Narmada valley, and parts of 

the Satpura Range (Ayyar, 2015). Less-fertile red-to-yellow 

soils are spread over much of eastern Madhya Pradesh. 

RUNOFF MODELLING 

The SWAT Model 

The SWAT model is a physically-based and semi distributed 

hydrologic model which was developed to predict the impacts 

of the inevitable changes in watershed management practices on 

water, sediment and agricultural chemical yields (Arnold, et 

al.1998; Neitsch et al., 2009; Palazzoli et al., 2015). The SWAT 

model uses two methods for simulating surface runoff, they are 

the SCS curve number procedure (SCS, 1972) and (Green and 

Ampt, 1911). Hence, the model was developed to provide a 

consistent basis for estimating the amounts of runoff under 

http://www.britannica.com/science/monsoon


STREAMFLOW SIMULATION       Haruna et al    FJS 

FUDMA Journal of Sciences (FJS) Vol. 5 No.2, June, 2021, pp 173 – 182  
 

175 

heterogeneous land use and soil types (Rallison & Miller, 1981). 

However, these two methods differ in their data requirements, 

the Green and Ampt method requires sub-daily data to estimate 

runoff while, the SCS curve number requires daily time dataset 

which was available for the present study. Hence, the SCS curve 

number equation (SCS, 1972) was used in the present study 

(equation 1). A more detailed description of Green & Ampt 

method can be found in (Neitsch et al., 2009).   

 

𝑄𝑠𝑢𝑟𝑓 =
(𝑅𝑑𝑎𝑦−𝐼𝑎)2

(𝑅𝑑𝑎𝑦−𝐼𝑎+𝑆)
                         (1) 

Where, 𝑄𝑠𝑢𝑟𝑓 =  Resultant runoff or rainfall excess (mm),  

 𝑅𝑑𝑎𝑦 = Rainfall depth for the day (mm),  𝐼𝑎 = is the initial 

abstractions which includes surface storage, interception and 

infiltration prior to runoff (mm) and;  

S = is the retention parameter (mm).  

Artificial Neural Network (ANN) model 

Artificial Neural networks are parameterized non-linear models 

used for empirical regression and classification modeling. Their 

flexibility makes them able to discover more complex 

relationships in data as compared to traditional linear statistical 

model. ANN is defined as highly interconnected network of 

many simple processing units called as neurons which are 

analogous to the biological neurons in the human brain (Sjoberg, 

2005). Neurons are an information processing unit that is 

fundamental to the operation of a neural network, arranged in 

groups called layer. Neurons in one layer are connected to 

neurons in adjacent layer only, and the strength of connection 

between two neurons in adjacent layers is represented by 

coefficient known as weight. An ANN usually consists of, an 

input layer, hidden layer(s) and an output layer. The neuronal 

model also includes an externally applied coefficient called as 

bias, which has the effect of increasing or decreasing the net 

input of the activation function, depending on whether it is 

positive or negative, respectively. Figure 2 shows a schematic 
diagram of a feed forward ANN with a single hidden layer.  

 

A neural network is trained on a set of examples of input and 

output data. The outcome of this training is a set of coefficients 

(called weights wkj) and a specification of the functions which in 

combination with the weights relate the input to the output as 

shown in figure 2. The training process involves a search for the 

optimum nonlinear relationship between the inputs and the 

outputs. ANN is similar to linear regression, in which linear 

functions of the inputs xj are operated on by an 

activation/transfer function so that each input contributes to 

every hidden unit. Mathematically we can describe neural 
network by writing the following pair of equations: 

𝑢𝑘 = 𝜑(∑ 𝑤𝑘𝑗𝑥𝑗
𝑚
𝑗=1 + 𝑏𝑘𝑗)                                      (2) 

𝑦𝑖 = 𝜑(∑ 𝑤𝑘𝑢𝑘
𝑙
𝑘=1 + 𝑏𝑘)                                         (3) 

where 𝜑 is hyperbolic tangent transfer function; x1, x2,..xm are 

the input signals; wk1, wk2,…wkm are the synaptic weights of 

neuron k; uk is the linear combiner output due to the input 

signals; bkj and bk are the biases, analogous to the constant that 

appears in linear regression; and yi is the output signal of the 

neuron. The strength of transfer function is in each case 

determined by the weight wkj. The final output is defined as a 

linear function of hidden nodes and the constant (Equation 3). 

The combination of Equation 3 with a set of weights, biases, 

value of k and the minimum and maximum values of the input 
variables define the network completely. 

Based on the proposed steps made by Dawson & Wilby (2001) 

preparing ANN to simulate streamflow requires some inevitable 

decisions which are: selecting the appropriate neural network 

type, choosing the appropriate training algorithm, selecting the 

most suitable training periods and identifying the appropriate 

network structure. Finally, we decided on how to structure pre-

and post-process input-output data. Hence, the feed-forward 

multi-layer perceptron (MLP). ANN is the most widely used 

type of ANN in hydrological modelling (Wang et al., 2006). 

Hence, the present study adopted the feed-forward MLP neural 

network with the backpropagation algorithm for its learning. 

One scenario was adopted for determining the inputs data to the 

ANN model. The average rainfall data (Basoda station) in dayt 

was used. The discharge data in dayt-1 from 1980-2001 were 
used for the model training. 

Input data 

SWAT can run on different ranges of data availability. Clearly, 

the more the input data the better will be the output results. Table 

1 shows data used in the study. 

Figure 2: Schematic illustration of feed forward ANN with single hidden layer 
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Table 1. Data used to run the SWAT and the ANN model 

S/N Data type Year Source 

1 Meteorological data 1980-2001 India Meteorological Department 

2 Streamflow 1983-2001 India Meteorological Department 

3 DEM 2011 http://glcf.umiacs.umd.edu/index.shtml 

4 Landsat 8 Image 2012 https://glovis.usgs.gov/ 

5 Soil map n.d NBSSLUP,Nagpur, India 

Calibration and Validation 

The Sequential Uncertainty Fitting (SUFI-2) (Abbaspour, et al., 

2007) is used for a combined sensitivity, calibration, uncertainty 

analysis and validation. Starting with the initial parameter 

ranges, SUFI-2 is capable of generating different parameter 

combinations, comparing simulations with observations, and 

identifying the optimal parameter ranges. Moreover, instead of 

calibrating model parameters based on hydrologic responses 

from a single watershed outlet, SUFI-2 is able to simultaneously 

calibrate parameters based on distributed data within a 

watershed. Therefore, to fine-tune the calibration process, 

parameters affecting runoff were first calibrated followed by 

calibration of variables influencing total flow, and finally 
calibration of streamflow was performed in SUFI-2. 

Calibration and validation analysis were done using the SWAT-

CUP 2012 interface for the whole catchment area. SWAT-CUP 

is an interface that was developed for SWAT model. Using this 

generic interface, any calibration/uncertainty or sensitivity 
program can easily be linked to SWAT.  

Model evaluation indices  

Statistical indices have been commonly used to measure the 

accuracy between in situ measurements and simulated estimates. 

Based on the recommendation by Moriasi et al. (2007) four 

statistical and graphical model evaluation techniques were used: 

The four statistical performance indicators used in the study are 

shown in Table 2. These statistical indices are grouped into two 

main categories based on their applications. The first group, 

RMSE-observations standard deviation ratio (RSR) and Percent 

BIAS (PBIAS) are used to describe the biases and errors of the 

simulated runoff by the SWAT model with respect to the 

observed runoff data. The second group, consist of only the 

Coefficient of Determination (R2) and the Nash–Sutcliffe 

Efficiency (NSE) and they are used to measure the general 

agreement between the in-situ runoff measurements and the 

model runoff simulation estimates. Their optimal value and 
value range are shown in Table 2. 

Table 2: SWAT model performance indices used in the study. 

Statistical 

index 

Formula Value range Perfect value 

R2 
𝑅2 = {

∑ (𝑜𝑖−�̅�)(𝑝−�̅�)𝑛
𝑖=1

∑ (𝑜𝑖−�̅�)2]0.5𝑛

𝑖=1
[∑ (𝑝𝑡−�̅�)2]0.5𝑛

𝑖=1

} 0 to 1 1 

NSE NSE =[
∑ (𝑜𝑖−𝑝𝑖)2𝑛

𝑖=1

∑ (𝑜𝑖−�̅�)2𝑛
𝑖=1

] -∞ to 1 1 

RSR 
RSR=

RMSE

STDEVobs
=

[√∑ (oi−pi)
2]n

i=1

[√∑ (oi−o̅)2]n
i=1

 
0 to ∞ 0 

PBIAS PBIAS =[
∑ (𝑜𝑖−𝑝𝑖)∗100𝑛

𝑖=1

∑ (𝑜𝑖)𝑛
𝑖=1

] 0 to ∞ 0 

Note* where Oi is the ith observed value for the stream discharge (m3/s), and Pi is the ith predicted value for discharge (m3/s), Ō is the mean of 

observed stream discharge for the entire evaluation time period (m3/s), and P is the mean of model predicted stream discharge for the entire 
evaluation time period (m3/s), and n is the total number of observations. 

RESULTS AND DISCUSSION 

SWAT Model calibration and validation 

Model calibration is inevitable when using physically based 

hydrological models. This is to reduce the uncertainties usually 

associated with the model. In total, 12 parameters were 

considered for the model calibration based on the initial 

parameter sensitivity analysis and 209 iterations were done to 

achieve the optimal results. Range and optimal value of 

parameters during calibration are given in Table 3. The SUFI-2 

procedure was used for the calibration of the model at a monthly 

time scale. Comparison between the simulated and the observed 

outputs were compared at the same outlet (Basoda) point sub-
basin 1. 

The evaluation of different objective function for the Upper 

Betwa Basin is presented in Tables 4a and 4b. The model 

accurately tracked the observed streamflow for the time periods, 

though some peaks were under estimated during calibration but 

under estimated less during validation (Figures 3 and 4). This is 

attributed to less temporal variability in rainfall during the 

period of validation. Moreover, the model under estimated 

streamflow for calibration and validation periods. However, it 

could be observed in figures 3 and 4 that the under estimation of 

streamflow occurs during higher flows. However, the SWAT 

model doesn’t always simulate extreme events efficiently, hence 

the model usually under estimate the largest flow events 
(Demirel et al., 2009).  

 

 

https://glovis.usgs.gov/
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Table 3: Range and optimal value for parameters during calibration period 

S/N. Parameters   Min. Max. Best fitted 

       

1 v_CN2.mgt  90 100 93.7 

2 v_ESCO.hru  0.98 1 0.98 

3 v_GW_DELAY.gw  16.5 45 33.7 

4 v_ALPHA_BF.gw  0.9 1 0.92 

5 v_SOL_AWC.sol  0.98 1 0.99 

6 v_GWQMN.gw  -1.38 5.23 3.6 

7 r_SOL_K.sol  -0.8 0.8 0.56 

8 r_SOL_BD.sol  -0.5 0.6 -3 

9 a_GW_REVAP.gw  -0.1 0 0 

10 v_REVAPMN.gw  0 10 3.9 

11 r_OV_N.hru  -0.2 0.2 1.4 

12 r_SLSUBBSN.hru   0 0.2 0.13 

The performance statistics summary for simulated and observed streamflow of the SWAT model for calibration and validation 

period is presented in Table 3a and 3b. 

Table 4a: Performance evaluation, calibration period.     

Method Period Time scale Objective functions   

         R2     NSE  PBIAS     RSR 

SUFI 2 1983-1993 Monthly   0.81 0.74 31.6 0.51 

 

Table 4b: Performance evaluation, validation period. 
    

Method Period Time scale Objective functions   

         R2     NSE  PBIAS     RSR 

SUFI 2 1983-1993 Monthly   0.74 0.71 32.3 0.52 

 

The R2 which is the degree of collinearity between observed and simulated is 0.74 and 0.81 for both calibration and validation 

periods (Tables 4a and 4b). Hence, this indicates a good linear relationship between the simulated and the observed data. 

The NS for calibration and validation are 0.74 and 0.71 respectively. The calibration and validation values fall within the acceptable 

levels of performance.  Based on the recommendation by Moriasi, et al., 2007. values between 0.0 and 1.0 for both calibration and 

validation viewed as acceptable levels of performance, however, values that are less than or equals to 0.0 show that the observed 

value is a better predictor than the simulated value which shows unacceptable performance. The PBIAS for both calibration and 

validation are 31.6 and 32.3 respectively. This could be justified as the model underestimated the streamflow for both calibration 

and validation periods, (Figures 3 and 4). Furthermore, RSR for calibration period is 0.51 while for validation is 0.52. 
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Figure 3: Monthly simulation and observed streamflow during calibration period 

 

Figure 4: Monthly simulation and observed streamflow validation period. 

Conclusively, the performance of the SWAT model results is 

quite efficient and resourceful in the present study of Upper 

Betwa Basin. Hydrological models with NS value that is greater 

than or equals to 0.5 is regarded as satisfactory. Similarly, 

Moriasi, et al., (2007), stated that RSR   SWAT model results 

can be judged as satisfactory if NS is ≥ 0.5 and RSR ≤ 0.7 and 

PBIAS ±25% for streamflow calibration. 

Training, validation and testing of the ANN model 

The process of selecting the final ANN structure was based on 

the trial and error procedure. The process continued until any 

increment or decrement in number of nodes has no significance 

in the performance of the neural network. Hence, this is to ensure 

that the final selected network has minimum complexity and 

minima MSE. The rainfall data used to run the ANN model 

represents 20 years monthly scale sets of rainfall values of 

SWAT output (sub-basin 1). The discharge data from 1980-

2001. However, 70% of the observed data was used for the 

model training, for validation 20% of the data was used, and the 

remaining 10% of the data was used for model testing. The 

training phase was terminated when the MSE was minimal. The 

aim of the ANN model training process is to achieve the best 

performance measures such as Nash-Sutcliff an R2. The ANN 

model reached it optimal level at 606 iterations with 4 hidden 

nodes. The results of performance evaluation of the ANN model 
are given in Table 5 
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Table 5. Results of ANN performance statistics   

 
calibration period  validation period 

Testing 

phase 

Model NS R2  NS R2 NS R2 

ANN 0.99 0.85  0.98 0.84 0.98 0.86 

Figures 5, 6 and 7 present the observed and simulated streamflow during training, validation and testing phases in the Upper Betwa 

Basin. There is a very good agreement between the observed and the simulated values. The simulated values during high flow 

events are nearly perfect than the SWAT model, though during low flow event the model overestimated the flow. Hence, this 
showed the strength of the ANN model and its efficiency in modelling rainfall runoff events. 

 

      Figure 5: monthly observed and simulated streamflow during training phase 

 

                       Figure 6: monthly observed and simulated streamflow during validation phase 
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Figure 7: Monthly observed and simulated streamflow during testing phase 

Comparison between SWAT and ANN 2 

The comparison of the SWAT and ANN model was based on graphical presentations and statistical evaluation criteria. The 

statistical evaluation is presented in Table 6. It is evident from the result presented in Table 6 that the ANN model outclassed the 

SWAT model in both calibration and validation periods for streamflow simulation in the Upper Betwa Basin. 

Table 6: Comparison of SWAT and ANN model performances   

 Calibration period  Validation period  

 Evaluation statistics  Evaluation statistics  

Model NS R2  NS R2  

SWAT 0.74 0.81  0.71 0.74  

ANN 0.99 0.85  0.98 0.89   

During the calibration periods the Nash-Sutcliff and R2 for SWAT were 0.74 and 0.81 respectively while for ANN were 0.99 and 

0.85 respectively. Also, during the validation period the ANN performed better as the result revealed with NS and R2 of 0.98 and 

0.89 respectively, while for SWAT were 0.71 and 0.74. 

 

Figure 8: Comparison of SWAT and ANN model performances 
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Hence, in this context both models show good performance of 

statistical evaluations. It is evident from Figure 8 that the ANN 

model is more successful when estimating high flow events than 

the SWAT model in the present study. However, from the results 

presented above both models did well for streamflow 

simulation, but the ANN model outclassed the SWAT model in 

the estimation of streamflow in the Upper Betwa Basin. 

Furthermore, the result of ANN model affirms its capability of 

simulating non-linear relationship such as the case of rainfall-
runoff of the Upper Betwa Basin.  

CONCLUSION 

Rainfall-runoff modelling is dependent on many variables 

ranging from climatic and different physical parameters such as 

elevation, vegetation, land use /land cover.  Moreover, these 

parameters make a non-linear relationship and complex relation 

for rainfall and runoff. Hence, efficient data set required for 

modelling physical based models such as SWAT is missing in 

many watersheds in developing countries. Therefore, based on 

the results of the two models, advancing use of the ANN model 

in hydrological modeling despite its short background gives an 

indication of its emergence and bright future in hydrological 

modelling.  Moreover, one of the advantages of the ANN is, it 

does not require watershed characteristics and other physical 

parameters in the modeling process, which reduces the 

difficulties of modeling the system. Furthermore, the rigorous 

time required for calibration of the ANNs is much less as 

compared with the SWAT. The ANN model needs less expertise 

from the modeler. Moreover, when investigating the response of 

the hydrological processes of the system as a whole, the 

physically based model (SWAT) may prove to be advantageous 

in comparison to the ANNs. So, the black-box models might 
emerge as a faster tool to implement on hydrological modelling. 
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