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ABSTRACT 
In this paper, concept of supersymmetric quantum mechanics has been employed to derive expression 

for bound state energy eigenvalues of the Tietz-Hulthén potential, the corresponding equation for 

normalized radial eigenfunctions were deduced by ansatz solution technique. In dealing with the 

centrifugal term of the effective potential of the Schrödinger equation, a Pekeris-like approximation 

recipe is considered. By means of the expression for bound state energy eigenvalues and radial 

eigenfunctions, equations for expectation values of inverse separation-squared and kinetic energy of 

the Tietz-Hulthén potential were obtained from the Hellmann-Feynman theorem. Numerical values of 

bound state energy eigenvalues and expectation values of inverse separation-squared and kinetic energy 

the Tietz-Hulthén potential were computed at arbitrary principal and angular momentum quantum 

numbers. Results obtained for computed energy eigenvalues of Tietz-Hulthén potential corresponding 

to Z = 0 and V0 = 0 are in excellent agreement with available literature data for Tietz and Hulthén 

potentials respectively. Studies have also revealed that increase in parameter Z results in monotonic 

increase in the mean kinetic energy of the system. The results obtained in this work may find suitable 

applications in areas of physics such as: atomic physics, chemical physics, nuclear physics and solid 

state physics 

KEYWORDS: Energy spectrum, SUSYQM, Tietz-Hulthén potential, Hellmann-Feynman theorem, 

expectation values 

 

 

INTRODUCTION 

Potential energy functions (or more simply potential) are 

relevant in quantum mechanics because they provide a means 

of representing the interaction between a physical object and 

its neighborhood (Yanar et al., 2021). On the other hand, all 

the necessary information regarding a quantum mechanical 

system can be obtained from wave functions representing the 

system under investigation (Tsaur and Wang, 2014; Eyube et 

al., 2019a). Such information that can be obtained from the 

wave function of a system include: thermodynamic 

properties (Dong and Cruz-Irisson, 2012; Eyube et al, 2021), 

magnetic properties (Horchani et al., 2020) and optical 

properties (Eshhgi et al., 2019) just to mention but a few. 

However, it is important to understand that obtaining the 

wave function for a particular quantum system requires 

solving a relativistic or nonrelativistic wave equation (Eyube 

et al., 2019b; Eyube et al., 2019c). The Schrödinger wave 

equation is fundamental and is particularly useful in the 

description of spinless particles (Yahya and Oyewumi, 2016; 

Eyube et al., 2019b). For a given potential energy model, the 

solution of Schrödinger equation is dependent on the 

presence of the centrifugal term in the effective potential of 

the equation (Yanar et al., 2020; Eyube et al., 2020a). The 

centrifugal term is given by ℓ (ℓ + 1) ħ² /2 μ r² where ℓ ≥ 0 is 

the is the angular momentum quantum number, r is the 

separation and μ is the reduced mass of the system. 

For all values ℓ, only the Mie-type potential, the harmonic 

oscillator and the Coulombic potential are known to give 

exact solutions with the Schrödinger equation (Ikot et al., 

2014). On the other hand, many other potentials yield exact 

solution with the Schrödinger equation for ℓ = 0, the solutions 

are also referred to as s-wave solutions (Hassanabadi et al., 

2013a). Some of the potential models with s-wave solution 

include: Tietz potential (Nikoofard et al., 2013; Eyube et al., 

2021a), Morse potential (Eyube et al., 2020b), Pöschl-Teller 

potential (Yanar et al., 2020), Manning-Rosen potential 

(Chen and Jia, 2009; Ikhdair, 2011), Rosen-Morse potential 

(Liu et al., 2014) and Hulthén potential (Ikhdair, 2009). 

Usually, most of the known potential energy models have no 

exact solution with the Schrödinger equation, in this case, 

approximate numerical solution (Lucha and Schöberl, 1999) 

or approximate analytical solution (Wei and Dong, 2008) are 

considered. On the one hand, approximate analytical solution 

has the advantage that it can be obtained in closed forms 

which is more suitable for exploring the physical properties 

of the system it represents. Numerical solutions are not closed 

form solutions but their convergence to the actual solution of 

the equation can be observed (Eyube et al., 2021b). Thus it 

suffices to conclude that the most accurate analytical solution 

is one which agrees more closely to a corresponding 

numerical solution. 

Different solution methods of the Schrödinger and other 

wave equations have been advocated in the literature, among 

which include: supersymmetric quantum mechanics 

(Hassanabadi et al., 2013b), Nikiforov-Uvarov method and 

its parametric form (Nikoofard et al., 2013), exact and proper 

quantization rule (Eyube et al., 2020c; Eyube et al., 2021b), 

ansatz solution method (Chen and Jia, 2009) and asymptotic 

iteration method (Sous, 2019) 

Quite a number of potential energy functions have been used 

to solve the Schrödinger equation, one of such potential 

models is the Hulthén potential. The eigenenergies and 

oscillator strength of this potential model has been studied by 

Varshni (1990). Jia and collaborators (2008) obtained bound 

state energies of the Hulthén potential via a newly proposed 

approximation scheme. The approximate bound state 
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solutions of Dirac equation with Hulthén potential including 

Coulomb-like tensor potential has been studied (Ikhdair and 

Sever, 2010). The Hulthén potential has also been studied as 

a combined potential. With the help of Nikiforov-Uvarov 

method, Meyur and Debnath (2009) solved the Schrödinger 

equation with Hulthén plus Manning-Rosen potential and 

obtained results in terms of Jacobi polynomials. In another 

studies, analytical solutions of Schrödinger equation with 

Manning-Rosen plus Hulthén potential was obtained within 

the frameworks of supersymmetric quantum mechanics 

(SUSYQM). 

This work aims at obtaining the energy spectrum and some 

useful expectation values of a proposed Tietz-Hulthén 

potential, the Tietz-Hulthén potential is simply a combination 

of the Hulthén potential plus Tietz potential expressed as
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Where the first and second terms in equation (1) are the Hulthén potential (Jia et al., 2008) and Tietz potential (Eyube et al., 

2021a) respectively. e is the electronic charge, δ is the screening parameter that determines the range of the potential, V0 is the 

potential strength of the Tietz potential, re is the equilibrium bond length and Z is the atomic number. This paper is organized 

as follows: In section two, the method of SUSYQM is used to derive energy spectrum of the Tietz-Hulthén potential. In section 

three, radial wave functions of the Tietz-Hulthén potential is obtained by ansatz solution technique. Some important 

expectation values of the Tietz-Hulthén potential are obtained in section four. Numerical results are discussed in section five. 

In section six, a brief conclusion of the work is given.  

 

SUSYQM APPROACH TO THE ENERGY SPECTRUM OF TIETZ-HULTHÉN POTENTIAL 

The radial part of the Schrödinger equation expressed in three-dimensional spherical coordinates is given as (Eyube et al., 

2021a) 

      H n n nr r E r  ,       (2) 

where n is the principal quantum number, ψnℓ (r) is the radial wave function and the Hamiltonian operator is 
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with the effective potential given as 
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Replacing equation (1) into (4) gives 
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Equation (2) has exact solution with (5) only for the case of s-wave. However, with the choice of a suitable approximation 

scheme, the centrifugal term in equation (5) can be transformed to terms which can be absorbed into the Tietz-Hulthén 

potential, in this way, approximate analytical solution can be obtained. The Pekeris-like approximation scheme gives that for 

small values of the screening parameter δ, the centrifugal term can be approximated by (Eyube et al., 2021a) 
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where the constant coefficients d-1+j (j = 1, 2, 3) are obtained from Eyube et al. (2021a) as 
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Substituting equation (6) into (5) and simplifying, one obtains 
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In arriving at the equation (10), the following relation has been used 
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By inserting equation (10) in (3) and replacing the resulting expression into equation (2) leads to the following equation in 

compact form 
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where prime denotes derivatives with respect to argument in brackets and the parameters γnℓ, γ0 and γ1 are defined as 
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Assume supersymmetry (SUSY) as one in which E0ℓ = 0, equation (12) is satisfied by the ground state (n = 0) wave function 

     0 0 exp dr N r r    ,      (16) 

where N0ℓ is the normalization constant for the ground state wave function and ϕ is referred to as superpotential in the context 

of SUSYQM (ref). Substituting equation (16) in (12), one obtains the nonlinear Riccati differential equation given by 

 

 
2 0 1

0 2

e

e 1 e 1

r

r r



 

 
      

 
.      (17) 

In order to solve equation (17), a trial wave function of the form 
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Next a pair of partner potentials is constructed for the Hamiltonian, these partner potentials are defined as (Jia et al., 2009; Xu 

et al., 2010) 
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If shape invariant condition of SUSYQM applies, the partner potentials in (23) and (24) are related by (Jia et al., 2009; Xu et 

al., 2010) 

      0 1 1, ,V r a V r a R a   ,       (25) 

where a1 is a new set of parameters uniquely determined from the old set c0 ≡ A through the relations c1 = c0 + δ, c2 = c0 +2 δ, 

…, cn = c0 + n δ. R (c1) is the remainder term and is independent of r (Jia et al., 2009; Xu et al., 2010). Equation (25) leads to 

the relation 
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where j  . To determine the energy eigenvalues, we define 
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Substituting equation (26) in (27) and expanding out the summation leads to 
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The energy eigenvalue is obtained from the expression 
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Inserting equations (13), (21) and (28) into (29) and simplifying yields 
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RADIAL WAVE FUNCTIONS OF THE TIETZ-HULTHÉN POTENTIAL 

Wave functions of the rotating Tietz-Hulthén potential can be obtained via ansatz solution method. Letting 
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Since equation (34) has singularities at x = 0 and x = 1, we suppose an ansatz solution of the form 
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where σ is a parameter, Nnℓ is the normalization constant, Ωnℓ (x) is an unknown function of x and the parameter ω is given by 

equation (22). Replacing equation (35) into (34), leads to the Gauss hypergeometric differential equation 
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Considering bound state solutions, equation (36) has solution as the hypergeometric function given by 
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    
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is the probability density function. Upon substituting equations (40), (35) and then (38) into (39) gives 
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EXPECTATION OR MEAN VALUES OF THE TIETZ-HULTHÉN POTENTIAL 

Here, the Hellmann-Feynman theorem (HFT) (Eyube et al., 2021b) is used to obtain expression for the expectation or mean 

values of kinetic energy for the system in Tietz-Hulthén potential. The HFT states that if the Hamiltonian H(q) of a quantum 

mechanical system is a function of a parameter, q, then H (q, r), En ℓ (q) and ψn ℓ (q) are related by 
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where ψnℓ (r, q) is the normalized radial wave function. For the Tietz-Hulthén potential, the Hamiltonian is given by substituting 

equation (5) into (3), this gives 
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Differentiating equation (30) partially with respect to L, we find 
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Similarly, differentiating equation (43) with respect to L gives 
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Upon substituting equations (48) and (45) into (43), the expectation value of inverse separation squared is found to be 
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The expectation value of kinetic energy T  is given as (Eyube et al., 2021b) 

    
2 2

2

d
T , ,

2 d
n nr q r q

r
 


  .     (50) 

Explicit expression for T  is obtained by Hellmann-Feynman theorem, by differentiating equations (30) and (44) with respect 

to μ, one obtains 

 
 22 2 2 2 1

e20 0 0
e2 2

sinh2 8
sinh

2 2 2 1

nE rL d V VZ e
r

 


       

     
      

   

, (51) 

 

2 2 2

2 2 2 2

H d

2 d 2

L

r r  


 


.       (52) 

Replacing equations (51) and (52) in (43) and with the help of equation (49), the expectation value of the kinetic energy of the 

system can simply be written as 
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n nE E

L
L




 
  

 
.       (59) 

 

RESULTS AND DISCUSSION 

In order to confirm the validity of the equation for energy 

spectrum of the Tietz-Hulthén potential derived in this work, 

it is observed that by letting V0 = 0, equation (1) is reduced to 

Hulthén potential energy function (Varshni, 1990). If in 

addition, d-1+j (j = 1, 2, 3) are chosen as 0, ωδ² and δ² 

respectively as opposed to that given by equations (7) – (9), 

the equation (30) is reduced to equation (19) of Jia et al. 

(2008) which is the expression for energy eigenvalues of the 

Hulthén potential. On the other hand, setting Z = 0, equation 

(1) gives the potential energy function of Tietz potential 

(Nikoofard et al., 2013; Eyube et al., 2021a), if the mapping 

δ → 2α is used, equation (30) reproduces equation (41) of 

Eyube et al. (2021a), the expression for ro-vibrational energy 

of the Tietz oscillator. Therefore, we conclude that equation 

(30) is the correct expression for the energy spectrum of the 

Tietz-Hulthén potential, where the Tietz and Hulthén 

potentials are two special cases. 

Using equation (30), bound state energies are calculated for 

arbitrary principal and angular momentum quantum numbers 

as a function of Z, computed results and are represented by 

Enℓ (SUSY) in Table 1. Also shown in Table 1 are literature 

data of bound state energy eigenvalues, Enℓ (PQR) of Tietz 

oscillator obtained by proper quantization rule (Eyube et al., 

2021a). Evidently, results obtained for Enℓ (SUSY) and in 

favorable agreement with those of Enℓ (PQR). Graphical plot 

of the variation of bound state energy eigenvalues versus Z 

for different values principal quantum number (n) is shown 

in Figure 1, as revealed by the plot, the energies increases 

with increase in n and also decreases monotonically when Z 

is gradually increased from zero. 

Equations (49) and (59) have been used to compute 

expectation values for inverse separation-squared and kinetic 

energy respectively, the results are shown in Table 1. Figure 

2 is the plot of expectation values of inverse position-squared 

as a function of Z for different quantum states, n. from the 

plot, it is clear that < r-2 > increases monotonically as Z is 

increased from zero and it is smaller for larger values of n. 

The graphical plot of the variation of < T > versus Z for 

different values of n is shown in Figure 3. Here, it is noted 

that < T > increases monotonically as Z is gradually increased 

and is independent of the state of the system. 

 

Table 1: Bound state energy eigenvalues and expectation values as a function of n, ℓ and Z for μ = 5, re = 2 and e = 1 

(all physical quantities in atomic unit) 

state Z = 0 Z = 1 

n ℓ Enℓ (SUSY) Enℓ (PQR) <r-2> <T> Enℓ (SUSY) <r-2> <T> 

0 0 0.059306 0.059294 0.145249 0.024491 -0.509761 0.735332 0.123987 

1 0.083224 0.083203 0.098535 0.018236 -0.388677 0.498844 0.092325 

2 0.112446 0.112405 0.054250 0.011595 -0.240735 0.274656 0.058706 

3 0.135995 0.135919 0.028440 0.007110 -0.121507 0.143996 0.035999 

5 0.164181 0.163988 0.008657 0.002893 0.021216 0.043842 0.014653 

1 0 0.116300 0.116235 0.066639 0.030376 -0.221216 0.337385 0.153794 

1 0.127612 0.127529 0.048081 0.024291 -0.163945 0.243437 0.122992 

2 0.142489 0.142371 0.028872 0.017069 -0.088617 0.146189 0.086431 

3 0.155544 0.155374 0.016455 0.011517 -0.022513 0.083328 0.058328 

5 0.172885 0.172562 0.005695 0.005424 0.065315 0.028855 0.027488 

2 0 0.144553 0.144408 0.035918 0.026688 -0.078163 0.181870 0.135141 

1 0.150770 0.150599 0.026955 0.022247 -0.046684 0.136495 0.112660 

2 0.159350 0.159131 0.017147 0.016609 -0.003232 0.086839 0.084122 

3 0.167328 0.167041 0.010359 0.011910 0.037174 0.052471 0.060339 

5 0.178755 0.178281 0.003943 0.006192 0.095074 0.019988 0.031401 

3 0 0.160580 0.160332 0.021517 0.022167 0.003004 0.108975 0.112276 

1 0.164355 0.164074 0.016594 0.019007 0.022123 0.084051 0.096282 

2 0.169745 0.169404 0.010999 0.014804 0.049428 0.055721 0.075010 

3 0.174972 0.174547 0.006936 0.011094 0.075908 0.035148 0.056233 

5 0.182898 0.182254 0.002840 0.006215 0.116096 0.014411 0.031550 

5 0 0.177139 0.176622 0.009476 0.015204 0.086907 0.048038 0.077086 

1 0.178831 0.178268 0.007570 0.013516 0.095485 0.038385 0.068547 

2 0.181357 0.180711 0.005299 0.011130 0.108297 0.026880 0.056477 

3 0.183949 0.183192 0.003544 0.008854 0.121449 0.017988 0.044966 

5 0.188212 0.187170 0.001612 0.005516 0.143103 0.008200 0.028091 
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Figure 1: Graphical representation of the variation of bound state energy eigenvalues as a function of Z for different principal 

quantum numbers 

 
Figure 2: Variation of expectation value of inverse separation-squared as a function of Z for different principal quantum 

numbers 
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Figure 3: Variation of expectation value of kinetic energy as a function of Z for different principal quantum numbers 

 

CONCLUSION 

In the present work, the ideas of supersymmetric quantum 

mechanics and ansatz solution approach have been used to 

deduce expressions for bound state energy eigenvalues and 

normalized radial wave functions of the Tietz-Hulthén 

potential. In modeling the centrifugal term of the effective 

potential of the Schrödinger equation, a Pekeris-like 

approximation scheme is employed. With the help of 

Hellmann-Feynman theorem and the expression for bound 

state eigen energies, formulas for expectation values of 

inverse separation-squared and kinetic energy of the Tietz-

Hulthén potential were obtained. Numerical values of bound 

state energy eigenvalues and expectation values were 

calculated at arbitrary principal and angular momentum 

quantum numbers. Results obtained for computed energy 

eigenvalues of Tietz-Hulthén potential for Z = 0 and V0 = 0 

are in excellent agreement with available data in the literature 

for Tietz and Hulthén potentials respectively. Studies have 

also shown that increase in parameter Z results in monotonic 

increase in the mean kinetic energy of the system 
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