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ABSTRACT 

This paper modified an existing 3–point block method for solving stiff initial value problems.  The 

modification leads to the derivation of another 3 – point block method which is suitable for solving stiff initial 

value problems.  The method approximates three solutions values per step and its order is 5. Different sets of 

formula can be generated from it by varying a parameter ρ ϵ (-1, 1) in the formula. It has been shown that the 

method is both Zero stable and A–Stable. Some linear and nonlinear stiff problems are solved and the result 

shows that the method outperformed an existing method and competes with others in terms of accuracy. 

Keyword: A–Stable, Block Method, Enhanced super class of block backward differentiation formula, Super 

class of block backward differentiation formula, and Zero Stable. 

 

 

INTRODUCTION 

Most physical problems in science and engineering are 

formulated as ordinary differential equations (ODEs). For 

example, problems in electrical circuits, mechanics, vibrations, 

chemical reactions, kinetics and population growth can all be 

modeled by differential equations. Such differential equations 

can be categorized into stiff and non stiff. Majority of both 

categories cannot be solved analytically and hence the use of 

suitable numerical schemes is advocated. Stiff differential 

equations describe equations where different physical 

phenomena acting on different time scales occur 

simultaneously.  According to Curtiss and Hirschfelder (1952), 

implicit numerical schemes proved to be more efficient in 

solving stiff problems than explicit ones.  Most common 

implicit algorithms are based on Backward Differentiation 

Formula (BDF).  The BDF first appeared in the work of (Curtiss 

& Hirschfelder, 1952).  Researchers continued to improve on 

the BDF methods.  Such improvements include the Extended 

Backward Differential Formula by (Cash 1980), modified 

extended backward differential formula by (Cash 2000), block 

backward differentiation formula (BBDF) by (Ibrahim et 

al2007), 2 point diagonally implicit super class of backward 

differentiation formula by (Musa et al2016), diagonally implicit 

block backward differentiation formula for solving ODEs by 

(Zawawi et al 2012), a new variable step sizeblock backward 

differentiation formula for solving stiff initial value problems 

(Suleiman et al 2013), a new fifth order implicit block method 

for solving first order stiff ordinary differential equations by 

(Musa et al2014), a new super class of block backward 

differentiation formula for stiff ordinary differential equations 

by Suleimanet al (2014)..  This paper extends the work in (Musa 

et al 2014) by introducing a non zero coefficient, namely𝛽𝑘−2.  

The proposed block method is intended to solve stiff initial 

value problems (IVPs) by computing three solution values at a 

time.

 

 

Derivation of the Method 

Consider the following fifth order implicit block method for solving first order stiff ordinary differential equations developed by 

(Musa et al. 2014): 

∑ αj,i
5
j=0 yn+j−2 = hβk,i,(fn+k − ρfn+k−1), 𝑘 = 𝑖 = 1,2,3               (1) 

where ′ρ’ is a free parameter in the interval  (-1, 1) and  βk−1,i = ρβk,i (see Kanaka (1985)).  In formula (1) 

β0,i = β1,i = ⋯  = βk−2,i = 0.  But βk−1,i ≠ 0.   k = i = 1, k = i = 2 and  k = i = 3 

represent the first, second and third points formulae respectively. 

In contrast to (1), this paper considersβ0,i = β1,i = ⋯  = βk−3,i = βk−1,i = 0; but βk−2,i ≠ 0 whereβk−2,i = ρβk,i.  This leads to 

the new formula: 

∑ 𝛼𝑗,𝑖𝑦𝑛+𝑗−2 = βk,i(𝑓𝑛+𝑘
5
𝑗=0 − 𝑃𝑓𝑛+𝑘−2),       𝑘 = 𝑖 = 1,2,3   (2) 
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where ρ is considered with the same interval of (-1 , 1) as in (Musa et al, 2014). 

The implicit method (2) is constructed using a linear operator.  To derive the three point formula, define a linear operator  

Li associated with (2) by: 

Li[y(xn), h)]: α0,iyn−2 + α1,iyn−1+α2,iyn + α3,iyn+1 + α4,iyn+2α5,iyn+3 − hβ
k,1
(fn+k − pfn+k−2)  = 0,  

 𝑘 = 𝑖 = 1,2,3.                                      (3) 

To derive the first point 𝑦𝑛+1,substitute 𝑘 = 𝑖 = 1 in (3) to obtain 

L1[y(xn), h)]: α0,1y(xn − 2h) + α1,1y(xn − h) + α2,1y(xn) + α3,1y(xn + h) + α4,1y(xn + 2h) + α5,1y(xn + 3h) −

hβ
1,1
(fn+1 − pfn−1) = 0             (4) 

Expand (4) using Taylor series about 𝑥𝑛and collect like terms to get 

C0,1yn + hC1,1yn
′ + h2C2,1yn

′′ + h3C3,1yn
′′′ + …  = 0    (5) 

where  

𝐶0,1 = 𝛼0,1 + 𝛼1,1 + 𝛼2,1 + 𝛼3,1 + 𝛼4,1 + 𝛼5,1  = 0                                                 

𝐶1,1 = −2𝛼0,1 − 𝛼1,1 + 𝛼3,1 + 2𝛼4,1 + 3𝛼5,1 + 𝛽1,1(𝑝 − 1) = 0                         

𝐶2,1 = 2𝛼0,1 +
1

2
𝛼1,1 +

1

2
𝛼3,1 + 2𝛼4,1 +

9

2
𝛼5,1– 𝛽1,1(𝑝 + 1) = 0                        

𝐶3,1 = −
4

3
𝛼0,1 −

1

6
𝛼1,1 +

1

6
𝛼3,1 +

4

3
𝛼4,1 +

9

2
𝛼5,1  +

1

2
𝛽1,1(𝑝 − 1) = 0              

𝐶4,1 =
2

3
𝛼0,1 +

1

24
𝛼1,1 +

1

24
𝛼3,1 +

2

3
𝛼4,1 +

27

8
𝛼5,1 −

1

6
𝛽1,1(𝑝 + 1) = 0            

𝐶5,1 = −
4

15
𝛼0,1 −

1

120
𝛼1,1 +

1

120
𝛼3,1 +

4

15
𝛼4,1 +

81

40
𝛼5,1  +

1

24
𝛽1,1(𝑝 − 1) = 0}

 
 
 
 

 
 
 
 

 (6) 

𝛼3,1( the coefficient of the first point 𝑦𝑛+1) is normalised to 1.  Equation (6) is solved simultaneously and the values of the 

coefficients are substituted into (4) to obtain the first point as: 

yn+1 = −
1

10

6ρ−1

3ρ+1
yn−2 −

1

4

13ρ+3

3ρ+1
yn−1 +

3(2ρ−1)

3ρ+1
yn +

1

2

2ρ−3

3ρ+1
yn+2 −

3

20

ρ−1

3ρ+1
yn+3 +

3

3ρ+1
hfn+1 −

3

3ρ+1
hρfn−1   

        (7) 

To derive the second and the third points, substitute k=i=2 and k=i=3 respectively in (3) and follow similar procedure as described 

in the derivation of the first point.  The three point block method is therefore obtained as: 

yn+1 =  −
1

10

6p−1

3p+1
yn−2 −

1

4

13p+3

3p+1
yn−1 +

3(2p−1)

3p+1
yn + 

1

2

2p−3

3p+1
yn+2 −

3

20

p−1

3p+1
yn+3  +

3

3p+1
hfn+1 −

3

3p+1
hpfn−1

yn+2 =
3

5

p−1

13+3p
yn−2 −

2(3p−2)

13+3p
yn−1 −

4(p+3)

13+3p
yn + 

12(2+p)

13+3p
yn+1 + 

3

5

p−6

13+3p
yn+3 +  

12

13+p
hfn+2 −

12

13+p
phfn

yn+3 = −
2(−6+p)

3p+137
yn−2 +

15(p−5)

3p+137
yn−1−

20(3p−10)

3p+137
yn  +

20(p−15)
3p+137 yn+1 +

30(p+10)

3p+137
yn+2 −

60
3p+137phfn+1 +

60
3p+137hfn+3

}   

         (8) 

In this paper, formula (8) is called ‘Enhaced 3–Point Fully Implicit Super Class of Block Backward Differentiation 

Formula(3ESBBDF)’ for solving Stiff initial value Problems . For stability reasons, the value of the free parameter ′𝜌′is restricted 

within the interval (-1, 1) as in (Musa et al, 2014) and (kanaka 1985). The proof of the stability of BBDF method of the form   

∑ αj,iyn+j =  hβk,i(fn+k
k
j=0 − Pfn+k−1) can be found in (Kanaka 1985).  Substituting  𝜌 = −

4

5
 in (8), the 3ESBBDF is obtained as: 

yn+1 = −
29

70
yn−2 −

37

28
yn−1 +

9

7
yn  +

23
14yn+2 −

27

140
yn+3 −

15
7 hfn+1 −

12
7 hfn−1

yn+2 = −
27

265
yn−2 +

44

53
yn−1 −

44

53
yn +

72
53yn+1 −

68

265
yn+3 +   

60
53hfn+2 +

48
53hfn

yn+3 =
68

673
yn−2 −

435

673
yn−1 +

1240

673
yn −

1580
673 yn+1 +

1380

673
yn+2 +   

300
673hfn+3 +

240
673hfn+1

} (9) 

 

Stability Analysis 

 Definition (Zero stability) 

 A linear multi-step method is said to be zero stable if all the roots of first characteristics polynomial have modulus less 

than or equal to unity and those roots with modulus unity are simple.   

The method (9) can be written in matrix form as  

(

 
 
 
1 −

23

14

27

140

−72

53
1

68

265

1580

673
−
1380

673
1 )

 
 
 

(

yn+1
yn+2
yn+3

) =

(

  
 

−
29

70
−
37

28

9

7

–
27

265
44

53

44

53
68

673
−
435

673

1240

673 )

  
 
(

yn−1
yn−2
yn−3

) + 
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h(
0 −12

7
0

0 0 48
53

0 0 0

)(

fn−2
fn−1
fn

) + h(

−15
7

0 0

0 60
53 0

240
673

0 300
673

)(

fn+1
fn+2
fn+3

)                  (10) 

Equation (10) can be rewritten in the following form: 

A0Ym = A1Ym−1 + h(B0Fm−1 + B1Fm)       (11) 

where 

𝐴0 =

(

 
 
1 −

23

14

27

140

−72
53

1
68

265

1580
673

−
1380

673
1
)

 
 
,  𝐴1 =

(

 

−
29

70
−37

28

9
7

–
27

265
44
53

44

53
68

673
−435

673

1240

673)

 ,  

𝐵0 = (
0 −12

7
0

0 0 48
53

0 0 0

),  and 𝐵1 = (

−15
7 0 0

0 60
53

0
240
673

0 300
673

). 

Substituting the scalar test equation 

y′ =λy            (12) 

(λ<0, λ complex) into (11) and using λh= h̅gives 

𝐴0𝑌𝑚=𝐴1𝑌𝑚−1 + ℎ̅(𝐵0𝑌𝑚−1 + 𝐵1𝑌𝑚)          (13) 

The stability polynomial of (9) is obtained by evaluating 

Det[(A0 − h̅B1)t − (A1 + h̅B0)] = 0     (14) 

to obtain the following first characteristic polynomial : 

R(h̅, t) =
63882

35669
t +

46296

249683
h̅ −

6950103

4244611
th̅ +

706617

249683
t2 −

120738

53669
t2h̅ +

3667896

4244611
t2h̅2 −

726387

606373
t3h̅ +

7720920

4244611
t3h2 −

270000

606373
t3h3  +

2416320

606373
th̅2 −

39168

249683
h̅2 −

138240

2499683
th̅3 −

402210

249683
t3 +

142767

2499683
 = 0       

       (15) 

By substitutingh̅ = 0 in (15), the first characteristic polynomial is obtained as: 

𝑅(𝑡, 0) = −
402210

249683
𝑡3 +

706617

249683
𝑡2 + 

63882

35669
𝑡 +

142767

249683
= 0       (16) 

Solving (16) for 𝑡 gives the roots as:  t = 1, t = 0.8385877317, and t = –0.0817517514.  Therefore by definition above, the method 

is Zero Stable. 

Definition (A- stability) 

A linear multi-step method is said to be A-stable if the stability region covers the entire negative half plane. 

The stability region of the method (9) is shown in the following figure: 

 

Figure:  1:  Stability Region of the Method when 𝜌 = −
𝟒

𝟓
 

The stability region is the region outside the circular shape, and thus covered the entire negative half plane.  Thus, by the definition 

of A – stability stated above, the method is A – stable. Hence, the method is both Zero and A–stable, it is suitable for solving stiff 

initial value problems. 
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Implementation of the Method 

Applying Newton’s iteration let 𝑦𝑖and𝑦(𝑥𝑖)be the approximate and exact solutions respectively of the stiff IVP: 

𝑦′ = 𝑓(𝑥, 𝑦),     𝑦(𝑥0) = 𝑦0,  𝑥 ∈ (𝑎, 𝑏)   (17) 

Define the error as: 

(𝑒𝑟𝑟𝑜𝑟𝑖)𝑡 = |(𝑦𝑖)𝑡 − (𝑦(𝑥𝑖))𝑡|.        (18) 

and the maximum error as: 

𝑀𝐴𝑋𝐸 = 𝑚𝑎𝑥⏟
  1≤𝑖≤𝑇

(𝑚𝑎𝑥 (𝑒𝑟𝑟𝑜𝑟𝑖)𝑡⏟        
    1≤𝑖≤𝑁

).         

where T is the total number of steps and N is the number of equations (see Ibrahim et al (2007)). 

Define 

F1 = yn+1 −
23
14
yn+2 +

27

140
yn+3 +  

15
7
hfn+1 +

12
7
hfn−1 − ℰ1

F2 = yn+2 −
72
53yn+1 +

68

265
yn+3 −

60
53hfn+2 −

48
53hfn − ℰ1

F3 = yn+3 + 
1580
673
yn+1 −

1380

673
yn+2 −

300
673
hfn+3 −

240
673
hfn+1 − ℰ3

}     (19) 

where ℰ1, ℰ2 and ℰ3  are the back values obtained from the method (9) as: 

ℰ1 =  −
29

70
yn−2 −

37

28
yn−1 +

9

7
yn

ℰ2 =  −
27

265
yn−2 +

44

53
yn−1 −

44

53
yn

ℰ3 = 
68

673
yn−2 −

435

673
yn−1 +

1240

673
yn

}        (20) 

The Newton’s iteration takes the form  

𝑦𝑛+1
(𝑖+𝑗)

=  𝑦𝑛+𝑗
(𝑖)

− [𝐹𝑖 (𝑦𝑛+𝑗
(𝑖)
)] [𝐹𝐽

′( 𝑦𝑛+𝑗
(𝑖)
)]
−1

                                                                                                         (21) 

Hence, (21) can be written as 

[𝐹𝐽
′(𝑦𝑛+𝑗

(𝑖)
)] 𝑒𝑛+1

(𝑖+𝑗)
 =  − [𝐹𝑖 (𝑦𝑛+𝑗

(𝑖)
)]        (22) 

Equation (22) is equivalent to: 

(

1 + 15

7
hδfn+1
δyn+1

−23

14

27
140

−
72
53 1 − 60

53h
δfn+2
δyn+2

68
265

1580
673 −

240
673h

δfn+1
δyn+1

−
1380
673 1 − 300

673h
δfn+3
δyn+3

)(

en+1
(i+1)

en+2
(i+1)

en+3
(i+1)

)  =  (

−1 23
14 −

27
140

72
53

−1 − 68

265

−
1580
673

1380
673 −1

)(

yn+1
(i)

yn+2
(i)

yn+3
(i)

) + h(
0 12

7 0

0 0 48
53

0 0 0

)(

fn−2
(i)

fn−1
(i)

fn
(i)

)+

h

(

 
 
−
15

7
0 0

0
60

53
0

240

673
0

300

673)

 
 
(

fn+1
(i)

fn+2
(i)

fn+3
(i)

)+ (

ℰ1
ℰ2
ℰ3

)        (23)   

A computer programming is designed to implement (23) 

1. Test Problems 

To validate the method developed, the following stiff IVPs are solved.  Problem 1 is a non-linear while problems 2 and 3 are linear. 

Problem 1:      𝑦′ = 5𝑒5𝑥(𝑦 − 𝑥)2 +  1        𝑦(0) = 0           0 ≤ x ≤ 1 

Exact solution: 

𝑦(𝑥) = 𝑥 − 𝑒−5𝑥 

Source: (Lee et al, 2002) 

 

Problem 2 ∶    𝑦1
′ = −20𝑦1 −19𝑦2                  𝑦1(0) = 2 

                                                                                  0 ≤ x ≤ 20 

                          y2
′ = −19y1 −20y2                   y2(0) = 0 

 

Exact Solution: 

𝑦1(𝑥) = 𝑒
−39𝑥 + 𝑒−𝑥 

𝑦2(𝑥) = 𝑒
−39𝑥 − 𝑒−𝑥 

Source: (Cheney & Kincaid2012) 

𝑃𝑟𝑜𝑏𝑙𝑒𝑚 3:  𝑦1
′ = 198𝑦1 + 199𝑦2                       𝑦1(0) = 1            0 ≤ x ≤ 10 

 𝑦2
′ = −398𝑦1 − 399𝑦2                            𝑦1(0) = −1 

Exact solution 

𝑦1(𝑥) = 𝑒
−𝑥 

𝑦2(𝑥) = −𝑒
−𝑥 

Eigen values −1 and −200 
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Source: (Ibrahim et al.,2007); 

 

Numerical Result  

The problems presented in section 5 are solved using the developed method and some other methods available in the literature.  

The results are compared in tables; and graphs depicting the performance of each method are plotted.  The following notations 

are used in the tables: 

h = step-size;  

NS = Number of steps 

MAXE = Maximum Error 

T=Time in s. 

3BBDF = 3-Point block backward differentiation formula for solving stiff IVPs. 

3NBBDF = A 3-Point New fifth order implicit block Method for solving first order stiff ODEs. 

3ESBBDF = 3-Point Enhanced fully implicit Super Class of Block Backward Differentiation Formula for solving Stiff IVPs. 

 

 

 

Table 1. Numerical results for problem 1 

h Method NS MAXE TIME 

10−2 3BBDF 

3NBBDF 

3ESBBDF 

333 

333 

333 

2.80735e-002 

3.51456e-003 

4.83217e-003 

6.23434e-001 

5.52416e-004 

6.23441e-005 

10−3 3BBDF 

3NBBDF 

3ESBBDF 

3,333 

3,333 

3,333 

3.71852e-003 

4.90191e-005 

5.95338e-005 

1.81850e-003 

4.50367e-003 

6.65467e-004 

10−4 3BBDF 

3NBBDF 

3ESBBDF 

33,333 

33,333 

33,333 

3.74700e-004 

5.20417e-007 

5.95692e-007 

1.71443e-002 

4.36918e-002 

6.48433e-003 

10−5 3BBDF 

3NBBDF 

3ESBBDF 

333,333 

333,333 

333,333 

3.74970e-005 

5.25030e-009 

5.959740e-009 

1.70042e-001 

4.34808e-001 

6.58687e-002 

10−6 3BBDF 

3NBBDF 

3ESBBDF 

3,333,333 

3,333,333 

3,333,333 

3.74997e-006 

5.25648e-011 

6.186362e-011 

1.70308e+000 

4.35791e+000 

6.23434e-001 

 

Table 2. Numerical results for problem 2 

h Method NS MAXE TIME 

10−2 3BBDF 

3NBBDF 

3ESBBDF 

666 

666 

666 

6.23032e-002 

6.98707e-002 

8.83217e-004 

2.77590e-002 

2.63337e-002 

7.68676e-002 

10−3 3BBDF 

3NBBDF 

3ESBBDF 

6,666 

6,666 

6,666 

3.76165e-002 

5.40956e-003 

6.05338e-005 

7.66636e-002 

2.60816e-001 

7.64515e-001 

10−4 3BBDF 

3NBBDF 

3ESBBDF 

66,666 

66,666 

66,666 

4.26516e-003 

3.08942e-005 

6.26692e-006 

7.64385e-001 

2.60725e+000 

7.68143e-001 

10−5 3BBDF 

3NBBDF 

3ESBBDF 

666,666 

666,666 

666,666 

4.30707e004 

3.18534e-007 

6.32740e-008 

7.63788e+000 

2.60597e+001 

7.59821e+000 

10−6 3BBDF 

3NBBDF 

3ESBBDF 

6,666,666 

6,666,666 

6,666,666 

4.31123e-005 

3.19872e-009 

6.33362e-010 

7.65356e+001 

2.60700e+002 

7.53567e+001 

 

 



ENHANCED 3-POINT FULLY… Muhammad and Hamisu FJS 

FUDMA Journal of Sciences (FJS) Vol. 5 No.2, June, 2021, pp 120 - 127 
125 

 

Table 3. Numerical results for problem 3 

h Method NS MAXE TIME 

10−2 3BBDF 

3NBBDF 

3ESBBDF 

333 

333 

333 

1.07308e-002 

1.94447e-004 

1.83217e-004 

1.37500e-002 

1.20394e-003 

7.36289e-002 

10−3 3BBDF 

3NBBDF 

3ESBBDF 

3,333 

3,333 

3,333 

1.10060e-003 

2.07993e-006 

8.05338e-006 

2.72200e-002 

1.25972e-002 

5.81512e-002 

10−4 3BBDF 

3NBBDF 

3ESBBDF 

33,333 

33,333 

33,333 

1.10333e-004 

2.09995e-008 

1.26692e-008 

2.02700e-001 

1.25148e-001 

5.81491e-001 

10−5 3BBDF 

3NBBDF 

3ESBBDF 

333,333 

333,333 

333,333 

1.10361e-005 

2.10257e-010 

1.32740e-010 

1.92600e+000 

1.25471e+000 

5.81122e+000 

10−6 3BBDF 

3NBBDF 

3ESBBDF 

3,333,333 

3,333,333 

3,333,333 

1.10363e-006 

1.41029e-011 

1.33362e-012 

1.91700e+001 

1.24892e+001 

5.79987e+001 

 

From the Tables 1–3, it can be seen that the 3ESBBDF outperformed the 3BBDF in terms of accuracy and minimum computational 

time.  Also, the 3ESBBDF competes with the 3NBBDF in terms of accuracy.  However, the computation time of the new method 

does not seem to be better in comparison with the other method 3NBBDF for most of the problems solved.   

To further compare the performance of the methods, the graphs of Log10(𝑀𝐴𝑋𝐸) against h for the problems tested are 

plotted and presented as follows: 

 

Figure 2: Graph of Log10(𝑀𝐴𝑋𝐸) against h for problem 1 
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Figure 3: Graph of Log10(𝑀𝐴𝑋𝐸) against h for problem 2 

 

  Figure 4: Graph of Log10(𝑀𝐴𝑋𝐸) against h for problem 3 

The graphs in Figure 2 – 4 also show that the scaled error for the 3ESBBDF is smaller when compared with that in 3BBDF method.  

However, the 3ESBBDF is competing with 3NSBBDF.  

 

CONCLUSION 

A 3–point enhanced fully implicit Super class method 

(3ESBBDF) has been developed for the solution of first order 

stiff initial value problems.  It is achieved by modifying an 

existing block method to include a non zero coefficient 𝛽𝑘−2.  

The developed method is both zero stable and A – stable.  There 

is an improvement in accuracy and minimum computational 

time of the method (3ESBBDF) when compared with the BBDF 

method and competes with 3NBBDF method.  Another 

advantage of the method over the BBDF is that one can vary a 

parameter within (-1, 1) and still achieve A – stability and better 

accuracy.    
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