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ABSTRACT

In this paper, we developed a new three-step method for numerical solution of third order ordinary
differential equations. Interpolation and collocation methods were used by choosing interpolation points at
S =3 steps points using power series, while collocation points at I = (k —1) step points, using a
combination of powers series and perturbation terms gotten from the Legendre polynomials, giving rise to
a polynomial of degree r +S — 2and I' + Sequations. All the analysis on the method derived shows that
it is zero-stable, convergent and the region of stability is absolutely stable. Numerical examples were

provided to test the performance of the method. Results obtained when compared with existing methods in
the literature, shows that the method is accurate and efficient.

Keywords: Three-step Interpolation technique; Legendre Polynomial; Perturbation Term; Third-order

ODEs; Convergent; Power Series; Absolutely stable.

INTRODUCTION

Countless real life problems in sciences, and engineering are
model of third-order ordinary differential equations of initial
value problems. Interestingly, some differential equations
emanating from the modelling of physical phenomena, often
lacks analytic solutions, henceforth the development of
numerical method to obtain approximation solutions
becomes indispensable. (see Ehigie et al., 2010). This
manuscript examines the numerical solutions of third-order
ordinary differential equations with initial conditions of the
form

y (%)= (xy.y\y").y@=m,y'@=mn, "
y*(a) =1,

In the past, equation (1) is solved by method of reducing it to
its equivalent system of first order ordinary differential
equations and thereafter appropriate numerical method for
first order ODEs would be applied to solve the systems.
However, the reduction of higher order ordinary differential
equations to a system of first order has a lot of misfortunes
which includes; utilization of human effort, computational
weigh down and non-economization of computer time as
discussed by the following authors; Awoyemi (1999),
Awoyemi (1999), Awoyemi (2001), Fatunla (1998), Lambert
(1973), Gout et al., (1973), Bruguano and Trigiante (1998)
just to mention few.

In strive to cater for the difficulties encountered in reduction
method and also bring about upgrading on numerical
methods. The authors are Anake al., (2012), Omar and
Suleiman (2003), Omar and Suleiman (2005), Ogunware et
al., (2015), Abhulimen and Aigbiremhon (2018),
Aigbiremhon and Ukpebor (2019), Badmus and Yahaya
(2009) developed block methods for solving higher order
ODEs in a straight line which the accuracy is better than when
it is reduced to system of first order ordinary differential
equations.

Different approach of Linear multistep method for solving
equation (1) directly have been developed by some erudite
researchers such as Adoghe al., (2016), Olabode (2007),
Mohammed and Adeniyi (2014), Adesanya (2013), Olabode
B.T. (2009), Abualnaja (2015), Jator (2007), Lambert (1991),
Henrici (1962) and Ogunware & Omole (2020).

They proposed direct methods and implemented in block
mode for the solution of third-order ordinary differential
equations. In the light of this, we projected a three-step
method using power series as the interpolation equation and
combination of power series with Legendre polynomial as the
perturbation term as the collocation equation to solve
equation (1) directly. The perturbation terms help in
minimising the error in the problems, thereby increase the
accuracy of the new method. In the next section, the
development or derivation of the method is specified,;
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DEVELOPMENT OF THE METHOD

In this segment, we present the derivation of discrete method to solve (1) at a series of nodal points X, = X, + nh, where

h >0 s the step length or grid size defined by h= Xpa — X, and y(x)denotes the true solution to (1) while the
approximate solution is denoted by the point series.
0 1 2 k
y(x) =CyX, +C, X, +C, X, +...+C, X, )

The proposed method depends on the perturbed collocation method with respect to the power series with the
Legendre polynomials as the perturbation term. Interpolation and collocation approach were used by choosing interpolation

pointat S = 3grid points and collocation points at I = (k —l)step points. We have a polynomial of degree r +S —2 and

(r + S) equations.
In the first place, we consider the approximation solution of (1) in the power series.

p(x)=x,i=01,...k

Hence (2) becomes

Yi (X): G P (X): iz;:cixi ®)

The third derivatives of (3) is given as
R

Y (%) =cpy ()= 2 il ~1)i —2)e;x" @
Combining equation (1) and (4), wli?r? the perturbation term, we have
2.cp (x)=f (%Y, ¥,y )+ AL (X, i = 200K ®)

Where Lk (X) is the Legendre polynomial of degree k, valid in X, < X < X, and A is a perturbed parameter.

In particular, we deal with case k = 3 (three-step points), where equation (3) and (5) are the interpolation and
collocation equations correspondingly.
The well-known Legendre polynomials are generated using the Rodrigues formula

1 1 n
P (X) = - (X2 —1) , where

2"n! dx
L, (X) =1, Li(X) = X.. The rest are computed using the recurrence formula.

2i+1 [ .
LM(X):mei (x)—m L, (x),i=12,..

giving: L, (X) = %(3)(2 —1), L, (X) = %(5)(3 _3X),

L, (x)= %(35x4 ~30%*+3), Ly (x)= %(63x5 —70x° +15X) etc (®)

In order to use these polynomials in the interval [Xn y X ] we describe the shifted Legendre polynomials by introducing the

n+k
change of variables.

_ 2)_(_(Xn+k + Xn)

(see Abualnaja, 2015) )]
(Xn+k - Xn)
Interpolating (3) at s grid points and collocating (5), at k-1 grid points respectively leads to the following systems of equation.
S
6P ()= Y, 5=012 ®)
i=0
k "
zci pi (X)= fn+j + ﬂ’Lk (Xn+j )1 J = 2(1)k (9)
i=0

1
Now, we take the polynomial L, (X) = §(5X3 —3X) from equation (6) and use (7) to obtain value for L, (Xn+2) and

11 _
L, (Xn +3) to be — >7 and 1 respectively.
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In addition, from (4), C, Py (X)=0,¢,p; (X)=0,¢,, p, (x)=0, ¢, p; (X) = 65, then (9) will reduced to the form
0+0+0+6¢, = f(x,y,y,y )+ ALy(x,,; )i = 2and3 (10)

We now collocate equation (10) at X,,,;,1 = 2 and 3 and interpolate equation (2) at X,,;,1 = 0,1,2 to produce a system of

5 equations with C;,1 =0,1,2,3and A which in matrix from is

1 x,  xX x 0 \(c, Y,

1 Xii1 X§+1 Xr?+l 0 C, Yna

1 X X§+2 Xr?+2 0 Co |=| Yie2 (11)
0o 0o o 6 Molle| |f,

o0 o0 6 -1/)1) (f,

Equation (11) is solved by Gaussian elimination method to obtain the value of the unknown parameters, C,, (i = 0,1,2,3)

and A, which are substituted into (2) to yield a continuous implicit three steps method in the form of a continuous linear
multistep method describe by the formula

3
y(x) = 0‘0 yn +alyn+1 + a, yn+2 + haZﬂj (X)fmj ! J = 2(1)k (12)
j=2
where
1. 1,
t)=t+=t
0!0( ) 2Ty
a,(t)=-t? -2t
(13)
ﬂz(t)zih%?’ + 2 ey O 3, 29
76 76 38 38
ﬁs(t)=£h3t3 s s 27

228 76 114 38

Xn+2

as the continuous functions of t with T = , as the transformation equation.

Using (13) for X = X, 4, at t =1, equation (12) reduces to
3

h
Ynss _3yn+2 +3yn+1 —Ya :E[_8fn+3 +27fn+2] (14)
Differentiating (13) yield

a;(t)=t+%

o;(t)=-2t-2

a(t)=t+3, (15)
27 27 9

M) ===h%*+=—h%+—n°

A ) 76 38 38

11 11 11
t)===ht*+=h’t+—
0 76 38 114

Evaluating (15) at X = X, X;.1, X, and X,

h3

Where t =—2,—1,0andl, (12) yield the following discrete methods respectively.

114hy! +57y, ., —228y,, +171y, =h®[11f ,+27f, ,]

228hy. | —114y, , +114y, =h’[-11f ,—27f ,] (16)
114hy , —171y, ., +228y,,, -57y, =h®[l1f ,+27f ]
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228hy. . —570y,,, +912y, , —342y, =h%[121f, , +297f, ]

Furthermore, differentiating (13) twice, we have

%)=l alt)=-2 a)=1

8 27 . 11 an
t)="-h*1+t),B;(t)===h3(L+t
Bi0)= ZEhP (1) ) = TP (Le)
Evaluating (17) at X = X, X1, X,., @nd X, ;where t =—2,—-1,0 and 1,
(12) yield the following discrete method respectively
38hzyn _38yn+2 + 76yn+l _38yn = hs[_llfn+3 =27 1:n+2]
h2y =Y., +2y.., Y. =0
yn+l yn+2 yn+1 yn (18)

38h2y;+2 _38yn+2 + 76yn+1 _38yn = hs[llfma‘ +27 fn+2]

19h2 y;+3 _19yn+2 + 38yn-¢—l _19yn = h3 [11fn+3 +27 fn+2]
Now we obtained the modified block formula form (14), (16) and (18) as;

57 -57 19 0 0 0 0 O 0 \(You 19 0 0
-228 57 0 O 0 0 0 0 0 ||V, | | =171 -114n 0
0 -114 0 228 O 0 0 0 0 || Yos| [-114 O 0
228 171 0 0 114h O O 0O 0 ||y., 57 0 0o [y,
912 -570 0 O 0 228h 0 O 0 |[|V,., |=| 342 0 0 |y,
76 -38 0 0 0 0 0 O 0 || V.5 38 0  38n° |y,
2 -1 0 0 0 0 h* 0 0 |[|Y., 1 0 0
76 -38 0 0 0 0 0 38° 0 ||y, 38 0 0
38 -19 0 0 0 0 0 0 19n%)ly,., 19 0 0
' 27h®  —8h® |
270  110°
27h*  —11h°
27h* 1103 ¢
+]297h%  121h? {2} (19)
3 3 fn+3
27h®  —11h
0 0
27h*  11h®
| 27h°  11h° |
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Taking the normalized version of (19), we obtained the block solution
on' 11
76 228
18nh*  22h°
h’ 19 57
1000 O0O0O0OO0OO -
yn+l 1 h 2 297h3 45h3
01000000 0||Vool |1 2n 2h2 5 76
001000000 Vosl| |1 35 242 27h*  11h?
00010000 0y, 2 (v, 76 76
S0 UL 27n 1an? | e
OOOOlOOOOy,M:012h Yo |t
- . 19 19 n+3
OOOOOOlOOy.,.1+lOO 76 76
00000O0O0GOT1O0]ly., 27h  11h
00000000 1)y 00 38 38
yn+3 O O 2_7h @
19 19
8h 33
38 38
(20)

To simultaneously obtain values for Y, .1, Y,,21 Yiisr Ynstr Yozt Yostr Yoaar Yoao and Yois-
Equation (20) can be written explicitly as
2 3

h h
yn+1 yn + hyn y 228[27 fn+2 +11fn+3]

3
yn+2 = yn + 2hyn + 2h2yn + %[54 fn+2 + 22fn+3]
yn+3 yn + 3hyn +- h yn + %[297fn+2 + 45 fn+3]

yn+1 yn + hyn [27 fn+2 +1lfn+3]

2

yn+2 yn + 2hyn hg [27f +2 +11fn+3]

2
yn+3 yn + 3hyn h [243fn+2 + 99 fn+3]
76
yn+1 [27f +2 +11fn+3] (21)
“ “ h
Yni2 = Yn +E[27 fn+2 +llfn+3]

h
yn+3 yn 38[18fn+2 +33fn+3]

CHARACTERISTICS OF THE METHOD
Properties of the method are investigated to establish its validity. These properties aid to show the nature of convergence of

the method. These properties include order, error constant, consistency, zero stability and stability domain. All these put
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together reveal the nature of convergence of the method. However, a brief beginning of these properties is made for a better
understanding of the section.

Order and error constant of the method:
Suppose the linear difference operator L associated with the continuous multi-step method (12) be defined as

Lly(x).h]=>" lor,y(x, + j)=hB.y"(x, + jh)} =012 —K seeLambert (1973)  (22)

j=0
Where y(X) is an arbitrary test function that is continuously differentiable in the interval [a,b], and ¢, and ,30 are
both non — zero.

Expanding y(xn + jh) and Y (Xn + jh), j=0,1,2,3,...,K in Taylor’s series about x and collecting like
terms in h and y gives.

L[y(x)h]=C,y(x)+C,hy (x)+C,h?y*(x)+...+ CphPyP(x)+...
Definition 1
The difference operator L and the associated implicit multi-step method (12) are said to be of order p, if in (23)

G =C¢=C,=..,=C,,=C,,,=0C,,#0 (23)

Then Cp 5 is called the error constant and it implies that the local truncation error is given by

t., = =C, 4h p+3y P340 ( h p+4) . (see Lambert, 1973) (24)
Using part of the block in (21) i.e.

yn+l yn + hyn + thn h28[27fn+2 +11fn+3]
h3
yn+2 yn + 2hyn + 2h2yn 57 [54 fn+2 + 22 fn+3]

yn+3 yn + 3hyn +- h yn h6 [297f +2 + 45 fn+3]

as
. " 9 11
—y. —hy —h?y —h} =f ,+——f .|=0
yn+1 yn yn yn ‘:76 n+2 228 n+3:|
. " 18 22
-y —2hy —2h’y —h*|=—=f ,+—f =0
yn+2 yn yn yn |:19 n+2 57 n+3:|
.9 297 45
yn+3 Y _3hyn _Ehzyn h3|: 76 fn+2 +7_6 fn+2j| =0 (25)

And using Taylor’s series expansion on (25) and collecting terms in h and y,
lead to the following

B I T A
o e |

n! 76 228
Cn _ (2) A _ 1 |:§ (2)n—3 +§(3)n3:|
n (n-3)L19 57

C - @1 1 {297(2)n3 45 (3)”}
n (n-3) 76
On evaluatingatn=0,1,2,and 3
.C=C=C,=C=0
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1557
13
ButC,=| — 57 ~C,=C, ;. P=1
945
152 |
Hence the method is of order P =1
_ 155 136 9457
With error constant Cp+3 =l-—,—,— (26)
456 57 152

Consistency
Given a continuous implicit multi-step method (12), the first and second characteristics polynomials are defined as:

K
z)=>a;Z’ (27)
3=0
K
=> BZ’ (28)
3=0
Where Z is the principle root, ¢, # 0 and org + 35 # 0
Definition 2

The continuous implicit multi-step method (12) is said to be consistent if it satisfies the following conditions
i. The order P >1

i Zk:aj =0
i )=o)

iv. p"'(l ) =3 O'(l) see Lambert (1973), Henrici (1972)
Remark:
Condition (i) is sufficient for the associated block method to be consistentie. P >0
Jator (2007).

Recall the main method; (14)
3

h
Ynis _3yn+2 +3yn+l Yo = 9[ 8fn+3 +27 fn+2]

The first and second characteristics polynomial of the method are given by

J— 3 2
p(z)=12°-32% +3z—1and o(z) = % respectively

By definition 2, the method (14) is consistent since it satisfies the following.
i. The order of the method isP =1 >1

i, o, =—1 o, =3 a,=-3, a,=1
3 3
Thus D @}, j=0123> a; =-1+2-3+1=0
j=0 j=0

ii p(2)=2°-32"+3z-1
p1)=() -302) +3(1)-1=0
p'1)=30) -6(1)+3=0
~.plL)= 4 ‘2)=0
v.  p (1)=30c()
Recall pl( ) 322—62+3
Jo, (2)262—6
p(z)=6
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~p (1)=6
~82° +277°
Recall O'(Z): -
19
3 2
- oll)= —8(1) +2700)° _,

19
~.3lo(l)=6x1=6andaiso p (1)=3lc(1)=6

The conditions (i - iv) are satisfied, hence the method is consistence. Similarly, the block method (20) is consistent since the
order of each method in the block method is greater than 1, as shown in equation (26).

Zero Stability of the main method
Definition 3

The continuous implicit multi-step method (12) is said to be zero-stable if no root of the first characteristics
polynomial p(Z) has modulus greater than one, and if every root of modulus one has multiplicity not greater than three (see
Lambert, 1991).

Definition 4

The implicit block method (20) is said to be zero stable if the roots Z¢,S =1,..., N of the first characteristics
polynomial IS(Z) defined by

P(z)=det(zA-E) (29)
Satisfies |ZS| < land every root with |ZS| = Lhas multiplicity not exceeding three in the limitas h — O

Zero stability of the block method
From (20), using definitionash — 0O

P(z)= det[ZK - E]gives Z°(Z 1), while when solved gives: Z, = Z, = Z,...2, = 0,2, =1
Hence the block method is stable.

Zero stability of the main method.
Recall the first characteristics polynomials of (14) given by

P(z)=2*-3z2+3z-1 (30)
Equating (30) to zero and solving for z, gives

(z-1)(z-1)(z-1)=0

5 =2,=2,=1
The roots of z of (30) for |Z| = 1is simple, hence the method is zero stable as h —> O as defined by (3) and by the stability

of the block method (20).
Convergence

The convergence of the continuous implicit multi-step method (12) is considered in the light of the basic properties, in
conjunction with the fundamental theorem of Dahlquist, Henrici (1962), for linear multistep method. In what follows, we state
Dahlquist’s theorem without proof.

Theorem 3.1: Dahlquist theorem (Lambert, 1973)
The necessary and sufficient condition for a linear multi-step method to be convergent is for it to be consistent and zero stable.

Remark: The numerical method derived here are considered to be convergent by theorem 3.1 as h — O . Following theorem
3.1, the method (14) is convergence since it satisfies the necessary and sufficient conditions of consistency and zero stability.

Region of absolute stability of the method:
Definition 5

If the first and second characteristics polynomials of linear multi-step the method are p and o respectively, then the
polynomial equation can be written as
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(r,h)= p(r)-ho(r)=0 (31)

Where I‘_l = (lh)S, then 7r<r, ﬁ) is called the stability polynomial of the method defined by p and o and I‘_] = (ﬂph)3 is
the test equation. (see Abhulimen & Aigbiremhon (2018), Aigbiremhon & Ukpebor, 2019).

So, to get the graph of the stability region

We make h the subject of the formular form (31) to get
() 2r)
(r) o)

Which is then plotted in MATLAB environment to produce the required absolute stability region of the method that will be
plotted in a graph.

(32)

Using definition 5, and expressing the first and second characteristics polynomial of equation (14) as

—8r®+27r?

19
Using the boundary locus method (Lambert, 1973).

()= p(r) :19(r3—3r2+3r—1)
o(r) —8r°+27r?
where h :(ﬂJ‘l)3
By setting I = £'? , where /'’ = c0s6 +isind , we have
_19[(c033¢9—30032¢9+3c05<9—1)+i(sin 30 —3sin 20 +3sin 9—1)]
- ~8c05360 +27¢0s 0 +i(-8sin 30 + 27sin 26

This is simplified to the form

x(6)+iy(0)

using MATLAB mathematical tool to plot (33), which produces the required region of absolute stability region of the method
as shown above:

p(r)=r®=3r? +3r -1lando(r)=

h(8)

(33)

05— /

\

Figure 1: shows the region at which the method is absolutely stable

NUMERICAL EXAMPLES

In order to study the competence of the developed method, we present some numerical examples with the following four
problems. The continuous implicit multi-step method 3SM was applied to solve the following test problems
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Problem 1
y" =3sinx,y(0)=1y(0)=0,y'(0)=-2,h=0.1, (34)
x2
Exact solution: y(x) =3C0SX + > |- 2
Source: Olabode (2013) and later solved by Ogunware and Omole (2020)
Problem 2
i 1 1" 1 1
y"'=y'(2xy"+y’) y(0)= ly(0)=5 y"(0)=0 (35)
1 2+
h =0.1. Exact solution: y( —In| —
2 2—
Source: Adoghe al., (2016)
Problem 3
y"'=x-4y,y(0)=0,y(0)=0,y"(0)=1h=01. 39)
3 3 X
Exact solution: Y(X) = —— COS(2X) + — + ~—
16 16 8
Source: Olabode (2007)
Problem 4
y"'-y'+y-y=0,y(0)=1y'(0)=0,y"(0)=-1 (37)
h =0.01. Exact solution: y(x) = COSX
Source: Mohammed and Adeniyi (2014)
Table 1: Showing the exact solution and the computed results from the proposed method for problem one
and its comparison with production- corrector method of order eight in Olabode (2013).
x-value Exact solution 3SM Error in 3SM Error in predictor/correction
method of order 8
Olabode (2013)
0.1 0.990012495834 0.990012497417 1.5834e-009 4.1723e-009
0.2 0.960199733523 0.960199753068 1.9544e-008 9.5785e-008
0.3 0.911009467376 0.911009557800 9.0423e-008 3.9916e-007
0.4 0.843182982008 0.843183254683 2.7267e-007 1.0369e-006
0.5 0.757747685671 0.757748331895 6.4622e-007 2.1285e-006
0.6 0.656006844729 0.656008156213 1.3115e-006 3.7895e-006
0.7 0.539526561853 0.539528950238 2.3884e-006 6.1301e-006
0.8 0.410120128041 0.410124143448 4.0154e-006 9.2537e-006
0.9 0.269829904811 0.269836252674 6.3479e-006 1.3257e-005
1.0 0.120906917604 0.120916474049 9.5564e-006 1.8228e-005

It could be observed in table 1, that the three-step block multi-step method proposed in this work is more accurate than predictor
corrector method of order eight in Olabode (2013).

Table 2: Showing the exact solution and the computed results from the proposed method for problem two
and its comparism with a non — linear problem in Adoghe et al., (2016)
x-value Exact solution 3SM Error in 3SM Error in Adoghe et
al., (2016)
0.1 1.050041729278 1.050041716947 1.2331e-008 1.9315e-008
0.2 1.100335347731 1.100335259307 8.8424e-008 5.6083e-007
0.3 1.151140435936 1.151140142127 2.9381e-007 3.7551e-006
0.4 1.202732554054 1.202731843891 7.1016e-007 1.3403e-005
0.5 1.255412811882 1.255411364551 1.4473e-006 3.2591e-005
0.6 1.309519604203 1.309516943720 2.6605e-006 5.8165e-005
0.7 1.365443754271 1.365439176882 4.5774e-006 7.1524e-005
0.8 1.423648930193 1.423641385682 7.5445e-006 2.5648e-005
0.9 1.484700278594 1.484688174561 1.2104e-005 1.7092e-004
1.0 1.549306144334 1.549287010982 1.9133e-005 6.7064e-004

FUDMA Journal of Sciences (FJS) Vol. 5 No.2, June, 2021, pp 365 - 376

374



A THREE-STEP INTERPOLATION...

Aigbiremhon, Familua and Omole FJs

It is very clear from table 2, that the three step block multi-step method proposed in this work, is more accurate than the non-

linear problem in Adoghe et al., (2016).

Table 3: Showing the exact solution and the computed results from the proposed method for problems three
and its comparism with problem in Olabode (2007)
x-value Exact solution 3SM Error in 3SM Error in
Olabode (2007)

0.1 0.004987516654 0.004987511793 4.8615e.009 1.6655e-008
0.2 0.019801063624 0.019800994694 6.8948e-008 3.8096e-007
0.3 0.043999572204 0.043999241748 3.3046e-007 1.5665e-006
0.4 0.076867491997 0.076866490944 1.0011e.006 3.9866e-006
0.5 0.117443317649 0.117440968308 2.3493e-006 7.9597e-006
0.6 0.164557921035 0.164553243610 4.6774e-006 1.3680e-005
0.7 0.216881160706 0.216872865762 8.2949e-006 2.1196e-005
0.8 0.272974910431 0.272961418970 1.3491e-005 3.596e-005
0.9 0.331350392754 0.331329886304 2.0506e-005 4.1009e.005
1.0 0.390527531852 0.390498029396 2.9502e-005 5.2605e-005

It could be witnessed in table 3, that the three step block multistep method is better than

Olabode (2007).

Table 4: Showing the exact solution and the computed results from the proposed method for problem four

and its comparism with problem in Mohammed and Adeniyi (2014).
x-value Exact solution 3SM Error in 3SM Error in Mohammed and
Adeniyi (2014)

0.1 0.999950000416 0.999950000417 7.1076e-013 6.7200e-007
0.2 0.999800006666 0.999800006671 4.7071e-012 1.3441e-006
0.3 0.999550033748 0.999550033762 1.3033e-011 2.0170e-006
0.4 0.999200106660 0.999200106688 2.7412e-011 2.6884e-006
0.5 0.998750260394 0.998750260449 5.4703e-011 3.3594e-006
0.6 0.998200539935 0.998200540032 9.7557e-011 NA
0.7 0.997551000253 0.997551000411 1.5823e-010 NA
0.8 0.996801706302 0.996801706551 2.4843e-010 NA
0.9 0.995927330119 0.995952733384 3.7250e-010 NA
1.0 0.995004165278 0.995004165811 5.3320e-010 NA

It should be noted that NA means not available. It could be observed in table 4, that the three-step block multi-step method is

more accurate than Mohammed and Adeniyi (2014).

CONCLUSION

In this study, we have successful developed and implemented
a continuous implicit multi-step method and used to solve
general third-order ordinary differential equations, namely
linear problem, non-linear, special and variable coefficient
problem. The method is consistent, convergent, zero stable.
The method derived, efficiently solved third-order initial value
problem as can be seen in tables 1 - 4. In terms of accuracy,
our method performs better than the existing methods
compared with despite that our method has lesser order of
accuracy. the perturbation terms introduced also help in
minimising error associated with the problems. Hence the
method proposed in this article is computational reliable and
efficient in handling any form of third-order ordinary
differential equations. Our future research will focus on
numerical solution of higher order initial and boundary value
problems using the same approach presented here.
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