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ABSTRACT 

In this paper, we developed a new three-step method for numerical solution of third order ordinary 

differential equations. Interpolation and collocation methods were used by choosing interpolation points at 

3s  steps points using power series, while collocation points at  1 kr  step points, using a 

combination of powers series and perturbation terms gotten from the Legendre polynomials, giving rise to 

a polynomial of degree 2 sr and sr  equations. All the analysis on the method derived shows that 

it is zero-stable, convergent and the region of stability is absolutely stable. Numerical examples were 

provided to test the performance of the method. Results obtained when compared with existing methods in 

the literature, shows that the method is accurate and efficient. 
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INTRODUCTION  

Countless real life problems in sciences, and engineering are 

model of third-order ordinary differential equations of initial 

value problems. Interestingly, some differential equations 

emanating from the modelling of physical phenomena, often 

lacks analytic solutions, henceforth the development of 

numerical method to obtain approximation solutions 

becomes indispensable. (see Ehigie et al., 2010). This 

manuscript examines the numerical solutions of third-order 

ordinary differential equations with initial conditions of the 
form 
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In the past, equation (1) is solved by method of reducing it to 

its equivalent system of first order ordinary differential 

equations and thereafter appropriate numerical method for 

first order ODEs would be applied to solve the systems. 

However, the reduction of higher order ordinary differential 

equations to a system of first order has a lot of misfortunes 

which includes; utilization of human effort, computational 

weigh down and non-economization of computer time as 

discussed by the following authors; Awoyemi (1999), 

Awoyemi (1999), Awoyemi (2001), Fatunla (1998), Lambert 

(1973), Gout et al., (1973), Bruguano and Trigiante (1998) 
just to mention few. 

In strive to cater for the difficulties encountered in reduction 

method and also bring about upgrading on numerical 

methods. The authors are Anake al., (2012), Omar and 

Suleiman (2003), Omar and Suleiman (2005), Ogunware et 

al., (2015), Abhulimen and Aigbiremhon (2018), 

Aigbiremhon and Ukpebor (2019),  Badmus and Yahaya  

(2009) developed block methods for solving higher order 

ODEs in a straight line which the accuracy is better than when 

it is reduced to system of first order ordinary differential 
equations.  

Different approach of Linear multistep method for solving 

equation (1) directly have been developed by some erudite 

researchers such as Adoghe al., (2016), Olabode (2007), 

Mohammed and Adeniyi (2014), Adesanya (2013), Olabode 

B.T. (2009), Abualnaja (2015), Jator (2007), Lambert (1991), 
Henrici (1962) and Ogunware & Omole (2020).  

They proposed direct methods and implemented in block 

mode for the solution of third-order ordinary differential 

equations. In the light of this, we projected a three-step 

method using power series as the interpolation equation and 

combination of power series with Legendre polynomial as the 

perturbation term as the collocation equation to solve 

equation (1) directly. The perturbation terms help in 

minimising the error in the problems, thereby increase the 

accuracy of the new method. In the next section, the 

development or derivation of the method is specified;    
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DEVELOPMENT OF THE METHOD 

In this segment, we present the derivation of discrete method to solve (1) at a series of nodal points nhxxn  0 , where 

0h  is the step length or grid size defined by nn xxh  1 and  xy denotes the true solution to (1) while the 

approximate solution is denoted by the point series.  

 
k

nknnnx xcxcxcxcy  ...2

2

1

1

0

0                             (2) 

The proposed method depends on the perturbed collocation method with respect to the power series with the 

Legendre polynomials as the perturbation term. Interpolation and collocation approach were used by choosing interpolation 

point at 3s grid points and collocation points at  1 kr step points. We have a polynomial of degree 2 sr  and 

 sr   equations.  

In the first place, we consider the approximation solution of (1) in the power series.  

  kixxp i

i ,...,1,0,   

Hence (2) becomes 
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 The third derivatives of (3) is given as  
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Combining equation (1) and (4), with the perturbation term, we have  

        kixLyyyxfxpc ink
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Where  xLk  is the Legendre polynomial of degree k, valid in knn xxx   and  is a perturbed parameter.  

In particular, we deal with case k = 3 (three-step points), where equation (3) and (5) are the interpolation and 

collocation equations correspondingly. 

The well-known Legendre polynomials are generated using the Rodrigues formula  

     n

nnn x
dxn

xP 1
1

!2

1 2  , where  

    xxLxL  10 ,1 . The rest are computed using the recurrence formula.  
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giving:        2 3

2 3

1 1
3 1 , 5 3 ,

2 2
L x x L x x x     
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4 5

1 1
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etc.      (6) 

In order to use these polynomials in the interval  knn xx , , we describe the shifted Legendre polynomials by introducing the 

change of variables. 
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(see Abualnaja, 2015)                  (7) 

Interpolating (3) at s grid points and collocating (5), at k-1 grid points respectively leads to the following systems of equation.  

   2,1,0,
0

 
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                   (8) 
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
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Now, we take the polynomial    xxxL 35
2

1 3

3   from equation (6) and use (7) to obtain value for  23 nxL  and 

 33 nxL  to be 
27

11
  and 1 respectively.  
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In addition, from (4),       ,0,,0,0 '''

22

'''

11
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00  xpcxpcxpc   3

'''

33 6cxpc  , then (9) will reduced to the form 

     32,,,,6000 3

'''

3 andixLyyyxfc in                 (10) 

We now collocate equation (10) at 2,  ix in and 3 and interpolate equation (2) at 2,1,0,  ix in  to produce a system of 

5 equations with andici 3,2,1,0,   which in matrix from is  
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Equation (11) is solved by Gaussian elimination method to obtain the value of the unknown parameters,  3,2,1,0, ici  

and  , which are substituted into (2) to yield a continuous implicit three steps method in the form of a continuous linear 

multistep method describe by the formula  
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        where  
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as the continuous functions of t with 
2 ,nx x

t
h


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as the transformation equation.  

Using (13) for 3 nxx , at 1t , equation (12) reduces to  
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Differentiating (13) yield  
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Evaluating (15) at 321,,  nnnn xandxxxx  

Where 10,1,2 andt  , (12)  yield the following discrete methods respectively.  
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Furthermore, differentiating (13) twice, we have  
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Evaluating (17) at 321,,  nnnn xandxxxx where 2, 1,0t     and 1,  

(12) yield the following discrete method respectively  
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Now we obtained the modified block formula form (14), (16) and (18) as;  
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Taking the normalized version of (19), we obtained the block solution 
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To simultaneously obtain values for 
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Equation (20) can be written explicitly as   
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CHARACTERISTICS OF THE METHOD  

Properties of the method are investigated to establish its validity. These properties aid to show the nature of convergence of 

the method. These properties include order, error constant, consistency, zero stability and stability domain. All these put 
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together reveal the nature of convergence of the method. However, a brief beginning of these properties is made for a better 

understanding of the section. 

Order and error constant of the method:  

Suppose the linear difference operator L associated with the continuous multi-step method (12) be defined as  

        kjjhxyhjhxyhxyL nnj

j




2,1,0;., '''3

0



  

see Lambert (1973)       (22) 

Where  xy  is an arbitrary test function that is continuously differentiable in the interval [a,b], and 0 and 0 are 

both non – zero.  

Expanding  jhxy n   and  ''' , 0,1,2,3,...,ny x jh j k   in Taylor’s series about xn and collecting like 

terms in h and y gives.  

           ....... 22

2

'

10  xyCphxyhCxhyCxyChxyL pp
 

Definition 1 

 The difference operator L and the associated implicit multi-step method (12) are said to be of order p, if in (23) 

0,0... 321210   pppp ccccccc                         (23) 

Then 
3pc is called the error constant and it implies that the local truncation error is given by  

  
   33 4

3 0
n

pp p

n k p x
t c h y h

 

   . (see Lambert, 1973)                      (24) 

Using part of the block in (21) i.e. 

 32

3
"2'

1 1127
228

  nnnnnn ff
h

yhhyyy  

 32

3
"2'

2 2254
57

22   nnnnnn ff
h

yhhyyy  

 32

3
"2'

3 45297
762

9
3   nnnnnn ff

h
yhhyyy  

as 

0
228

11

76

9
32

3"2'

1 







  nnnnnn ffhyhhyyy  

0
57

22

19

18
22 32

3"2'

2 







  nnnnnn ffhyhhyyy  

0
76

45

76

297

2

9
3 22

3"2'

3 







  nnnnnn ffhyhhyyy          (25) 

And using Taylor’s series expansion on (25) and collecting terms in h and y,  

lead to the following  

 
 

 
    













 33
3

228

11
2

76

9

!3

1

!

1.1 nn
n

n
nn

C  

 
 

 
    













 33
3

57

22
2

19

18

!3

1

!

1.2 nn
n

n
nn

C  

 
 

 
    













 33
3

76

45
2

76

297

!3

1

!

1.3 nn
n

n
nn

C  

On evaluating at n = 0, 1, 2, and 3 

03210  cccc  
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But 1

152

945
57

136
456

155

344 





























  PCCC P  

Hence the method is of order P = 1      

With error constant 

T

pC 









152

945
,

57

136
,

456

155
3

              (26) 

Consistency 

 Given a continuous implicit multi-step method (12), the first and second characteristics polynomials are defined as: 

   



k

J

j

j Zz
0

                  (27) 

   



k

J

J

J Zz
0

                  (28) 

Where Z is the principle root, 0k  and 03

0

3

0    

Definition 2 

The continuous implicit multi-step method (12) is said to be consistent if it satisfies the following conditions  

i. The order 1P  

ii. 



k

j

j

0

0  

iii.    ll '   

iv.    ll  !3'" 
  

see Lambert (1973), Henrici (1972) 

Remark: 

Condition (i) is sufficient for the associated block method to be consistent i.e. 0P .   

Jator (2007). 

Recall the main method; (14)  

 23

3

123 278
19

33   nnnnnn ff
h

yyyy  

The first and second characteristics polynomial of the method are given by  

   133 23  zzzz and  
19

278 23 zz
z


 respectively 

By definition 2, the method (14) is consistent since it satisfies the following.  

i. The order of the method is P = 1  1 

ii. 1,3,3,1 3210    

Thus 01321,3,2,1,0,
3

0

3

0

 
 j

J

j

j j   

iii.   133 23  zzzz  

        01131311
23

  

      0316131
21   

    011 1    

iv.    1!31'''    

Recall   363 21  zzz  

   66''  zz  

   6''' z  
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   61'''   

Recall  
19

278 23 zz
z


  

  
   

1
19

12718
1

23




  

   6161!3   and also    ''' 1 3! 1 6    

The conditions (i - iv) are satisfied, hence the method is consistence. Similarly, the block method (20) is consistent since the 

order of each method in the block method is greater than 1, as shown in equation (26). 

 

Zero Stability of the main method 

Definition 3 

 The continuous implicit multi-step method (12) is said to be zero-stable if no root of the first characteristics 

polynomial  z  has modulus greater than one, and if every root of modulus one has multiplicity not greater than three (see 

Lambert, 1991).  

Definition 4 

The implicit block method (20) is said to be zero stable if the roots nSZs ,...,1,  of the first characteristics 

polynomial  zP , defined by  

    EAZzP  det                              (29) 

Satisfies 1sZ and every root with 1sZ has multiplicity not exceeding three in the limit as 0h  

Zero stability of the block method 

From (20), using definition as 0h  

   EAZzP  det gives  18 ZZ , while when solved gives: 1,0... 18432  zzzzz  

Hence the block method is stable.  

 

Zero stability of the main method.  

Recall the first characteristics polynomials of (14) given by  

  133 23  zzzzP                   (30) 

Equating (30) to zero and solving for z, gives  

       0111  zzz  

 1321  zzz  

The roots of z of (30) for 1z is simple, hence the method is zero stable as 0h as defined by (3) and by the stability 

of the block method (20). 

Convergence 

The convergence of the continuous implicit multi-step method (12) is considered in the light of the basic properties, in 

conjunction with the fundamental theorem of Dahlquist, Henrici (1962), for linear multistep method. In what follows, we state 
Dahlquist’s theorem without proof.  

Theorem 3.1: Dahlquist theorem (Lambert, 1973) 

The necessary and sufficient condition for a linear multi-step method to be convergent is for it to be consistent and zero stable.  

Remark: The numerical method derived here are considered to be convergent by theorem 3.1 as 0h . Following theorem 

3.1, the method (14) is convergence since it satisfies the necessary and sufficient conditions of consistency and zero stability.  

 

Region of absolute stability of the method:  

Definition 5 

If the first and second characteristics polynomials of linear multi-step the method are   and   respectively, then the 

polynomial equation can be written as  
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      0,  rhrhr                 (31) 

Where  3hh  , then  hr,  is called the stability polynomial of the method defined by p and  and  3hh  is 

the test equation. (see Abhulimen & Aigbiremhon (2018), Aigbiremhon & Ukpebor,  2019). 

So, to get the graph of the stability region   

We make h the subject of the formular form (31) to get  

  
 
 r

r
rh




                  (32) 

Which is then plotted in MATLAB environment to produce the required absolute stability region of the method that will be 

plotted in a graph.  

Using definition 5, and expressing the first and second characteristics polynomial of equation (14) as  

  133 23  rrrr and  
19

278 23 rr
r


  

Using the boundary locus method (Lambert, 1973). 

  
 
 

 3 2

3 2

19 3 3 1

8 27

r r rr
h r

r r r





  
 

 
 

where  3hh   

By setting 
ir  , where  sincos ii  , we have  

   

 

19 cos3 3cos2 3cos 1 sin3 3sin 2 3sin 1
( )

8cos3 27cos 8sin3 27sin 2

i
h

i

     


   

        
    

             (33) 

This is simplified to the form  

     iyx   

using MATLAB mathematical tool to plot (33), which produces the required region of absolute stability region of the method 

as shown above: 

 
        Figure 1: shows the region at which the method is absolutely stable 

 

 

NUMERICAL EXAMPLES  

In order to study the competence of the developed method, we present some numerical examples with the following four 
problems. The continuous implicit multi-step method 3SM was applied to solve the following test problems   
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Problem 1 

      1.0,20,00,10,sin3 ''''''  hyyyxy ,                (34) 

Exact solution:   2
2

cos3
2











x
xxy  

Source: Olabode (2013) and later solved by Ogunware and Omole (2020) 

Problem 2  

        00'',
2

1
0',10,'''2''''  yyyyxyyy                  (35) 

1.0h . Exact solution:   













x

x
Inxy

2

2

2

1
1  

Source: Adoghe al., (2016) 

Problem 3 

      10'',00',00,'4'''  yyyyxy 1.0h .                  (36) 

Exact solution:    
816

3
2cos

16

3 2x
xxy   

Source: Olabode (2007) 

Problem 4 

      10'',00',10,0''''''  yyyyyyy                 (37) 

h =0.01. Exact solution:   xxy cos  

Source: Mohammed and Adeniyi (2014) 

 

Table 1: Showing the exact solution and the computed results from the proposed method for problem one 

and its comparison with production- corrector method of order eight in Olabode (2013). 

x-value Exact solution 3SM Error in 3SM Error in predictor/correction 

method of order 8 

Olabode (2013) 

0.1 0.990012495834 0.990012497417 1.5834e-009 4.1723e-009 

0.2 0.960199733523 0.960199753068 1.9544e-008 9.5785e-008 

0.3 0.911009467376 0.911009557800 9.0423e-008 3.9916e-007 

0.4 0.843182982008 0.843183254683 2.7267e-007 1.0369e-006 

0.5 0.757747685671 0.757748331895 6.4622e-007 2.1285e-006 

0.6 0.656006844729 0.656008156213 1.3115e-006 3.7895e-006 

0.7 0.539526561853 0.539528950238 2.3884e-006 6.1301e-006 

0.8 0.410120128041 0.410124143448 4.0154e-006 9.2537e-006 

0.9 0.269829904811 0.269836252674 6.3479e-006 1.3257e-005 

1.0 0.120906917604 0.120916474049 9.5564e-006 1.8228e-005 

It could be observed in table 1, that the three-step block multi-step method proposed in this work is more accurate than predictor 
corrector method of order eight in Olabode (2013). 

Table 2: Showing the exact solution and the computed results from the proposed method for problem two 

and its comparism with a non – linear problem in  Adoghe et al., (2016)     

                   

x-value Exact solution 3SM Error in 3SM Error in Adoghe  et 

al., (2016)     

0.1 1.050041729278 1.050041716947 1.2331e-008 1.9315e-008 

0.2 1.100335347731 1.100335259307 8.8424e-008 5.6083e-007 

0.3 1.151140435936 1.151140142127 2.9381e-007 3.7551e-006 

0.4 1.202732554054 1.202731843891 7.1016e-007 1.3403e-005 

0.5 1.255412811882 1.255411364551 1.4473e-006 3.2591e-005 

0.6 1.309519604203 1.309516943720 2.6605e-006 5.8165e-005 

0.7 1.365443754271 1.365439176882 4.5774e-006 7.1524e-005 

0.8 1.423648930193 1.423641385682 7.5445e-006 2.5648e-005 

0.9 1.484700278594 1.484688174561 1.2104e-005 1.7092e-004 

1.0 1.549306144334 1.549287010982 1.9133e-005 6.7064e-004 
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It is very clear from table 2, that the three step block multi-step method proposed in this work, is more accurate than the non-
linear problem in Adoghe et al., (2016). 

Table 3: Showing the exact solution and the computed results from the proposed method for problems three 

and its comparism with problem in Olabode (2007) 

x-value Exact solution 3SM Error in 3SM Error in  

Olabode (2007) 

 

0.1 0.004987516654 0.004987511793 4.8615e.009 1.6655e-008 

0.2 0.019801063624 0.019800994694 6.8948e-008 3.8096e-007 

0.3 0.043999572204 0.043999241748 3.3046e-007 1.5665e-006 

0.4 0.076867491997 0.076866490944 1.0011e.006 3.9866e-006 

0.5 0.117443317649 0.117440968308 2.3493e-006 7.9597e-006 

0.6 0.164557921035 0.164553243610 4.6774e-006 1.3680e-005 

0.7 0.216881160706 0.216872865762 8.2949e-006 2.1196e-005 

0.8 0.272974910431 0.272961418970 1.3491e-005 3.596e-005 

0.9 0.331350392754 0.331329886304 2.0506e-005 4.1009e.005 

1.0 0.390527531852 0.390498029396 2.9502e-005 5.2605e-005 

It could be witnessed in table 3, that the three step block multistep method is better than  

Olabode (2007). 

 

Table 4: Showing the exact solution and the computed results from the proposed method for problem four 
and its comparism with problem in Mohammed and Adeniyi (2014). 

x-value Exact solution 3SM Error in 3SM Error in Mohammed and 

Adeniyi (2014) 

0.1 0.999950000416 0.999950000417 7.1076e-013 6.7200e-007 

0.2 0.999800006666 0.999800006671 4.7071e-012 1.3441e-006 

0.3 0.999550033748 0.999550033762 1.3033e-011 2.0170e-006 

0.4 0.999200106660 0.999200106688 2.7412e-011 2.6884e-006 

0.5 0.998750260394 0.998750260449 5.4703e-011 3.3594e-006 

0.6 0.998200539935 0.998200540032 9.7557e-011 NA 

0.7 0.997551000253 0.997551000411 1.5823e-010 NA 

0.8 0.996801706302 0.996801706551 2.4843e-010 NA 

0.9 0.995927330119 0.995952733384 3.7250e-010 NA 

1.0 0.995004165278 0.995004165811 5.3320e-010 NA 

 

It should be noted that NA means not available. It could be observed in table 4, that the three-step block multi-step method is 
more accurate than Mohammed and Adeniyi (2014). 

 CONCLUSION  

In this study, we have successful developed and implemented 

a continuous implicit multi-step method and used to solve 

general third-order ordinary differential equations, namely 

linear problem, non-linear, special and variable coefficient 

problem. The method is consistent, convergent, zero stable. 

The method derived, efficiently solved third-order initial value 

problem as can be seen in tables 1 - 4. In terms of accuracy, 

our method performs better than the existing methods 

compared with despite that our method has lesser order of 

accuracy. the perturbation terms introduced also help in 

minimising error associated with the problems.  Hence the 

method proposed in this article is computational reliable and 

efficient in handling any form of third-order ordinary 

differential equations. Our future research will focus on 

numerical solution of higher order initial and boundary value 
problems using the same approach presented here. 
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