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ABSTRACT 

The qualities of agricultural soil and water are diminishing continuously due to the rigorous anthropogenic 

activities currently stocking the soil with a lot of toxic chemicals including heavy metals. Heavy metals are 

highly persistent and non-biodegradable, control of their contamination is very tricky to handle. Their presence 

in soil and water is detrimental to food crops and humans. Various sources of heavy metals contaminants and 

the role of urban food production on human heavy metal contamination were discussed.Heavy metals have their 

way into the soil and food crops through wastewater irrigation and production in contaminated soil. The habitual 

heavy metals contamination sources for food crops are wastewater irrigation, abuse of agrochemicals, 

production in the contaminated field, atmospheric deposit when foods are exposed to contaminated air, and 

unethical mining activities. Agricultural soil in urban and peri-urban areas are heavily contaminated with heavy 

metal due to various anthropogenic activities. Wastewater irrigation intensify the contamination by supplying 

the soil with more heavy metals. The heavy metals are passed to food during production and subsequently to 

humans after consumption.  
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INTRODUCTION 

Heavy metals (HMs) have their way into the soil and water 

either through the natural process of rock weathering or through 

anthropogenic activities such as mining and discharge of 

industrial waste (Bhagwat, 2019; Edelstein and Ben-Hur, 2018; 

Islam et al., 2019; Xia et al., 2021). Climate changes resulted 

from anthropogenic activities trigger many environmental 

problems that affect the quantity and quality of water and make 

a significant impact on food production and human health 

(Ruszkiewicz et al., 2019). The presence of HMs in water and 

soil increases the risk of food-chain contamination (Saadati et 

al., 2020; Taghipour and Jalali, 2019). HMs are hurtful 

substances that are highly perseverance and non-biodegradable 

(Garrigues et al., 2019; Liao et al., 2016), their presence in food 

is a threat to human health (Massoud et al., 2019) and when 

consumed can accumulate in different body organs and affect 

their functions (Ngure and Kinuthia, 2020). HMs have their 

way into the food during production in metal-contaminated soil 

(Thakali and Macrae, 2021). The intense presence of HMs in 

the sewage sludge raised public health and environmental 

concerns and the insensitive disposal of sewage sludge is 

gradually becoming a global challenge (Elmi et al., 2020; Luo 

et al., 2021; Rizwan et al., 2021). Higher concentrations of 

HMs in agricultural soil account for many structural and 

physiological disorders that can affect the performance of many 

agricultural plants (Waheed et al., 2021). When consumed by 

humans, HMs exposed human cell to oxidative stress that lead 

to cardiovascular disease, developmental and neurological 

disorders, infertility, diabetes, and renal failure (Paithankar et 

al., 2021). 

The two most important resources; soil and water, which 

human's lives depend on are now the major carrier of HM 

contaminants. The main causes of food crops HMs 

contamination are unplanned urbanization, excessive use of 

natural resources, mining, warfare, climate change debauch 

industrialization (Pereira et al., 2020; Vardhan et al., 2019), 

illicit discharge of sewage andeffluent, abuse of agrochemicals, 

atmospheric deposit, vehicular release, and fuel combustion 

(Qin et al., 2021). Almost all water bodies are now at risk of 

HMs contamination including all inland water bodies, oceans, 

and gulfs (Amira et al., 2018). Irrigation water mostly used in 

developing countries is loaded with HMs (Deng et al., 2020). 

Wastewater irrigation commonly practiced in urban and 

periurban areas rise the HM levels in agricultural soil and 
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subsequently contaminates food crops and humans (Anjum et 

al., 2021). The incessant use of wastewater for irrigation 

(Chaoua et al., 2019) and excessive use of agrochemical allied 

are among the major reasons for food crops HM-contamination 

(Margenat et al., 2018). 

Many farmers understand the dangers of using contaminated 

water in food production (Maleksaeidi et al., 2018) but have no 

concern about the consequences of their activities on the soil 

and water safety and humans health (Shaharoona et al., 2019). 

Water scarcity, poverty, and the pressing need for sufficient 

food production necessitate the use of contaminated water in 

food production (Inyinbor et al., 2019; Turan et al., 2018). 

Many farmers opt to use contaminated water because is the only 

available source they can afford (Maleksaeidi et al., 2018). The 

reluctance of food and environmental safety enforcement 

agencies to impose regulatory measures worsens the situation 

in many developing countries (Ha et al., 2020).  

Sources of HMs in Food Crops 

Various sources of food crops HMs contamination were 

reported by researchers, the most common dangerous and hefty 

sources are associated with humans activities. The contribution 

of natural sources is quite insignificant. Irrigation with raw 

industrial and domestic wastewater, excessive use of 

agrochemicals, contaminated solid waste from municipalities 

and processing industries, atmospheric deposit from 

contaminated air, mining, and smelting activities are the main 

sources of food crop HM contaminants.  Microorganisms are 

among the rare sources of HMs contaminants, water from 

cyano-bloom lakes can transfer HMs to crops when used for 

irrigation because bloom-forming cyanobacteria have a high 

affinity to HMs and can mediate their distribution in lakes (Jia 

et al., 2018).  

Waste water irrigation 

The global water supply is decreasing due to population growth 

and climate change, thus, wastewater becomes the cheapest 

source of water for irrigation worldwide (Christou et al., 2016; 

Mkhinini et al., 2020). The practice of wastewater irrigation is 

more common in developing countries where water scarcity is 

more severe (Nzediegwu et al., 2019). In Europe, policies 

demanding proper treatment of wastewater before use for 

agricultural purposes are in place (Deviller et al., 2020). 

Wastewater irrigation exposed agricultural soil to many forms 

of contaminants including dangerous HMs (Chaoua et al., 

2019; Inyinbor et al., 2019), pathogens, and soil salinization 

(Ofori et al., 2021). Wastewater contains more HMs than water 

from the canal and tube-well (Anjum et al., 2021). Large 

volumes of wastewater generated through industrial and 

domestic activities are used for irrigation in urban and suburban 

areas (Mehmood et al., 2019). Excessive use of wastewater over 

a long time can cause deleterious effects on the ecosystem and 

subsequently on food safety and human health (Mehmood et al., 

2019). More damage can occur when the wastewater contains 

antibiotic residues in addition to HMs (Christou et al., 2017).  

Wastewater irrigation is the major route for vegetable HMs 

contamination (Rehman et al., 2019). Irrigation using 

wastewater reduces the metal pressure in the water by 

transferring metal contaminants to agricultural soil (Cao et al., 

2018). Continuous utilization of wastewater for irrigation 

causes gradual accumulation of the HMs in the soil and 

increases the uptake capacity of the growing vegetables (Sayo 

et al., 2020).  

Treatment of mineral-contaminated wastewater is tricky due to 

the non-biodegradable nature of the minerals and cannot be 

successfully done using conventional wastewater treatment that 

removes organic contaminants (Garrigues et al., 2019). 

Economic viability in a large-scale treatment and compliance 

with the strict requirement are also other challenges (Vareda et 

al., 2019). Therefore, industrial wastewater can contaminate 

soil and food crops even after treatment (Cao et al., 2018). 

Higher concentrations of HMs were found in recycled industrial 

effluents (Martínez-Cortijo and Ruiz-Canales, 2018). Deviller 

et al. (2020) raised concern on the efficiency of the treatment 

methods on the removal of various contaminants and the 

behavior and fate of the products generated during the process 

of wastewater treatment that will be recycled for food 

production. Vegetables irrigated with wastewater treatment 

plants discard possessed HM concentrations at health risk levels 

(Chaoua et al., 2019). Higher concentrations of Fe, Cu, Cr, and 

Zn were reported by Qureshi et al. (2016) in lettuce, carrot, and 

radish irrigated with treated municipal wastewater. Trace of Cr 

was found in vegetables irrigated with treated water from the 

tannery effluent treatment plant claimed to meet international 

discharge standards (Alemu et al., 2019). Christou et al. (2016) 

also reported traces of Zn, Ni, Cu, and Co in strawberry fruits 

irrigated with treated wastewater.  

Continuous irrigation with treated wastewater stock up the soil 

with more HMs (Mkhinini et al., 2020; Rezapour et al., 2019; 

Sedlacko et al., 2020). As the concentration of these metals is 

growing continuously in the earth’s crust (Sun et al., 2019), 

balanced composition and concentration of these metals are 

created within the crust regardless of depth (Zhu et al., 2020). 

This puts underground water in many areas under threat as the 

HMs can percolate and contaminate the groundwater (Rehman 

et al., 2019). In addition to HMs, treated wastewater can also 

contain xenobiotics and nanoparticles which at higher 

concentrations hinder the growth of many food crops (Poustie 

et al., 2020). HMs uptake by crops irrigated with wastewater 

depends on the properties of the soil (Ahmad et al., 2020), 

properties of the food crop, nature of the HMs, and 

physiochemical characteristics of the wastewater (Atamaleki et 

al., 2019). 

Nutrient supply, water saving, and reduction in production cost 

are the major advantages of wastewater irrigation (Anjum et al., 

2021; Ofori et al., 2021). Wastewater can serve as a good source 

of plant nutrients and organic matter (Chojnacka et al., 2020) 

and it’s also the cheapest source of water for irrigation 

(Mehmood et al., 2019). Depending on its source, wastewater 
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can supply crops with certain essential nutrients (Kumar et al., 

2019), microorganisms, and enzymes (Ahmad et al., 2020). 

Mkhinini et al. (2020) claimed that the application of treated 

wastewater to agricultural soil increases the activities of soil 

microorganisms. Important nutrients such as nitrogen and 

phosphorous and rich organic matter can be harvested from the 

treatment of domestic wastewater (Wielemaker et al., 2018). 

The challenge of phosphorus depletion can be tackled by 

harvesting the enormous amount of phosphorous in the 

wastewater (Rufí-Salís et al., 2020). Irrigation with municipal 

wastewater improves soil porosity, soil water transfer rate, and 

earthworm density (Ababsa et al., 2020). Many economic and 

environmental benefits of using treated municipal wastewater 

for urban hydroponic farming were reported by Magwaza et al. 

(2020). Hussain et al. (2019) reported higher yield in carrot, 

radish, and spinach irrigated with treated wastewater. 

Agricultural inputs 

HMs can have their way into the food system through awful 

agricultural practices; excessive use of pesticides and fertilizers 

hasten the accumulation of HMs in agricultural soil(Massoud et 

al., 2019). The presence of HMs in vegetables depends on their 

concentrations in the farm inputs and the application level 

(Zwolak et al., 2019). Rigorous agricultural activities increase 

HMs bioavailability and favor their uptake by reducing soil pH 

and increasing its organic matter content (Hu et al., 2018). Soil 

organic matter content rises drastically with the application of 

manure(Zhen, Jia, et al., 2020). Animal manure can serves as a 

contamination source to food crops (Keeflee et al., 2020). Using 

industrial wastes as fertilizer or in soil amendment also stock 

soil with dangerous HMs (X. Wang et al., 2021).Direct 

application of biomass to agricultural field can as well increase 

the soil HMs content (Zhang et al., 2020). 

Ridiculous use of agrochemicals and livestock keeping are 

among the major anthropogenic sources of vegetables HMs 

contaminants (Sawut et al., 2018). Accumulation of HMs in 

Chinese agricultural soils is also associated with the application 

of agrochemicals in addition to industrial contaminants (Huang 

et al., 2019). Bi et al. (2018) associated higher Hg concentration 

in the soil of vegetable gardens around Shanghai, China with 

the application of compound fertilizer. Agricultural soil on the 

northern coast of the Persian Gulf is classified as "highly 

polluted" by HMs resulted from the misuse of agrochemicals 

(Arfaeinia et al., 2019). 

The use of chemical fertilizers and pesticides was discouraged 

by Martínez-Cortijo and Ruiz-Canales (2018) due to their 

contribution to water and soil HMs contamination.  Over 

fertilization in urban agriculture may affect soil quality and 

contaminate surface and groundwater (Wielemaker et al., 

2019). Fertilizer applications account for more than 30 % of soil 

HMs contamination in south-eastern China (Hu et al., 2018). 

Long-term research conducted by Chen et al. (2020) in a wheat 

field revealed that continuous application of phosphorous 

fertilizer facilitates the accumulation of As, Cd, Pb, and Zn in 

topsoil and increases the concentrations of Cd and As in the 

wheat grains. Livestock manure can transfer a large amount of 

Cu to soil (H. Peng et al., 2019). Chicken and cattle manures 

increase soil HMs content and long-term usage of these 

manures in a protected vegetable field can stock the soil with 

more Cd, Zn, Cr, and Cu (Zhen, Jia, et al., 2020). Bioleaching 

of HMs using oxidizing bacteria can lower organic manure HM 

contents to a safe level (Wei et al., 2019). HMs can leach into 

the soil and surrounding water during chelate-aided 

phytoremediation if the plant failed to absorb all the activated 

HMs (Park and Sung, 2020). 

Solid wastes 

Another important anthropogenic source of HMs is the solid 

wastes from municipals and industries. These wastes are dump 

directly into the agricultural field or they are transported to the 

field by wind or by running water (Lin et al., 2018). The 

contamination of soil through landfills is also becoming 

rampant (Elbehiry et al., 2020). Varieties of solid wastes were 

reported to contaminate food crops through agricultural soil and 

water. Industrial activities in the Persian Gulf region extremely 

contaminated the soil around with dangerous HMs and the HMs 

concentrations in the region exceed ecological dangerous levels 

(Arfaeinia et al., 2019). Using iron and steel slags in 

agricultural soil amendment contaminates soil with many HMs 

including dangerous species such as Ni, Cu, Hg, Zn, Cd, Cr, As, 

and Pb (X. Wang et al., 2021). Micro and nano-scale plastic 

wastes are also potential carriers of HM contaminants (Rai et 

al., 2021).Ceramic processing waste can contain a high 

concentration of Cd which is used in the ceramic coating (Zhou 

et al., 2019). Solid waste from ceramic, stone crushing, and 

sugar processing factories can alter HM contents of soil and 

increase Cd, Cu, Pb, Ni, and Zn contents in the root, shot, and 

fruit of cucumber (Taghipour and Jalali, 2019). 

A recent troubling source of HM contaminants is electronic 

waste (e-waste). E-waste is characterized by multiple HMs 

species, most of which are dangerous (Wu et al., 2021). 

Vegetables and crops produced in the soil around e-waste 

recycling areas can be contaminated with Zn, Cd, Ni, Cu, and 

Pb (Yu et al., 2019). The soil, surface water, and groundwater 

in the Guiyu village of Guangdong Province, China are not 

suitable for agricultural activities due to the HMs leachates  

from e-waste deposit (Weila Li and Achal, 2020). 

Domestic solid wastes can also harbour HMs, Bi et al. (2018) 

reported higher concentrations of Cd, Zn, Pb, Hg, and Cu in the 

soil near municipal solid waste incineration plant in Shanghai, 

China. Similarly, dumpsite soil used for agricultural purposes 

in Sunyani, Ghana is contaminated with Fe, As, Cd, Pb, and Zn 

(Agbeshie et al., 2020). The acidic nature of the solid municipal 

waste (Sagbara et al., 2020) and the higher organic matter will 

favor HMs uptake by the plant (Liu et al., 2020). Leachate from 

food waste compost also contaminates soil with dangerous 

HMs either from the foods or from packaging materials (Chu et 

al., 2019). 



HEAVY METALS IN... Abdullahi, Igwe, Dandago and Umar FJS 

 FUDMA Journal of Sciences (FJS) Vol. 5 No. 2, June, 2021, pp 34 - 45 37 

Atmospheric deposition 

The atmospheric deposit of HMs is connected to 

industrialization, smoke, and other airborne contaminants from 

vehicular release and heavy industrial machines that are directly 

discharged into the atmosphere, these contaminants are 

deposited on the water bodies and soil, or directly on the food 

crops. China was reported to be the hotspot for HMs 

atmospheric deposit due to their vigorous industrial activities 

(J. Wang et al., 2019), and this account for about 33 % of their 

total HMs contamination (Hu et al., 2018) while vehicle 

emission alone is account for 81 % of atmospheric Pb (M. Peng 

et al., 2020). Feng et al. (2020) reported that atmospheric 

deposition is the most common source of Cd, Cu, Pb, and Zn 

soil contamination in China, and it account for more than 50 % 

of As, Cd, Cr, Hg, Ni, and Pb contamination in the country (H. 

Peng et al., 2019). 

Hydroponic greenhouse agriculture which is now practiced in 

many cities exposes vegetable crops to the atmospheric deposit 

of heavy metals and nanoparticles (Sharifan et al., 2020). Raw 

foods sold in an open market can be contaminated from the 

atmospheric deposit as reported by Nuapia et al. (2018)  in 

Kinshasa (Democratic Republic of Congo) and Johannesburg 

(South Africa). 

Mining 

Vareda et al. (2019) reported that mining activities are among 

the major source of water and soil HMs contamination. Mining 

activities can increase the HM contents of the surrounding soil, 

water, and air (Kicińska and Wikar, 2021). Potential toxic HMs 

such as Cr and Pb are commonly found in mining areas and can 

have their way into the human body through the consumption 

of foods produced in contaminated soil (Khan et al., 2020). Zn, 

As and Ni are the major contaminants in the iron mines (Chung 

et al., 2018). Mining and smelting activities in China continue 

to be the major contamination sources for Cd and Hg (Huang et 

al., 2019). The concentrations of Pb, Cd, Zn, and Ni in 

agricultural soil and food produced around the Migori gold 

mining area in Kenya exceed maximum allowable levels 

(Ngure and Kinuthia, 2020). Coal mining can be a source of Hg, 

Cd, Zn, and Cu contamination (Sun et al., 2019). Limestone 

mining can contaminate surrounding soil with dangerous levels 

of Cu, Cr, Ni, Pb, and Zn (Jafari et al., 2019). The effect of HMs 

contamination in mining areas can be beyond the vicinity of the 

mining zone as the contaminants can be carried away by wind 

or running water to nearby catchment and contaminate the 

surrounding soil and water (Mwesigye et al., 2019). 

The Roles of Urban Agriculture in Food Crops HM-

Contamination 

The contributions of urban agriculture in supplying city 

inhabitants with fresh produce (Benis and Ferrão, 2018) at a 

lower cost (Amos et al., 2018) and the provision of a natural-

based solution to sustainable urban transformation (Sartison 

and Artmann, 2020) were appreciated over a long time. Urban 

agriculture is associated with several social and economic 

benefits (R. Wielemaker et al., 2019) including improvement of 

urban food security (Song et al., 2020). Urban agriculture is 

expected to provide an abundance of good quality products to 

the fast urbanizing cities at less or no environmental damage 

(Zhen, Gao, et al., 2020). 

Urban agriculture which is considered to be a sustainable way 

for maintaining the ecological cycle in the cities and instant 

means for supplying towns with perishable foods is, 

unfortunately, the detrimental conduit for passing various 

contaminants into the food cycle (Ferreira et al., 2018). The soil 

in many cities harbour dangerous levels of toxic HMs (Cooper 

et al., 2020). Limited farmland in many cities forces city 

dwellers to produce foods in contaminated lands including 

refuse dumpsites (Sagbara et al., 2020). Lack of a sufficient 

amount of clean water for irrigation leads to the used of 

wastewater in many developing cities (Sayo et al., 2020). 

Vegetable gardens located in urban and peri-urban areas are at 

risk of been contaminated with dangerous HM from various 

sources (Bi et al., 2018; Hong et al., 2019) due to intense 

industrial activities that are taking place in many cities (Deng et 

al., 2020; Weber et al., 2019) which releases tonnes of 

contaminants (Margenat et al., 2018). Atmospheric deposits 

through fossil fuel combustion and dust from contaminated 

areas intensify soil contamination in urban areas (Weber et al., 

2019). A systemic review conducted by Frank et al. (2019) in 

United states showed that the Pb content of the soil in the urban 

areas is three times higher than in the soil outside cities. Y. 

Huang et al. (2019)also reported low levels of HM 

contaminations in agricultural fields far away from cities. 

Vegetables produced in peri-urban areas are more prone to trace 

elements contaminants when compared with vegetables 

produce in rural areas (Margenat et al., 2019). Even greenhouse 

produce can be contaminated with HMs(Y. Fan et al., 2021), 

dangerous levels of Cr, Ni, and Pb were reported by (Yuan Fan 

et al., 2017) in the root, leaf, and fruit vegetables produced in 

the greenhouse. Children Pb contamination via food produced 

in urban soil greatly surpass contamination through drinking 

water and other sources (Byers et al., 2020). 

Urban agriculture is gradually declining in many cities due to 

water scarcity (Ng et al., 2018) and rapid urbanization (Ulm et 

al., 2019) which was projected to rise from 55 % to 68 % by 

2050 (Kookana et al., 2020). This boost will continue to 

consume agricultural land, intensify environmental pollution 

(Tian et al., 2019), and pose challenges to food and water 

security (Kookana et al., 2020). Many backyard gardens in 

cities also fail due to inadequate rainfall and poor irrigation 

resulted from water scarcity (Amos et al., 2018). Depletion in 

soil nutrient contents and rapid population growth in many 

urban areas worsen the situation (Magwaza et al., 2020). 

Internal conversion and occupation of lands lead to a decrease 

in the supply of non-staple foods from urban production 

(Wenbo Li et al., 2019). Inter-agency policies and innovative 

agriculture are required to maintain food production in the cities 

(Diehl et al., 2020) 
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Commercial farms which are increasing exponentially in many 

cities of the developed world (Benis and Ferrão, 2018), 

innovative urban agriculture which is safer and more productive 

(Armanda et al., 2019), and intelligent irrigation system that can 

minimize water use by up to 59 % in a sub-humid climate 

without affecting the crop yield (Mason et al., 2019) may 

replace the traditional urban farming in the future. The practice 

of rooftop farming in densely populated cities is also another 

alternative (Safayet et al., 2017). 

Recommendations and Further Research 

 Curtailing the spread of HMs by preventing their 

movement from contaminated areas to untainted 

areas by wind or running water. For example, canals 

carrying contaminated water should be cemented or 

lined to prevent leaching of HMs into the surrounding 

soil. 

 All anthropogenic activities that are responsible for 

contaminating the ecosystem with HMs should be 

tackled and rectified. 

 The benefits of using wastewater for irrigation are 

pretty meagre when compared with the danger which 

has lasting effects on the soil, food web, and humans 

health. Wastewater irrigation should be abolished to 

protect food crops and human health and to prevent 

contamination of groundwater which occurs in areas 

with incessant wastewater irrigation.  

 Underground water from boreholes, reported to 

contain low levels of HMs in many places, can be 

used as a substitute for wastewater in developing 

countries that cannot afford an expansive treatment 

system. 

 More attention should be given to food safety and 

environmental contamination, government at 

different levels and donor organizations are 

budgeting huge amounts on improving food 

production efficiency through the provision of 

improved varieties, interest-free loan, and 

distribution of farm inputs freely or at a subsidized 

price. It is hard to sight any bequest on food safety or 

environmental protection. 

 Some findings associated higher HMs in soil and 

food crops with fertilizer application, hence, farmers 

should be educated on the proper use of fertilizer. 

 Soilless farming prevents uptake from contaminated 

soil, modern farming should be encouraged in 

densely populated cities with contaminated soil. 

 If possible, farms should be located far away from 

cities, industrial estate, mining and smelting areas. 

 Organic wastes and compost should be neutralized 

before use as manure since HMs bioavailability and 

mobility are favoured by low pH and high organic 

matter. 

 The present wastewater treatment technologies are 

inefficient in removing HMs from wastewater, HMs 

were reported in different crops irrigated with treated 

wastewater. There is an urgent need for the 

development of a wastewater treatment system that 

can effectively remove HMs from contaminated 

wastewater at a low cost. 

 Researches should be conducted to find the effect and 

the fates of various wastewater treatment by-products 

on soil, food crops, and humans health. 

 Researches are needed to find out how application of 

chemical fertilizer increases soil and food HM 

contents. Preferably, fertilizer and other 

agrochemicals should not be a source of soil or food 

crop contamination.  

 There is a need for the development of a dust-barrier 

screen or membrane that will prevent HMs uptake 

from contaminated air. Using this kind of shield in a 

greenhouse operated in urban and peri-urban areas 

will prevent food crops from taken HMs from 

contaminated air. 

 

CONCLUSION  

The contamination is habitually occurring through 

anthropogenic activities such as discharge of contaminated 

solid and liquid wastes, mining, abuse of agricultural chemicals, 

air pollution, and industrial processes such as tanning, dying, 

and energy and chemical plant operations. Soil and water are 

the primary victims for the contamination, food crops are in 

most cases secondary victims, except for the atmospheric 

deposit. Food crops become contaminated when grown in 

contaminated soil or irrigated with contaminated water. Food 

production using HM-contaminated wastewater is a terrible feat 

due to its negative consequences on the food crops, soil, and 

groundwater. Vegetables that are produced through irrigation in 

urban and periurban areas are contaminated with HMs more 

than any other food crop. Generally, foods produced in the cities 

and environs are more disposed to HMs contamination than that 

produced far away from the cities. 
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