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ABSTRACT 

This study presents a convectively heated hydromagnetic Stagnation-Point Flow (SPF) of an electrically 

conducting Casson fluid towards a vertically stretching/shrinking sheet. The Casson fluid model is used to 

characterize the non-Newtonian fluid behaviour and using similarity variables, the governing partial differential 

equations are transformed into coupled nonlinear ordinary differential equations. The dimensionless nonlinear 

equations are solved numerically by Runge-Kutta Fehlberg integration scheme with shooting technique. The 

effects of the thermophysical parameters on velocity and temperature profiles are presented graphically and 

discussed quantitatively. The result shows that the flow field velocity decreases with increase in magnetic field 

parameter and Casson fluid parameter 𝛽. 

Keywords: Biot number; Fluid flow; Stream function; RK-Fehlberg integration scheme; Lorentz force.

INTRODUCTION 

An electrically conducting hydromagnetic viscous 

incompressible boundary layer flow fluid with a convective 

surface boundary condition is frequently used in many areas of 

biological, industrial and technological applications (Mutuku, 

2014). Some of these applications includes extrusion of plastics 

in the manufacture of rayon and nylon, MHD 

(magnetohydrodynamic) blood flow meters and generators, 

cooling of nuclear reactors, geothermal energy extraction, and 

drag reduction in aerodynamics, purification of crude oil, textile, 

polymer technology, and metallurgy, among others. Since 

inception on MHD boundary layer flows research (Sakiadis, 

1961), various authors have investigated numerous aspects of 

steady and unsteady boundary layer flow of a convective fluids 

as well as nanofluids (Makinde and Aziz, 2010; Bachok et al., 

2012; Mutuku and Makinde, 2014; Khan and Khan, 2016; 

Makinde, 2012). 

Stagnation-point fluid (SPF) flow over a continuously 

stretching/shrinking surface is significantly relevant in many 

engineering and industrial processes such as extraction of 

polymer sheet, polymer processing, paper production, glass 

blowing, glass-fibre production, plastic films drawing, filaments 

drawn through a quiescent electrically conducting fluid and the 

purification of molten metals from non-metallic inclusions. The 

stretching surface and heat transfer is controlled for superior 

products since the final product quality depends on the rate of 

cooling and many aspects of this problem have been investigated 

by several other authors (Chen et al., 1970; Gupta and Gupta, 

1977; Chiam, 1994; Layek et al., 2007; Makinde and Aziz, 2011; 

Crane, 2018). 

Non-Newtonian fluid flows are expressed in several engineering 

processes (oil reservoir engineering, bioengineering), 

geophysics, chemical and nuclear industries, polymer solution, 

cosmetic processes, paper production, design of thrust bearings 

and radial diffusers among others. These fluids exhibit a 

nonlinear relationship between shear stress and rate of strain 

which deviate significantly from the Newtonian fluid (Navier-

Stokes) model making it difficult to express these properties in 

a single constitutive equation. Owing to the complexity of these 

fluids, there is not a single constitutive equation which exhibits 

all their properties thus, amongst the different types of non-

Newtonian fluids namely; viscoelastic fluid, couple stress fluid, 

micropolar fluid, power-law flow and Casson fluid, various 

models have been used for non-Newtonian fluids, with their 

constitutive equations varying greatly in complexity (Fox et al., 

1969; Lun-Shin and Manun, 2008; Xu and Shi-Jun, 2009; Reddy 

et al., 2012). 

Casson fluids behave like an elastic solid, with a yield shear 

stress existing in the constitutive equation. It is a shear thinning 

liquid assumed to have an infinite viscosity at zero rate of shear, 

a yield stress below which no flow occurs, and a zero viscosity 

at an infinite rate of shear. This implies that if a shear stress 

greater than yield stress is applied, it starts to move whereas if a 

shear stress less than the yield stress is applied to the fluid, it 

behaves like a solid. Examples include yoghurt, molten 

chocolate, cosmetics, nail polish, tomato puree, jelly, honey, 

soup, concentrated fruit juices, human blood, amongst others. 

Casson (1959) investigated the flow behaviour of pigment oil 

suspensions of the printing ink type. Medikare et al., (2016) 

looked at MHD stagnation-point flow of a Casson fluid over a 
nonlinearly stretching sheet with viscous dissipation. 

Due to novelty, several studies on Casson fluid pertaining to 

different flow situations have taken center stage on 

contemporary research in fluid sciences and engineering which 
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includes; Musatafa et al., 2011; Bhattacharyya and Vajravelu, 

2012; Shehzad et al. 2013; Nandy, 2013; Bhattacharyya et al., 

2013; Bhattacharyya, 2013a; Bhattacharyya, 2013b; 

Mukhopadhyay et al., 2013; Mutuku and Makinde, 2013; 

Pramanik, 2014; Mutuku, 2014; Shateyi and Marewo, 2014; 

Hussain et al., 2015; Saidulu and Lakshmi, 2016; Medikare et 

al., 2016; Mutuku, 2016; Ouru, et al., 2016; Medikare et al., 

2016; Mabood et al., 2017; Seth et al., 2017; Mutuku and 

Makinde, 2017; El-Aziz and Yahya, 2017; Sheikh and Abbas, 

2017; Singh et al., 2018; Gangadhar et al., 2018 and Sobamowo 
et al., 2019. 

Despite the numerous applications of non-Newtonian fluids in 

industrial and engineering processes, deficiency from the above 

literatures in hydromagnetic Casson fluid flow has raised a 

strong motivation towards understanding its behaviour in 

several transport processes hence, this study. This study 

therefore extends the work of Medikare et al., (2016) by 

incorporating buoyancy force and considering a convective 

boundary layer in the numerical analysis of the hydromagnetic 

stagnation-point flow of a steady, incompressible Casson fluid 

towards a shrinking/stretching sheet. 

 

MATHEMATICAL FORMULATION 

Consider a steady, incompressible two-dimensional SPF 

(Stagnation-Point Fluid) flow of an electrically conducting 

Casson fluid towards a vertically stretching/shrinking sheet at 

𝑦 = 0 with the flow confined in the region 𝑦 > 0. Along the 

stretching surface in the 𝑥-axis, two equal and opposite forces 

are being applied with a uniform magnetic field strength 𝐵0 

applied perpendicular to the surface. The induced magnetic field 

is neglected while the ambient fluid is moved with a velocity 

𝑈∞(𝑥) = 𝑎𝑥. The equation of state for an isotropic and 

incompressible flow of a Casson fluid (Bhattacharyya, 2013a; 

2013b) is given by

 

                              𝜏𝑖𝑗 = (𝜇𝐵 +
𝑃𝑦

√2𝜋
) 2𝑒𝑖𝑗 ,   𝜋 > 𝜋𝑐  (𝜇𝐵 +

𝑃𝑦

√2𝜋𝑐

) 2𝑒𝑖𝑗 ,   𝜋 > 𝜋𝑐                     (1) 

where 𝜋 is the product of the component of deformation rate 

with itself, 𝜋 = 𝑒𝑖𝑗𝑒𝑖𝑗 ; 𝑒𝑖𝑗  are the (𝑖, 𝑗)𝑡ℎ
 components of 

the deformation rate and 𝜋𝑐  is a critical value of this product 

based on the non-Newtonian model, 𝜇𝐵  is plastic dynamic  

velocity of the non-Newtonian fluid and 𝑃𝑦  is the yield stress of 

the fluid. 

The MHD boundary layer equations for the steady 

incompressible SPF is given by

 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                               (2) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑈∞

𝑑𝑈∞

𝑑𝑥
+ 𝜐 (1 +

1

𝛽
)

𝜕2𝑢

𝜕𝑦2
+ 𝛽𝑔(𝑇 − 𝑇∞) −

𝜎𝐵0
2𝑥

𝜌
(𝑢 − 𝑈∞)             (3) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕𝑇

𝜕𝑦
+

𝛼𝜇

𝑘
(1 +

1

𝛽
) (

𝜕𝑢

𝜕𝑦
)

2

+
𝜎𝛼𝐵0

2𝑥

𝑘
(𝑢 − 𝑈∞)2.                                  (4) 

The boundary conditions at the sheet surface and free stream are: 

𝑢(𝑥, 0) = 𝑈𝑤(𝑥)   ,   𝑣(𝑥, 0) = 0,   − 𝑘𝑓

𝜕𝑇

𝜕𝑦
(𝑥, 0) = ℎ𝑓 (𝑇𝑓 − 𝑇(𝑥, 0))     𝑎𝑡     𝑦 = 0,    (5) 

 

𝑢(𝑥, 0) → 𝑈∞(𝑥),   𝑇(𝑥, ∞) → 𝑇∞        𝑎𝑠        𝑦 → ∞.                                       (6)  

 

Where 𝑢, 𝑣 are the velocity components in 𝑥, 𝑦 directions 

respectively, 𝜌 is the viscosity, 𝛽 = 𝜇𝐵√
2𝜋𝑐

𝑃𝑦
 is the non-

Newtonian or Casson parameter, 𝑈𝑤 = 𝑏𝑥 is the 

shrinking/stretching velocity for the sheet with 𝑏 being the  

shrinking/stretching constant, 𝑏 < 0 corresponds to shrinking, 

𝑏 > 0 corresponds to stretching and 𝑈∞ = 𝑎𝑥 is straining 

velocity of the stagnation point flow with 𝑎(> 0) being 

straining constant. 
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The stream functions 𝑢 = 𝜕𝜓/𝜕𝑦 and 𝑣 = −𝜕𝜓/𝜕𝑥 

satisfies the continuity equation (2). In order to simplify the 

mathematical analysis of the problem, we introduce the 

following similarity variables

 

𝜂 = (
𝑎

𝜐𝑓
)

1
2

𝑦 ,   𝜓 = (𝑎𝜐𝑓)
1
2𝑥𝑓(𝜂) ,   𝜃(𝜂) =

𝑇 − 𝑇∞

𝑇𝑓 − 𝑇∞
.                                      (7) 

Using equation (7), equations (3) – (6) are transformed to a set of couple nonlinear ordinary differential equations 

(1 +
1

𝛽
)

𝑑2𝑓

𝑑𝜂2
+ 𝑓

𝑑2𝑓

𝑑𝜂2
+ (

𝑑𝑓

𝑑𝜂
)

2

+ 𝐺𝑟𝜃 − 𝑀 (
𝑑𝑓

𝑑𝜂
− 1) + 1 = 0,                                     (8) 

 

𝑑2𝜃

𝑑𝜂2
+ 𝑃𝑟𝑓

𝑑𝜃

𝑑𝜂
+ (1 +

1

𝛽
) 𝑃𝑟𝐸𝑐 (

𝑑2𝑓

𝑑𝜂2
) + 𝑃𝑟𝐸𝑐𝑀 (

𝑑𝑓

𝑑𝜂
− 1)

2

= 0,                                 (9) 

with dimensionless boundary conditions 

𝑓(0) = 0,   
𝑑𝑓

𝑑𝜂
(0) = 𝜆,   

𝑑𝜃

𝑑𝜂
(0) = 𝐵𝑖[𝜃(0) − 1],   

𝑑𝑓

𝑑𝜂
(∞) = 1,   

𝑑𝜃

𝑑𝜂
(∞) = 0.               (10) 

From equations (8), (9) and (10), prime denotes differentiation with respect to 𝜂, 𝜆 is the velocity ratio parameter, 𝐺𝑟 is Grashof 

number, 𝑀 is magnetic field parameter, 𝑃𝑟 is Prandtl number, 𝐸𝑐 is Eckert number and 𝐵𝑖 is the Biot number respectively 

defined as follows: 

𝜆 =
𝑏

𝑎
;   𝐺𝑟 =

𝑔𝛽(𝑇𝑤 − 𝑇∞)

𝑈∞𝑎
;   𝑀 =

𝜎𝐵0
2

𝜌𝑎
;   𝑃𝑟 =

𝜐

𝛼
;   𝐸𝑐 =

𝑈∞
2

𝑐𝑝(𝑇𝑤 − 𝑇∞)
;   𝐵𝑖 =

ℎ

𝑘
√

𝜐

𝑎
 .   (11) 

The physical quantities of practical interest are the skin friction coefficient 𝐶𝑓 and local Nusselt number 𝑁𝑢𝑥  defined as 

𝐶𝑓 =
𝜏𝑤

𝜌𝑈𝑤
2

 ;   𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝛼(𝑇𝑤 − 𝑇∞)
                                                                                  (12) 

where, 𝜏𝑤  is the shear stress or skin friction along the stretching sheet and 𝑞𝑤  is the heat flux from the sheet and defined as 

𝐶𝑓(𝑅𝑒𝑥)
1
2 = (1 +

1

𝛽
)

𝑑2𝑓

𝑑𝜂2
(0); 

𝑁𝑢𝑥

(𝑅𝑒𝑥)
1
2

= −
𝑑𝜃

𝑑𝜂
(0)                                                        (13) 

where 𝑅𝑒𝑥 = 𝑈𝑤𝑥/𝜐 is the local Reynolds number. 

 

NUMERICAL SOLUTION 

The set of couple nonlinear ordinary differential equations (8) and (9) with boundary conditions equation (10) are computed 

numerically using the shooting method with Runge-Kutta Fehlberg integration scheme. This method involves transforming the 

dimensionless coupled nonlinear differential equations into a set of first order differential equations after which, the fourth order 

Runge-Kutta Fehlberg integration scheme is employed until the given boundary conditions are satisfied. 

Thus, we define the new variables as; 

𝑥1 = 𝑓, 𝑥2 = 𝑓′, 𝑥3 = 𝑓′′, 𝑥4 = 𝜃, 𝑥5 = 𝜃′                                         (14) 
 

Equations (8) – (10) are then reduced to the following system 

𝑥2
′ = (

1

1 + 𝛽
) (−𝑥1𝑥3 − (𝑥2)2 − 𝐺𝑟𝑥4 + 𝑀(𝑥2 − 1) − 1)                                             (15) 

 

𝑥5
′ = −𝑃𝑟𝑥1𝑥5 − (1 +

1

𝛽
) 𝑃𝑟𝐸𝑐(𝑥3)2 − 𝑀𝑃𝑟𝐸𝑐(𝑥2 − 1)2                                            (16) 
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subject to the following initial conditions, 

𝑥1(0) = 0,   𝑥2(0) = 𝜆,   𝑥5(0) = 𝐵𝑖[𝜃(0) − 1],   𝑥2(0) = 𝑠1,   𝑥5(0) = 𝑠2                 (17) 

 

Using the unknown initial conditions 𝑠1 and 𝑠2 in equation 

(17), equations (15) and (16) are integrated numerically. The 

accuracy of the assumed missing initial conditions is checked by 

comparing the calculated value of the dependent variable at the 

terminal point with its given value there. The accuracy and 

robustness for solving the boundary value problems confirms 

with Mutuku (2016). From the process of numerical 

computation, the fluid velocity 𝑓′(𝜂) and temperature 𝜃(𝜂) 

are compared with the given boundary conditions. 

 

RESULTS AND DISCUSSION 

The numerical computations are carried out for the various 

values of the physical parameter with Runge-Kutta Fehlberg 

integration scheme. The effects of the varying physical 

parameters: magnetic field parameter (𝑀), Casson parameter 

(𝛽), velocity ratio parameter (𝜆), Grashof number (𝐺𝑟), 

Biot number (𝐵𝑖), Eckert number (𝐸𝑐) and Prandtl number 

(𝑃𝑟) on velocity and temperature profiles has been analyzed. 

The obtained computation results are presented graphically in 

Fig. 1 – Fig. 8 and discussed. 

The effects of various values of magnetic field parameter 𝑀 on 

the flow field velocity and temperature profiles are displayed in 

Figs. 1 and 2. As 𝑀 increases, the flow field velocity decreases 

and also increases with decreasing values in 𝑀. Due to the 

Lorentz force induced by the dual actions of electric and 

magnetic fields, the velocity boundary layer thickness decreases. 

Similarly, for 𝜆 = 0.2, the temperature profiles increases with 

increasing values of 𝑀. The obtained result is in agreement with 

Bhattacharyya (2013) and Medikare et al., (2016). 

Fig. 3 and Fig. 4 present the effects of Casson parameter (𝛽) 

on the velocity and temperature fields. It is observed from Fig. 

3 that the fluid velocity profiles decreases as 𝛽 increases. Thus, 

due to the increase in 𝛽, the yield stress 𝑃𝑦  reduces and 

consequently, the velocity boundary layer thickness reduces. 

Fig. 4 shows the influences of Casson parameters on the 

temperature profiles. It shows that temperature decreases with 

increasing values in 𝛽. This implies that thermal boundary layer 

decreases (Medikare et al., 2016). Fig. 5 presents the effects of 

temperature profiles for varying values of Biot number 𝐵𝑖. It 

depicts that increasing values of 𝐵𝑖, decreases in temperature 

profiles. However, as the flow field moves far away from the 

sheet within the thermal boundary layer, Biot number varnishes. 

The velocity profile for various values of velocity ratio 

parameter 𝜆 is shown in Fig. 6. As described by Mastapha and 

Gupta (2001) and Bhattacharyya (2013b) for Newtonian fluid, 

the velocity of fluid inside the boundary layer decreases from  

the surface towards the edge of the layer for the first kind (𝜆 <
1) and the fluid velocity increases from the surface towards the 

edge for the second kind (𝜆 > 1). Similarly, it is important to 

note that the stretching velocity and straining velocity are equal 

as such there is no boundary layer of Casson fluid flow near the 

sheet (Chaim, 1994). The velocity profiles for different values 

of Grashof number 𝐺𝑟 is displayed in Fig. 7. It revealed that the 

flow field velocity decreases with increasing values of Grashof 

number 𝐺𝑟 thereby reducing the thermal boundary layer along 

the sheet. The viscous dissipation effect on temperature profiles 

is shown in Fig. 8. It illustrates that temperature increases with 

increase in Eckert number (viscous dissipation parameter). The 

Eckert number 𝐸𝑐 produces heat due to drag between the fluid 

particles causing an increase of the initial fluid temperature due 

to the extra heat. However, 𝐸𝑐 may not only cause thermal 

reversal but also increases the thermal boundary layer (Medikare 

et al., 2016). 

Fig. 9 shows the effects of Prandtl number 𝑃𝑟 of temperature 

profiles. It depicts that temperature initially increases with 

increasing values of Prandtl number 𝑃𝑟 and later decreases with 

increased values of 𝑃𝑟 towards the thermal boundary layer. The 

use of Prandtl number in heat transfer problems reduces the 

relative thickening of the momentum and the thermal boundary 

layer (Medikare et al., 2016). Thus, the rate of heat transfer is 

enhanced with 𝑃𝑟 causing the reduction of the thermal 

boundary layer thickness. 

 

CONCLUSION 

The magnetohydrodynamic SPF of a Casson fluid towards a 

convectively heated stretching/shrinking sheet is investigated 

taking the buoyancy force into account. Using the similarity 

variables, the governing differential equations are transformed 

to ordinary differential equations and solved numerically by 

shooting method with Runge-Kutta Fehlberg integration 

scheme. The effects of the various governing physical 

parameters were analysed and the following conclusions are 

drawn: 

a. The velocity boundary layer thickness reduces with 

increasing values of the magnetic field parameter. 

b. The flow field velocity decreases with increase in 

Casson parameter 𝛽 as well as the thermal boundary 

layer thickness. 

c. The Biot number 𝐵𝑖, decreases the thermal boundary 

layer thickness whereas the Eckert number 𝐸𝑐 

increases away from the sheet towards the thermal 

boundary layer. 
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Fig. 1 Velocity profiles for different values of 𝑀. 

 

Fig. 2 Temperature profiles for different values of 𝑀. 
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Fig. 3 Velocity profiles for various values of Casson parameter 𝛽 

 
Fig. 4 Temperature profiles for different values of 𝛽 
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Fig. 5 Temperature profiles for different values of Biot number 𝐵𝑖 

 

Fig. 6 Velocity profiles for varying values of 𝜆 
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Fig. 7 Effects of various values of 𝐺𝑟 on velocity profiles 

 

Fig. 8 Temperature profiles for various values of 𝐸𝑐 
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Fig. 9 Effects of different values of 𝑃𝑟 on temperature profiles 
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