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ABSTRACT

The development and application of an implicit hybrid block method for the direct solution of second order
ordinary differential equations with given initial conditions is shown in this research. The derivation of the
three-step scheme was done through collocation and interpolation of power series approximation to give a
continuous linear multistep method. The evaluation of the continuous method at the grid and off grid points
formed the discrete block method. The basic properties of the method such as order, error constant, zero
stability, consistency and convergence were properly examined. The new block method produced more
accurate results when compared with similar works carried out by existing authors on the solution of linear
and non-linear second order ordinary differential equations.
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Ordinary Differential Equations (ODES)

INTRODUCTION

The reduction of second order ordinary differential equations
(ODEs) to a system of first order ODEs and then solve using
any appropriate method for first order ODEs was the principal
approach used for solving higher order initial value problems
specifically second order ODEs. Predictor-corrector method
was later used by some researchers for the direct
computational solution of second order ODEs. Authors such as
Brugnano and Trigiante (1998), Jator (2001), Awoyemi
(2003), Awoyemi and Kayode (2005), Butcher (2008), Kayode
(2008), Adesanya et al (2008), Kayode and Adeyeye (2011)
have discussed these reduction and predictor-corrector
methods widely. The major challenges familiar with the
reduction and predictor-corrector approaches include low level
of accuracy, complicated programming process, inefficiency
and high cost in terms of system time and resources.

In order to rise above these drawbacks of the reduction and
predictor-corrector methods and bring improvement on

DERIVATION OF THE METHOD

numerical analysis, authors like Jator (2007), Adeyeye and
Omar (2016), Omole and Ogunware (2018), Omar and Raft
(2016), and many more proposed the block method for the
direct solution of second order ordinary differential equations
independently. The aforementioned authors maintained that the
block method generates more accurate result than both
reduction and predictor-corrector methods. The distinctiveness
of the block method is that in each usage, the solution value
will be obtained concurrently at several different points and it
is found to be cost effective because of the evaluation of few
functions involved.

Hence, the focus of this work is to develop and implement a
three-step hybrid block method for the solution of second order
ODEs directly.

Generally, second order ODEs with initial value problems is of the form

y = f(x,y(x),yY'(X), y(0) =7, y'@=mn

Power series approximate solution of (1) is of the form:
k+6

(k+6) )
y(x)= > ax!
j=0

Where K is the end-point.
The second derivative of (1) is obtained as

@

O]

FUDMA Journal of Sciences, Vol. 4 No.4, December, 2020, pp 477 - 483

477


mailto:ogunwaregbenga@gmail.com
https://doi.org/10.33003/fjs-2020-0404-505

DERIVATION AND IMPLEMENTATION ..

(k+6)

y'= 2 i(i-Dax’?
j=2

The combination of equations (2) and (3) gives the differential system

(k+6)

=2, i(i-axX " =1 (xyy)
j=0

Collocating (4) at X =X

n+j!?

non-linear equation of the form
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Gaussian elimination technique is employed to equation (5) in
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and interpolating (2) at X=X
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substituted into equation (2) to produce a continuous implicit scheme of the form

y(t)=

2

2

a ()Y i +as(t)y o +h’ {ﬁo (t)

Then, using the transformation

t = X— Xk
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t) = h?
Ps ) = 105 15 15 90 15 1008 315 26880

2
Bs(t) =h? oty Ly 1844 1g 191, 1., 31

630 54 120 1080 90 120960 105 161280
Evaluating the continuous method at the end point gives the discrete scheme

(—its—it6 c i e, 2 17 167 59 J

2
Vnig = > y 53— 3 -y 1 +t— h { —53f, +22889f,,, +15501f, , +535f,, 5 +1158f 1 +22900f 5 +8550f 5} 7
27045 27 32256 n+ > n+>

2
While the evaluation of the first derivative of the continuous scheme at all points ylelds
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These schemes in equations (7) - (14) are combined together in matrix form and by using the matrix inversion technique, a block
method of the following form is produced
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Substituting the schemes that made up the block in (15) into equations (8) to (14), gives
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ANALYSIS OF THE BASIC PROPERTIES OF THE METHOD
Order and Error Constant:
The Lambert (1973)’s method for finding the order of a numerical scheme is also applied to equation (15). Hence, the new hybrid

6637 1129 2243 5221 1667 ET
78331 32552 5377 8745 2353 723

block method is of uniform order p =7 with error constants [

Zero Stability of the Block
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Definition: The block is said to be zero stable if the roots 2, § =1,2,3,...,N of the characteristics polynomial ©(Z) defined by

p(2) = det(zA— E) satisfies |Zs| <1 and the roots |Zs| =1 is simple. (Kuboye and Omar 2015)

For our hybrid method,

O o r O O O
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O O O o o o
O O O O o o
L e
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A=2°-7°=0,2=0,0,0,0,0,0

Hence the block is zero stable. See Abolarin et al (2020)

Consistency
Our new hybrid block method is consistent since the order of the method is greater than one.
Convergence

In tandem with the theory of Lambert (1973), the necessary and sufficient condition for a linear multistep method to be
convergent is for it to be consistent and zero stable. Hence the new hybrid block method is convergent.

NUMERICAL EXPERIMENTS

In this section, the performance of the three-step hybrid method is examined on some test examples. The results obtained from
the test examples are displayed in tabular form. We used MATLAB codes for the computational purposes.

1
Problem 1: y"— x(y’)2 =0, y(0)=1, y'(0) = > h =0.003125

Exact solution: y(X) :1+1 In 2+x
2 2—X

Table 1: Comparison of the result of the developed three-step hybrid block method for test problem 1 with the errors in
Kuboye et al (2018) and Awari and Abada (2014)

X Exact solution TSHBA (Computed solution) | Error in TSHBA Error in Kuboye Error in
etal (2018) Awari and
Abada
(2014)
0.1 1.050041729278491400 1.050041729278489400 1.998401E-15 1.113847E-10 1.440E-08
0.2 1.099546268422664900 1.099546268422647400 1.754152E-14 5.078077E-10 3.850E-08
0.3 1.151140435936466800 1.151140435936399500 6.727952E-14 1.516145E-09 6.330E-08
0.4 1.202732554054082300 1.202732554053906400 1.758593E-13 4.193464E-09 8.800E-08
0.5 1.254579651931831100 1.254579651931447400 3.836931E-13 1.143373E-08 1.151E-07
0.6 1.309519604203112100 1.309519604202333600 7.784884E-13 3.109587E-08 1.427E-07
0.7 1.365443754271396900 1.365443754269914000 1.482814E-12 8.453424E-08 1.716E-07
0.8 1.422719216277534600 1.422719216274822300 2.712275E-12 2.297908E-07 1.796E-07
0.9 1.484700278594052600 1.484700278589056600 4.996004E-12 6.246375E-07 1.941E-07
1.0 1.549306144334055900 1.549306144324915000 9.140910E-12 1.697941E-06 2.109E-07

Problem 2: y"+ A%y =0,y(0) =1, y'(0)=2, 2=2,h=0.01
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Exact solution: y(X) = €0S 2X +Sin 2x,

Abolarin et al. FJs

Table 2: Comparison of the result of the developed three-step hybrid block method for test problem 2 with the errors in
Abhulimen and Okunuga (2008)

X Exact solution TSHBA (Computed solution) | Error in TSHBA Error in
Abhulimen and
Okunuga (2008)

0.01 1.019798673359910900 1.019798673280353500 7.955747E-11 -

0.02 1.039189440847612100 1.039189438315828900 2.531783E-09 0.26E-05

0.03 1.058164546414648700 1.058164527294756600 1.911989E-08 0.40E-05

0.04 1.076716400271792200 1.076716349318852700 5.095294-08 0.53E-05

0.05 1.094837581924853900 1.094837496836278800 8.508858E-08 0.66E-05

0.06 1.112520843142785500 1.112520710115289000 1.330275E-07 0.79E-05

0.07 1.129759110856873600 1.129758915016439300 1.958404E-07 0.93E-05

0.08 1.146545489989872800 1.146545229144277000 2.608456E-07 0.11E04

0.09 1.162873266213945600 1.162872926945781100 3.392682E-07 0.12E-04

0.1 1.178735908636302700 1.178735476496691100 4.321396E-07 0.13E-04

DISCUSSION OF RESULTS

The results generated by the developed three-step hybrid block
method are displayed in tables (1) and (2). Table 1 shows the
result of the new three-step hybrid method when applied to a
non-linear second order ODE problem 1. The newly developed
hybrid method produces more accurate result when compared
with the errors generated by the method of Kuboye et al (2018)
and Awari and Abada (2014). The three-step hybrid scheme
also gives better result when compared with the method of
Abhulimen and Okunuga (2008) for solving the linear second
order ODE in problem 2. The result is displayed in table 2.

CONCLUSION

The three-step implicit hybrid block method for the numerical
solution of second order ODEs with initial value problems is
developed in this research. The developed method is zero
stable, consistent and convergent. It also produces more
accurate result than the existing methods.
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