
APPLICATIONS OF TWO… Adetunji et al., FJS 

FUDMA Journal of Sciences (Vol. 4 No.4, December, 2020, pp 415 - 424 
415 

 

 

 

APPLICATIONS OF TWO NON-CENTRAL HYPERGEOMETRIC DISTRIBUTIONS OF BIASED SAMPLING 

STATISTICAL MODELS 
 

1Adetunji, K. O., *2Issa, A. A., 1Alanamu, T., 1Adefila, E. J. and 1Muhammed, K. A. 
 

1Department of Mathematics, Kwara State College of Education, Ilorin, Nigeria 
2Department of Mathematical Sciences, Abubakar Tafawa Balewa University (ATBU), Bauchi, Bauchi State, Nigeria. 

*Corresponding author’s email: kunlemumeen@gmail.com  Tel.: 08068954589 

 

ABSTRACT 
Statistical models of biased sampling of two non-central hypergeometric distributions Wallenius' and 

Fisher's distribution has been extensively used in the literature, however, not many of the logic of 

hypergeometric distribution have been investigated by different techniques. This research work 

examined the procedure of the two non-central hypergeometric distributions and investigates the 

statistical properties which includes the mean and variance that were obtained. The parameters of the 

distribution were estimated using the direct inversion method of hyper simulation of biased urn model in 

the environment of R statistical software, with varying odd ratios (w) and group sizes (mi). It was 

discovered that the two non - central hypergeometric are approximately equal in mean, variance and 

coefficient of variation and differ as odds ratios (w) becomes higher and differ from the central 

hypergeometric distribution with ω = 1. Furthermore, in univariate situation we observed that Fisher 

distribution at (ω = 0.2, 0.5, 0.7, 0.9) is more consistent than Wallenius distribution, although central 

hypergeometric is more consistent than any of them. Also, in multinomial situation, it was observed that 

Fisher distribution is more consistent at (ω = 0.2, 0.5), Wallenius distribution at (ω = 0.7, 0.9) and 

central hypergeometric at (ω = 0.2)  

 Keywords: Non-central hypergeometric, Wallenius distribution, Fisher distribution, univarate situation 

 

INRODUCTION 
The hyper geometric distribution occupies a place of great 

significance in statistic theory.  

It applies to sampling without replacement from a finite 

population whose element can be classified into two 

categories, one which possesses certain characteristics. The 

category could be male or female, employed or unemployed 

etc. When random selections are made without replacement 

from the population, each subsequent drawn is dependent on 

the outcome of the previous draws and the probability of 

success change, consequently. The conditions underlying 

hypergeometric distribution are as follows: 

• The result of each draw can be classified into one of 

two categories  

• The probability of success change in each draw.  

In probability theory and statistics, the hypergeometric 

distribution is a discrete probability that describes the 

probability of number of successes in  draws, without 

replacement, from a finite population of size  containing 

successes. 

A hypergeometric random variable with parameter W+B, W and n, give a set consisting of W element of first kind and B 

element of the second kind, a number of element of the first kind  appearing in a randomly chosen subset of n element, 

where every of such subset are equally likely. For a hypergeometric random variable  i.e.  

 The sample space is the set of integers that meet M  and  

 The probability mass function 

  or simply  is define thus:  

    
Various generalizations to this distribution exist. One 

instance could be a case of picking from an urn containing 

biasedly colored tagged balls, so that balls of one color are 

more likely to be picked than balls of another color. Another 

instance could be a case of an opinion poll, conducted by 

calling random telephone numbers and it is assumed that 

unemployed people are more likely to be home and answer 

the phone than employed people therefore, an unemployed 

respondent are likely to be over-represented in the sample.  

 

The probability distribution of employed versus unemployed 

respondents in a sample of  respondents could be described 

as a non-central hypergeometric distribution. The description 

of biased urn models is complicated by the fact that there is 

more than one non central hypergeometric distribution, 

depending on whether items (e.g. coloured tagged balls) are 

sampled in a manner where there is competition between the 

items or they are sampled independently of each other. 

There is widespread confusion about this fact. 
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The name non-central hypergeometric distribution has been 

used for two different distribution and several scientists have 

either used the distributions wrongly or erroneously believed 

that the two distributions were identical. The use of the same 

name for two different distributions has been possible 

because these two distributions were studied by two 

different groups of scientist who are hardly have any contact 

with each other. 

 

Anger Fog (2008) has suggested that the best way to avoid 

confusion is to use the name Wallenius non-central 

hypergeometric distribution of a biased urn model where a 

predetermined number of items are drawn one by one in a 

competitive manner while the name Fisher’s non-central 

hypergeometric distribution is used where items are drawn 

independently of each other. This is done so that the total 

number of items drawn is known only after the experiment. 

There come the names K.T. Wallenius and R.A. Fisher, been 

those who first describe the respective distribution.  

 

DESCRIPTION OF WALLENIUS' NON-CENTRAL 

HYPERGEOMETRIC DISTRIBUTION  

For Wallenius' distribution, let assume that an urn contains 

 red balls and  white balls and , 

the totally number of balls in the urn.   balls are drawn at 

random from the urn one by one without replacement. Each 

red ball has the weight , and each white ball has the 

weight . We assume that the probability of taking a 

particular ball is proportional to its weight. The physical 

property that determines the odds may be something else 

than weight, such as size or slipperiness or whatever, but it is 

convenient to use the word weight for the odds parameter.  

 

The probability that the first ball picked is red is equal to the 

weight fraction of the red balls: 

 
The probability that the second ball picked is red 

depends on whether the first ball was red or white. If the first 

ball was red then  above is used with m1 reduced by one. 

If the first ball was white then  is used with m2 reduced 

by one.  

The important fact that distinguishes Wallenius' distribution 

is that there is competition between the balls. The 

probability that a particular ball is taken in a particular draw 

depends not only on its own weight, but also on the total 

weight of the competing balls that remain in the urn at that 

moment. And the weight of the competing balls depend on 

the outcomes of all preceding draws.  

The distribution of the balls that are not drawn is a 

complementary Wallenius' non-central hypergeometric 

distribution. 

 

DESCRIPTION OF FISHER'S NON - CENTRAL 

HYPERGEOMETRIC DISTRIBUTION 

In the Fisher model, the balls are independent and there is no 

dependence between draws. We may as well take all n balls 

at the same time. Each ball has no "knowledge" of what 

happens to the other balls. For the same reason, it is 

impossible to know the value of n before the experiment. If 

we try to fix the value of n then we would have no way of 

preventing ball number n+1 from being taken without 

violating the principle of independence between balls. n is 

therefore a random variable, and the Fisher distribution is a 

conditional distribution which can only be determined after 

the experiment, when n is known. The unconditional 

distribution is two independent binomials, one for each 

color.  

 

Fisher's distribution can simply be defined as the conditional 

distribution of two or more independent binomial varieties 

dependent upon their sum. A multinomial version of the 

Fisher's distribution is used if there are more than two colors 

in the urn. 

 

NON-CENTRAL HYPERGEOMETRIC 

DISTRIBUTION 

The known standard hypergeometric distribution shows no 

dependence between the colour of a ball in the urn and its 

probability of been drawn. The only influencing parameter is 

the number of balls of the different colours in the urn. 

Should one want to model the preferences in drawing balls 

of different colours, weight parameters are introduced, and 

the resulting distribution is called the NON-CENTRAL 

HYPERGEOMETRIC DISTRIBUTION and was developed 

by Wallenius and Fishers for the univariate cases and 

extended to a multinomial distribution. 

In general, the non - central hypergeometric distribution has 

a number of important practical applications which includes: 

1) Industrial quality control: lot of size N containing a 

proportion  of defectives are sampled using samples 

of fixed size . The number of defectives  per 

sample is then a non-central hypergeometric random 

variable. 

2) Estimation of the size of animal and other 

populations from capture - receptive data. 

3) Estimation of a target population N in 

epidemiological studies, can be achieved by counting 

the number of cases that appear on both of two lists of 

sizes n and m 

4) Opinion surveys: a random sample of size , of 

respondents, is drawn without replacement from a finite 

population of size N. 

5) Analysis of 2x2 contingency tables with both sets of 

marginal frequencies fixed. The probability of a result 

as extreme as the observed result is the task probability 

for the resulting classical hypergeometric distribution.  

Statistical models of biased sampling in the two non - central 

hypergeometric distribution occur when taking coloured 

balls from a bias urn without replacement. The univariate is 

used when there are two colours of balls. While the 

multinomial is used when there are more than two colours of 

balls. 

The traditional procedure is to use unbiased sampling but a 

model of biased sampling may be used if bias is unavoidable 

or if bias is desired in order to increase the probability of 

detection. 

This study is aimed at applying the two non-central 

hypergeometric distributions under statistical models of 

biased sampling. It is therefore designed in line with the 

following objectives:  to examine the procedure of applying 

the two non-central hypergeometric distributions 

(Wallenius’ and Fisher’s distributions); to investigate the 

statistical properties of the two non – central hypergeometric 

distributions such as (mean, variance and coefficient of 

variation), and to compare the coefficient of variation of the 

two non – central hypergeometric distributions in univariate 

and multinomial cases 
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APPLICATIONS OF THE TWO DISTRIBUTIONS, IN CONSIDERATION 

Wallenius Fishers' 

1.  Wallenius distribution is used in models of natural 

selection and biased sampling 

1. Fisher’s non-central hyper-geometric distribution is useful for 

models of biased sampling or biased. 

2. Wallenius’ non-central hyper-geometric distribution 

is used when items are sampled one by one with 

competition. 

2. Fisher’s non-central hyper-geometric distribution can also be 

used to select on items sampled. 

3. The distribution is applicable in random number 

theory. 

3. The distribution can also be used for test in contingency tables 

where a conditional distribution for fixed margin is desired. 

 

CONDITIONS UNDER WHICH EACH OF THE TWO DISTRUNTIONS CAN BE USED 

Wallenius Fishers' 

1. Items are taken randomly from a finite source containing 

different kinds of items without replacement. 

1. Items are taken randomly from a finite source containing 

different kinds of items without replacement. 

2. Items are drawn one by one. 

2. Items are taken independently of each other. Whether one 

item is taken is independent of whether another item is 

taken. Whether one item is taken before, after, or 

simultaneously with another item is irrelevant. 

3. The probability of taking a particular item at a particular 

draw is equal to its fraction of the total weight of all 

items that have not yet been taken at that moment. The 

weight of an item depends only on its kind. 

3. The probability of taking a particular item is proportional to 

its weight. The weight of an item depends only on its kind. 

4. The total number n of items to take is fixed and 

independent of which items happen to be taken first. 

4. The total number n of items that will be taken is not known 

before the experiment. 

 

5. n is determined after the experiment and the conditional 

distribution for n known is desired. 

 

METHODOLOGY 

Central Hypergeometric Distribution 

Suppose  and  represent two independent binomial 

random variables with parameter  and  

respectively. Then  has a binomial distribution 

with parameters  and . The conditional 

distribution of  given  is the univariate 

central hypergeometric distribution and is derived as 

follows; 

 

 

 

 

Now if we let  and  in (3) and 

(4) then the conditional distribution becomes; 

 

 

 

Collecting the exponent involving  together, (6) becomes: 

 
Therefore, (7) is the required probability mass function (pmf) 

for the Central Hypergeometric Distribution. 

For univariate central hypergeometric distribution, the pmf 

in (7) above has the corresponding mean and variance 

respectively.  

 

 
For the multinomial hypergeometric distribution, the pmf is 

as follow; 

 
The corresponding mean and variance are; 

 

 

The pmf in (7) can be extended based on the violation of 

equal probability assumption of the two binomial random 

variables. If the assumption of equal probability is violated, 

then, the hypergeometric distribution becomes non-central 

hypergeometric distribution, since the distribution of the 

sum is no longer binomial. The proof according to Lawal 

(2003) is: 
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Collecting the exponent involving  and that involving  

together, (13) becomes: 

 

Let  in (14), then,      

 
Therefore, (15) is the required pmf of the non-central hypergeometric distribution. 

Univariate fishers’ non-central hypergeometric 

distribution 

The pmf in (15) was referred to as the extended 

hypergeometric distribution, by fishers (1935), where  is 

the non-centrality parameter. However, the above non-

central hypergeometric was, according to Fog (2008), also 

referred to as fisher’s hypergeometric distribution, by fog 

(2008). 

The corresponding mean and variance of the pmf in (15), 

according to McCullagh and Nelder (1989), are: 

 

And  

 
Where, 

 
The moments about the origin is expressible as: 

 

 

Multinomial Fisher Non-Central Hypergeometric Distribution 

Suppose that  and  are two independent random variables of k categories each. Then 

the conditional distribution of  given , is as follows; 

In equation (7) above, equal probability was assumed and thus the probabilities canceled out. 

For the multinomial fisher’s hypergeometric case, where the equal probability is not assumed, the resultant pmf follows 

the pattern of the univariate case in (15) above and is defined, according to McCullagh and Nelder (1989), as: 

 
where, 

 
The corresponding approximate relationship between the mean and variance, according to McCullagh and Nelder (1989), is 

as follows: 

 
Where, 

 

It is negative for   

The covariance matrix ∑ may be approximated quite accurately as follows. If we let the vector   with components  given 

by:   

The approximate value of ∑ is then given, in terms of , as: 
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Univariate Wallenius Non-Central Hypergeometric Distribution 

The Wallenius non-central hypergeometric distribution is the 

name given by Wallenius (1963) to a distribution 

constructed by supposing that, in sampling without 

replacement, the probability of drawing a white ball given 

that there are m1 white and m2 black balls is not  but 

, . The mathematical 

analysis that follows from this assumption is very 

complicated.  

Starting from the recurrence relation: 

 

 
 

Wallenius obtained the formula for his Non-central Hypergeometric distribution as: 

 
where, 

 

For the univariate case with ,   Fog (2008) indicated that it may be more efficient to solve: 

 
Levin (1984) proposed an approximation formula for approximating the variance of Wallenius’ non-central hypergeometric 

distribution using the Fisher's non-central hypergeometric distribution with the same mean. His approximation formula is 

given as:  

 

Where  and  

 

This approximation is good when is closer to 1 and  is far from   

 

Multinomial Wallenius Non-central Hypergeometric 

Distribution 

Accordingly, Chesson (1976) extended the univariate 

wallenius distribution to the multinomial case by defining: 

 

where, ,  

, 

 and 

 

The approximation formula for mean and variance for 

Wallenius, as derived by Fog (2008) is as follows: 

 

where,   

 

Notations 

 is the number of balls drawn of 

each color 

is the initial number of balls of 

each color in the urn 

 is the weight or odds of balls 

of each Color 

 is the total number of balls drawn 

 is the number of colors 

 is the total number of balls in urn before sampling 

 

 

 

SIMULATION STUDY 

In this study, the direct inversion method of R statistical 

software was used with varying Odds ratio and group sizes. 

The aim of the research is to investigate and compare the 

statistical properties (mean, variance and coefficient of 
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variation) of the two non-central hypergeometric 

distributions in relation to the central hypergeometric 

distribution. Also to investigate the consistency nature of the 

distributions on the basis of five random number (10, 50, 

100, 500, 1000), that were considered in the study. The 

samples generated were replicated 1000 times to ensure 

stability of the results. 

 

RESULTS AND DISCUSSIONS 

Table 1: Univariate Case: Mean of simulated data, based on; m1 = 80; m2 = 20; n=20;   

Random numb 

generated 

Odds ratio 

 

Wallenius 

Distributn 

Fisher 

Distributi
on 

Central 

Hypergeomet
ric Distributn 

10 

0.2 10.12 11.01 16 

0.5 13.71 14.01 16 

0.7 14.89 15.02 16 

0.9 15.69 15.72 16 

50 

0.2 10.12 11.01 16 

0.5 13.71 14.01 16 

0.7 14.89 15.02 16 

0.9 15.69 15.72 16 

100 

0.2 10.12 11.01 16 

0.5 13.71 14.01 16 

0.7 14.89 15.02 16 

0.9 15.69 15.72 16 

500 

0.2 10.12 11.01 16 

0.5 13.71 14.01 16 

0.7 14.89 15.02 16 

0.9 15.69 15.72 16 

1000 

0.2 10.12 11.01 16 

0.5 13.71 14.01 16 

0.7 14.89 15.02 16 

0.9 15.69 15.72 16 

 

 

 

 

TABLE 2: Univariate Case: Variance of the simulated data, 

based on m1 = 80; m2 = 20; n=20;   

Rand. 

numb 

generat 

Odds 

ratio 

 

Wallenius 
Distrib. 

Fisher 

Distributi

on 

Central 
Hyperge

o. 

Distribut
n 

10 

0.2 3.30 3.31 2.59 

0.5 3.17 3.12 2.59 

0.7 2.93 2.90 2.59 

0.9 2.69 2.68 2.59 

50 

0.2 3.30 3.31 2.59 

0.5 3.17 3.12 2.59 

0.7 2.93 2.90 2.59 

0.9 2.69 2.68 2.59 

100 

0.2 3.30 3.31 2.59 

0.5 3.17 3.12 2.59 

0.7 2.93 2.90 2.59 

0.9 2.69 2.68 2.59 

500 

0.2 3.30 3.31 2.59 

0.5 3.17 3.12 2.59 

0.7 2.93 2.90 2.59 

0.9 2.69 2.68 2.59 

1000 

0.2 3.30 3.31 2.59 

0.5 3.17 3.12 2.59 

0.7 2.93 2.90 2.59 

0.9 2.69 2.68 2.59 

TABLE 3: Univariate Case: Coefficient of variation of the 

simulated data, based on m1 = 80; m2 = 20; n=20; 

 

Rand. 

numb 

generat 

Odds 

ratio 

 

Wallenius 
Distrib. 

Fisher 

Distributio

n 

Central 

Hypergeo.

Distribtn 

10 

0.2 17.9505 16.5244 10.0584 

0.5 12.9858 12.6078 10.0584 

0.7 11.4958 11.3378 10.0584 

0.9 10.4533 10.4139 10.0584 

50 

0.2 17.9505 16.5244 10.0584 

0.5 12.9858 12.6078 10.0584 

0.7 11.4958 11.3378 10.0584 

0.9 10.4533 10.4139 10.0584 

100 

0.2 17.9505 16.5244 10.0584 

0.5 12.9858 12.6078 10.0584 

0.7 11.4958 11.3378 10.0584 

0.9 10.4533 10.4139 10.0584 

500 

0.2 17.9505 16.5244 10.0584 

0.5 12.9858 12.6078 10.0584 

0.7 11.4958 11.3378 10.0584 

0.9 10.4533 10.4139 10.0584 

1000 

0.2 17.9505 16.5244 10.0584 

0.5 12.9858 12.6078 10.0584 

0.7 11.4958 11.3378 10.0584 

0.9 10.4533 10.4139 10.0584 
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From the information in table 3, the plot of Coefficient of Variation (C.V) value, at each values 

of , is as follows 

                                                                                                   

     
Fig. 1: the plot of C.V across the three distributions at   Fig. 2: the plot of C.V across the three distributions at  

 

    
Fig. 3: the plot of C.V across the three distributions at    Fig. 4: the plot of C.V across the three distributions at  
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Table 4: Multinomial case: Mean of the simulated data 

based on odd ratio, ;  

 and  

Random  

Num. 

Generat

ed 

Odds 

Ratio 

 

Wallen

ius 

Distrib

ution 

Fisher'

s 

Distrib

ution 

Central 

Hypergeo

metrc 

Distributi

on 

10 0.2 4.08 4.3 9.41 

0.5 2.46 2.5 2.35 

0.7 5.04 5 3.53 

0.9 8.43 8.2 4.71 

50 0.2 4.08 4.3 9.41 

0.5 2.46 2.5 2.35 

0.7 5.04 5 3.53 

0.9 8.43 8.2 4.71 

100 0.2 4.08 4.3 9.41 

0.5 2.46 2.5 2.35 

0.7 5.04 5 3.53 

0.9 8.43 8.2 4.71 

1000 0.2 4.08 4.3 9.41 

0.5 2.46 2.5 2.35 

0.7 5.04 5 3.53 

0.9 8.43 8.2 4.71 

 

                     

              

Table 5: Multinomial case: Variance of the simulated data 

based on odd ratio, ;  

 and  

Random  

Num. 

Generate

d 

Odds 

Ratio 

 

Walleni

us 

Distribut

ion 

Fisher's 

Distribut

ion 

Central 

Hypergeom

etrc 

Distribution 

10 0.2 3.0 3.11 4.42 

0.5 1.89 1.92 1.84 

0.7 3.18 3.17 2.58 

0.9 4.07 4.04 3.19 

50 0.2 3.0 3.11 4.42 

0.5 1.89 1.92 1.84 

0.7 3.18 3.17 2.58 

0.9 4.07 4.04 3.19 

100 0.2 3.0 3.11 4.42 

0.5 1.89 1.92 1.84 

0.7 3.18 3.17 2.58 

0.9 4.07 4.04 3.19 

1000 0.2 3.0 3.11 4.42 

0.5 1.89 1.92 1.84 

0.7 3.18 3.17 2.58 

0.9 4.07 4.04 3.19 

 

 

 

 

Table 6: Multinomial case: Coefficient of Variation (C.V) of the simulated data based on odd ratio, 

;   and  

Rand. numb 

generated 

Odds 

ratio 

 

Wallenius 

Distrib. 

Fisher 

Distribution 

Central 

Hypergeo. 

Distribution 

10 0.2 42.4522 41.0121 22.3420 

0.5 55.8851 55.4256 57.7220 

0.7 35.3821 35.6090 45.5025 

0.9 23.9315 24.5119 37.9205 

50 0.2 42.4522 41.0121 22.3420 

0.5 55.8851 55.4256 57.7220 

0.7 35.3821 35.6090 45.5025 

0.9 23.9315 24.5119 37.9205 

100 0.2 42.4522 41.0121 22.3420 

0.5 55.8851 55.4256 57.7220 

0.7 35.3821 35.6090 45.5025 

0.9 23.9315 24.5119 37.9205 

1000 0.2 42.4522 41.0121 22.3420 

0.5 55.8851 55.4256 57.7220 

0.7 35.3821 35.6090 45.5025 

0.9 23.9315 24.5119 37.9205 

 

The corresponding plot of Coefficient of Variation (C.V) value in table 6, at each values of , 

is as follows: 
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Fig. 5: the plot of C.V across the three distributions at  

 

Fig. 6: the plot of C.V across the three distributions at  

 

 

Fig. 7: the plot of C.V across the three distributions at  

 

 

Fig. 8: the plot of C.V across the three distributions at  

 

DISCUSSION 

The simulation result in table 1 – 6  show, on the based 

random sample generated numbers (10, 50, 100, 500, 1000), 

that the estimated mean, the variance and coefficient of 

variation are approximately the same for the two non – 

central distributions with varying odds ratios 

 

It could also be seen from these tables that the non – central 

hypergeometric distribution (Wallenius and Fishers’) 

possess a closely approximate estimate of mean, variance 

and that the coefficient of variation differ from that given by 

the central hypergeometric distribution. 

In univariate cases, table 1 – 3 and figure 1 – 4, it was 

observed that Fishers distribution at (ω = 0.2, 0.5, 0.7, 0.9) is 

more consistent than Wallenius distribution although central 

hypergeometric is better. 

In multinomial cases, table 3 – 6 and figure 5 - 8, it was 

observed that Fisher distribution is more consistent at ω 

=0.5, Wallenius distribution at ω = 0.7, 0.9 and central 

hypergeometric distribution at ω = 0.2. 

 

CONCLUSION 

 Base on the aforementioned, it can be concluded that: 

 The two non – central hypergeometric distributions 

(Wallenius and Fishers’) are approximately equal in the 

estimate mean, variance and coefficient of variation 

across all the five random samples generated. 

 The difference between the two non – central 

hypergeometric distributions becomes higher when the 

odd ratio is closer to 1 
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 The two non – central hypergeometric distributions 

differ from the central hypergeometric when odd ratio 

is  closer to 1 

 The two non – central hypergeometric distributions 

approximately equal to each other when they have same 

mean than when they have same ratio 

 In univariate case, Fisher distribution are more 

consistent than Wallenius distribution while in 

multinomial case, both distributions perform 

differently. 
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