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ABSTRACT 

A deterministic mathematical model of cholera infection incorporating health education campaign, 

vaccination of susceptible humans, treatment of infected human and water sanitation is developed. It is 

shown that the solution of the model uniquely exist, it is positive and bounded in a certain region. The 

disease-free equilibrium (DFE) state of the model was determined and used to compute the basic 

reproduction number  as a threshold for effective disease management. The result from stability analysis 

for the disease-free equilibrium state (DFEs) shows that it is locally as well as globally asymptotically stable 

whenever the basic reproduction number  is less than unity ( ). The results obtained from the 

sensitivity index of   show that the control parameters of public health education campaign, vaccination of 

susceptible individuals, treatment of infected humans and water sanitation are crucial parameters to cholera 

management. Numerical simulations show that, expanded and improved vaccination among other 

interventions is crucial in decreasing cholera burden. Furthermore, from the numerical simulations and results 

it is recommended that a combination of mass and consistent public health education campaigns, expanded 

vaccination coverage, prompt treatment of infected individuals, with water sanitation, is vital to public health 

strategies in eradicating cholera infection and deaths in the shortest possible time.       
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INTRODUCTION 

Cholera is an acute diarrheal infection of the small intestine 

caused by a highly pathogenic gram-negative bacterium, 

Vibrio Cholerae. It is contracted through ingestion of food or 

water contaminated  with vibrio cholerae, and untreated 

individuals suffer severely from profuse watery diarrhea and 

vomiting. The infection can cause a rapid dehydration and 

electrolyte imbalance and can lead to death (Azman, 2013, Ali 

et al., 2015; World Health Organisation, 2019).  

Cholera transmission is closely linked to inadequate access to 

clean water and sanitation  facilities.  Typical at-risk areas 

include peri-urban slums, and camps for internally displaced 

persons or refugees, where minimum requirements of clean 

water and sanitation are not being met. The dynamics of 

cholera involve multiple interactions between the human host, 

the pathogen, and the environment which constitute to both 

direct human-to-human and indirect environment-to-human 

transmission pathways (WHO,2019). 

The number of cholera reported cases has continued to be high 

over the last few years with countries like Zimbabwe, 

Vietnam, Nigeria, Haiti and Zambia experiencing different 

cholera outbreaks (Chirambo et al., 2016, WHO, 2019). In 

2017, 34 countries were reportedly affected by cholera, of this 

number of countries, 9 [Yemen (over 1 million case}, 

Democratic Republic of Congo, Ethiopia, Haiti, Nigeria 

(Borno most especially), Somalia, South Sudan and Zambia 

(Lusaka)] faced very severe outbreaks. The outbreaks led to 

the infection of approximately 1,227,391 people, from which 

5,654 deaths were recorded (179,835 cases 3220 deaths from 

14 African countries and 13,818 cases and 169 deaths from 

Americas: (Haiti alone recorded 13,681 cases (Legros, 2019). 

Cholera, according to Tarh (2019) is still a problem in the 

world today. A huge population of deaths due to cholera 

disease still occur in Sub-Sharan Africa (Nigeria most 

especially), Asia, the Americas and other developing countries, 

where approximately 1.7 billion inhabitants of these areas are 

still served by faecally polluted water sources, while 2.4 

billion, lack the majorly required sanitary conditions of living 

(Shrivastava et al., 2019). This is a clear indication that cholera 

is still a major global public health challenge. 

Due to its huge impact on public health, and social and 

economic development, cholera has been the subject of 

extensive studies in clinical, experimental and theoretical fields 

(Mukandavire et al., 2011). 

Mathematical modeling is an important tool used in analyzing 

the dynamics of infectious disease. Several models have been 
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formulated and analysed to explain the dynamics of cholera 

transmission.  

Codeço (2001) proposed a deterministic model which, 

explicitly incorporated the role of the environment, i.e. Vibrio 

Cholerae concentration in the aquatic reservoir, into a regular 

 system to form a combination of human-environment 

 epidemiological model. 

Hartley et al, (2006) modified Codeco (2001)’s model to 

consist of a hyper infectious state of the pathogen based on 

laboratory observations. 

Mukandavire et al., (2011) simplified the model by Hartley et 

al., (2006) to study the 2008 – 2009 cholera outbreaks in 

Zimbabwe. Their model explicitly considered both “fast” 

human-to-human and “slow” environment-to-human 

transmission pathways. The results demonstrated that both 

modes of transmission contributed in sustaining cholera in 

Zimbabwe. 

Falaye et al., (2018) modified the cholera model proposed by 

Mukandavire et al., (2011) by incorporating three containment 

options such as vaccination, therapeutic treatment and water 

treatment but did not incorporate the role of public health 

education control strategy in their model. 

Education which is a key tool in disease-control, is often 

overlooked (Hargreaves et al., 2008). It requires investment in 

people rather than biomedical interactions, but has the 

potential to lead to enormous benefits for relatively low cost. 

Cholera – specific education includes advising people with 

symptoms to seek medical care promptly, and improving 

sanitation and hygienic practices (Einarsd’ottir and 

Gunnlaugssion, 2001). Thus it is instructive to carry out 

modeling studies that focus on non-biochemical intervention 

such as public health education. 

Therefore our objective is to modify the model by Falaye et al., 

(2018) by adding public health education parameter as a 

control strategy. So we have four types of controls: public 

health education campaign, vaccination, therapeutic treatment 

and water sanitation. We are able to rigorously analyse both 

the stability and sensitivity of the corresponding autonomous 

dynamic system. We will then use numerical simulation to 

explore various controls – both single and multiple control 

strategies.  

The rest of this paper is structured as follows. The model is 

designed in Section 2. The local and global asymptotic stability 

property of the model is investigated in Section 3. Sensitivity 

analysis of the basic reproduction number with respect to the 

model parameters is analysed in Section 4. The numerical 

simulation is carried out in Section 5 while Section 6 deals 

with discussion of results and concluding remarks in Section 7.    

 

MODEL FORMULATION 

We begin our model formulation by introducing the model by 

Falaye et al., (2018). 

Basic Assumptions of the model by Falaye et al., (2018) 

The following are the assumptions of the existing model by 

Falaye et al., (2018): 

(a) Introduction of vaccination to the susceptible at the 

rate  

(b) Applying therapeutic treatment to the infected at the 

rate of . 

(c) Water sanitation leading to the death of vibrios (V. 

cholera) at the rate  

The variables and parameters used in the existing model are 

defined in Table 1. 

 

Table 1: Variables and Parameters used in the model and their description 

Variable/Parameter   Description  

    The number of susceptible hosts at time t 

           The number of infectious human hosts at time t 

   The vibrio concentration in contaminated water at time t 

    The number of recovered human hosts at time t 

    Recruitment rate 

    Rate of injecting V. Cholerae from contaminated sources 

  Concentration of Vibrio Cholerae in food and water that yield 50% chance of catching cholera 

disease. 

    human –to- human transmission rate 

    Human death rate 

   Vaccination rate 

    Recovery rate of infected human 

    Disease induced death rate 
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   Treatment rate 

    The rate of shedding of V.Cholerae by humans through untreated wastes 

    Natural death rate of V.Cholerae 

    Water sanitation rate 

 

 

The Equations of the existing Model 

Using the above assumptions, variables and parameters, Falaye et al., (2018) derived the following model equations. 

                (1) 

   (2) 

      (3) 

     (4) 

With the non-negative initial conditions 

     (5) 

 

BASIC ASSUMPTION OF THE MODIFIED MODEL 

Here, we modify the cholera model proposed in Falaye et al., (2018)’s work by incorporating:  

(i) The role of public health education campaign at the rate of  in our model.  

 

From the above assumptions, definition of variables and parameters, the interactions and flow in the different compartments are 

as depicted in the schematic flow diagram below.  

 

 

        

 

 

        

 

 

                                                                                                                                                   

 

 

 

 

 

 

 

            

                            

 

 

 

Figure 1: Schematic description of the mathematical model 

 

Susceptible, Infected,  Pathogen and Recovered Population 

The population of susceptible humans  are recruited at the rate . It is reduced by infection contracted by the susceptible 

individuals either by ingesting vibrios from contaminated sources at a rate,  , or through human-to-human transmission at a 
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rate . The susceptible population is further reduced by natural death  at the rate  and after being vaccinated at the rate   . 

Putting all these definitions together leads to the following expression for the rate of change of the susceptible  population. 

 

 

Infectious humans are generated as a result of infection contracted by the susceptible individuals either by ingesting vibrios 

from contaminated sources at a rate  , or through human-to-human transmission at a rate . It is diminished by recovery 

from cholera infection at the rate , treatment  at the rate , disease-induced death  at the rate   and natural death at the rate , 

so that 

      

  

The pathogen population,  that is the vibrio concentration in contaminated water is increased through infectious individuals 

shedding vibrios cholerae at the rate . It is diminished by sanitation at the rate,  , and natural death  at the rate , so that 

           

 

The population of recovered humans  are generated through vaccination of susceptible individuals at the rate,  , recovery 

from cholera infection at the rate , treatment  at the rate  It is reduced by natural death   at the rate . Thus, 

     

 

MODEL EQUATIONS 

The above assumptions and formulations lead to the following system of ordinary differential equations: 

 

                (6) 

   (7) 

        (8) 

       (9) 

With the non-negative initial conditions 

       (10) 

 

Basic Properties of the Model Equations 

All model variables and parameters are assumed to be non-negatives for all  since the model monitors changes in the 

population. 

Existence of Solution 

Let   

  

and 

  

  

Then the system (1) – (4) becomes 
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Theorem 1. (Existence and uniqueness) The model (6) – (9) is continuous and satisfies the Cauchy-Lipschitz condition 

(Grinshaw, 1990). 

 

Proof: 

From equation (6) 

    (11) 

Then 

                   (12) 

We have that the function  and its partial derivative  are defined and continuous at all points  

Similarly from equation (7) 

   (13) 

Then 

                            (14) 

We have that the function  and its partial derivative  are defined and continuous at all points  

 

From equation (8) 

        (15) 

Then 

         (16) 

We have that the function  and its partial derivative  are defined and continuous at all points  

And from equation (9) 

       (17) 

Then 

          (18) 

We have that the function  and its partial derivative  are defined and continuous at all points  

Hence by the existence and uniqueness theorems, there exists a unique solution for   for all   

We move to show that the solution satisfies the Lipschitz condition. 

Using equation (11), we see that 

 

   

   

This implies that  where  is 

a Lipschitz constant. 

In a similar way, we obtained that the remaining variables satisfy the Lipschitz condition and thus,  a unique 

solution  
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Theorem 2. (Positivity) Given the non-negative initial conditions (10), then the solutions  are 

non-negative   

 

Proof: 

From equation (6), we deduce that   

  

          (19) 

 Where  

Integrating equation (19) gives 

  

Hence 

      (20) 

 

where  is the susceptible population at    

 The right hand side of (20) is always positive for  

In the same way we show that  is positive for all  

Using Birkhoff-Rota (1982)’s theorem, equation (7) can be solved for  as follows 

  

  

  

  

        (21) 

Here again, it is clear that the right hand side of the last inequality in (21) is always positive, hence  is positive  for all  

Similarly, it follows that ,  

that is 

  

Integrating with respect to  yields 

         (22) 

And 

  

          (23) 

From the results in (18), (19), (20) and (21), we conclude that whenever   the solutions of the systems (6) - (9) are 

positive. 

We  show in the following Theorem 3 that it is sufficient to consider the flow dynamics of the model  (6) – (9) in a certain region 

 

 

Theorem 3. (Boundedness) All solution of  of the model (6) – (9) are bounded and remain in the 

region. 

          (24) 

Where 
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     (25) 

And 

        (26) 

 

Proof: 

We begin by splitting the model (6) – (9) into human population  and the bacteria population, 

 Then we have that 

  

        

By integrating we obtain 

   

Where  is a constant. Initially at  

Therefore 

  

Thus 

  

Similarly 

   

And 

  

This shows that the human and bacteria population are biologically feasible in the region (25) and (26) respectively. Therefore 

the solution of model (6) – (9) with the initial condition in (10) is bounded in the invariant region (24)   

 

 

MODEL ANALYSIS 

Since the equation (6) – (9) are independent of the variable  it is suffice to consider the first three equations of system (6) – (9), 

our new system becomes 

                (27) 

   (28) 

        (29) 

 

Disease Free Equilibrium (DFE) State 

 The model (27) – (29) has a disease-free equilibrium (DFE) state by setting the right hand sides of equations (27) – (29) to zero 

and solving to obtain 

  =       (30) 

We will use the next generation operator method to compute the basic reproduction number  .  

 

Basic Reproduction Number R0 

The basic reproduction number or reproductive number of an infectious disease is the average number of secondary infections 

when one infected individual is introduced into a host population where everyone is susceptible (Diekmann et al., 1990; 

Diekmann et al., 2010). We use the next generation matrix approach to compute the Basic Reproduction Number . 

The basic reproduction number R0 is the spectral radius of the product matrix . That is, , (where  

denotes the spectral radius) 
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The associated non-negative matrix F, for the new infective terms and the non-singular M-matrix, V, for the remaining transfer 

terms at the DFE are respectively given by 

       (31) 

 

and 

 

      (32) 

 

      (33)  

             

      

  (34)  

            

It follows that the basic reproduction number, denoted by , is given by (where  denotes the spectral radius) 

     (35) 

 

Local Stability of Disease Free Equilibrium (DFE) State 

We investigate the local stability of the disease free (DFE) state by evaluating the associated Jacobian of equations  (27) – (29) at 

the DFE state. The Jacobian matrix J for the system (27) – (29), evaluated at the disease-free equilibrium, is given by 

 

   

    (36) 

 

Theorem 4: The DFEs of the model (27) – (29), given by ,  is locally asymptotically stable (LAS) if  and   is 

unstable if . 

 

Proof: 

It suffices to show that all the eigenvalues of the characteristic equation of the Jacobian matrix  have negative real parts. 

                      

The characteristic equation of the Jacobian matrix is given by  
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that is  

         (37) 

Then  

     

and 

 

           (38)   

Obviously, one eigenvalue is negative. Now equation (38) is the characteristic equation of the sub matrix    where 

 

    (39) 

If the trace of  and the det  then the eigenvalues are negative 

The trace of  =     (40) 

  

 

  (41) 

 ,  if   

 

and     (42) 

that is 
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that is, 

   (43)  

    

   

 if    

 
Thus, since all the eigenvalues of the characteristic equation (38) have negative real part, and the local asymptotically stability of 

 is proved. 

 

Global Stability of Stability (GAS) of Disease Free Equilibrium (DFE) State 

To ensure that the cholera infection eradication is independent of initial sizes of the population of the model, it is imperative to 

show that the DFE of the model (1) – (3), given by , is globally asymptotically stable.(GAS). To achieve this, we will use the 

following result introduced by (Castillo-Chevez et al, 2002). 

 

Lemma 5. (Castillo-Chevez et al., 2002) Let system (27) – (28) be written in the form: 

  

  

           (44) 

  

Where  denotes (its components) the number of uninfected individuals and  denotes (its components) the 

number of infected individuals including latent,  infectious, etc.;  denotes the disease free 

equilibrium state of the system (27) – (29). 

Also assume, the conditions  and  below 

   For   is globally asymptotically stable (GAS). 

     

where the jacobian  is an M-matrix (the off diagonal elements of   are non-negative) and  is the region 

where the model makes biological sense. 

Then the DFE state,  is globally stable provided that   

 

Theorem 6. The disease free equilibrium (DFE) state of the model (27) – (29) is globally asymptotic stable (GAS) if  

 

Proof:  

We only need to show that conditions  and  holds when    

In our system (1) – (3), since   and   then 

  

  

We then obtain  
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Which is clearly an M-matrix. Meanwhile  

  

  

Since   it is obvious that  

The conditions  and  have been met and therefore  is globally asymptotically stable. 

 

Existence and Stability of endemic equilibria 

Let   represent any arbitrary equilibrium of the system (27) – (29). The objective is to determine the 

number of possible endemic equilibria the system (27) – (29) can have when  

 

Theorem 7. The system (27) – (29) has a unique endemic equilibrium whenever  and no endemic equilibrium 

otherwise. 

Proof: 

Solving the model (27) – (29) at the steady-state gives 

         (45) 

  

      (46) 

Substituting equations (45) and (46) into equation (27) gives 

       (47) 

where 

  

  

  

  

The endemic equilibrium of the system (27) – (29) exists if the roots of equation (47) are real and positive. We use the Descartes 

rule of sign (Wang, 2004) to determine if positive roots exist. Since the sign of  is negative and  is positive for  it 

follows that the model has a unique endemic equilibrium whenever   

 

Sensitivity analysis of  with respect to the control parameters 

We carried out sensitivity analysis on the basis of the model parameter (Table 1) by the normalized forward sensitivity indices 

(Chitnis et al., 2006; Wu et al., 2013) using the following formula: 

 

where  denotes the model parameter. 

 The sensitivity index of  with respect to each parameter is given in Table 2.  
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Table 2. Sensitivity indices of  

 

Parameter                       Description                                                                    Sensitivity indices 

 

         Recruitment rate                                                                                       1.0000 

        Rate of injecting V. Cholerae from contaminated sources                       1.0000 

                   Concentration of Vibrio Cholerae in food and water that    

                         yield 50% chance of catching cholera disease.                                         -1.0000 

      human –to- human transmission rate                                                                   1.0000 

       Public health education campaign rate                                                    -0.0205 

       Human death rate                                                                                                -0.9630 

      Vaccination rate                                                                                        -0.6154 

       Recovery rate of infected human                                                             -1.5504 

       Disease induced death rate                                                                      -0.1008 

      Treatment rate                                                                                           -0.0775 

       The rate of shedding of V.Cholerae by humans through untreated wastes         1.0000 

       Natural death rate of V.Cholerae                                                                        -0.9706 

        Water sanitation rate                                                                                -0.0294 

 

It is shown from Table 2, that the threshold , is sensitive proportionally to the changes in the parameter values of    

and  It implies that an increase (or decrease) in the value of each of the parameter in this case will lead to an increase (or 

decrease) in  of the model (1) – (3). On the contrary, the threshold,  is sensitive inversely proportional to the variation in 

the values of         and . In other words, an increase (or decrease) in the value of each of the parameter in 

this case leads to a corresponding decrease (or increase) in .   

 

 

Numerical Simulations 

Numerical simulations for the model (1) - (4) are carried out, using the parameters in Table 2, unless otherwise stated, to illustrate 

some of the analytical results established in this study. 

The numerical simulations were conducted using the Runge-Kuta method (RK4) embedded in MATLAB.  

 

Baseline Parameter Values 

We show a baseline table for the parameters used in this model. The sources are also stated. 

 

Table 3: Baseline Parameter values for equations (1) – (3) 

Parameters Baseline value  Reference 

         (Hartley et al., 2006) 

        (Falaye et al., 2018) 

      (Codeco, 2001) 

       (Hartley et al., 2006) 

        Assumed 

        (Falaye et al., 2018) 

       Assumed 

        (Hartley et al., 2006) 

       (Wang et al., 2011) 
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       Assumed 

       (Wang et al., 2011) 

       (Misra et al., (2011) 

       Assumed 

   

 

 

 

Figure 2: Graph of Susceptible and Infected individual in the population without control (   =   

(presence of the bacteria vibrio cholera),  
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Figure 3: Effect of Vaccination (   of Susceptible individual without other control measures  

 .  

 

Figure 4: Effect of treatment   =  on infected individuals without other control measures 

  = ,  
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Figure 5: Effect of using different sanitation parameter values ( ) without other control 

measures (   =   

 

 

Figure 6: Effect of Public health education  on infected individuals without other control measures 

(   =   
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Figure 7: Graph of Susceptible and Infected individual in the population with weak controls (presence of the bacteria vibrio 

cholera)  . 

 
Figure 8: Graph of Susceptible and Infected individual in the population with strong controls (presence of the bacteria vibrio 

cholera),  . 

 

DISCUSSION OF RESULTS 

The existence and uniqueness of the solution of the model was 

investigated using Theorem 1 and Theorem 2. Further 

qualitative analysis of the model shows that the solution of the 

model is bounded and positively invariant. The basic 

reproduction number of the model  was computed using 

the next generation method given by 
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  as a 

threhold in the study of cholera infection both for predicting its 

outbreak and for evaluating its control strategies.. 

 

Stability analysis of the disease-free equilibrium state, DFEs, 

was explored using linearization method and taking  as a 

threshold parameter. The results found in Theorem 4 and 

Lemma 5 shows that the disease-free equilibrium (DFE) state 

is locally as well as globally asympotically stable if the basic 

reproduction number is less than unity. The implication is that, 

cholera can be eliminated from the population if the initial 

sizes of the populations of the model are in the basin of 

attraction of the DFE, ( ) (Theorem 4). The results from 

Lemma 5 shows the DFE, ( ) is globally asympotically 

stable. This implies that elimination of cholera is independent 

of the initial sizes of the population.  

 

Sensitivity analysis of  with respect to the model 

parameters was carried out by the normalized forward 

sensitivity indices. The results of the sensitivity index of , 

is given in Table 2. It is shown from Table 2, that the threshold 

, is sensitive proportionally to the changes in the parameter 

values of    and  It implies that an increase (or 

decrease) in the value of each of the parameter in this case will 

lead to an increase (or decrease) in  of the model (1) – (3). 

On the contrary, the threshold,  is sensitive inversely 

proportional to the variation in the values of      

   and . In other words, an increase (or decrease) in 

the value of each of the parameter in this case leads to a 

corresponding decrease (or increase) in . With reference to 

the four control parameters, vaccination rate with sensitivity 

index of   is the most sensitive control 

parameter for , followed by treatment, sanitation and public 

health education campaign. These control parameters have an 

influence of minimizing cholera disease burden in the 

population as their values increases.  

 

Various numerical simulations are carried out to assess the 

feasibility of eradication of cholera infection using the baseline 

parameter values in Table 3 and depicted in Figure 2 – Figure 

8.  

 

The simulation in Figure 6 shows prevalence of cholera 

infection in the human and pathogen population in the absence 

of any intervention ( . 

With the basic reproduction number  in each case, 

shows convergence of the solution profile to the disease-free 

equilibrium (DFE). This is consistent with Theorem 4 and 

Lemma 5. Thus efforts geared at decreasing the infection 

transmission rate will play a significant role in eradicating 

cholera infection in the population.   

 

The effect of single intervention strategy is displayed in Figure 

3 – Figure 6. The burden of cholera infection in Figure 3 

shows very significant decreasing cholera infection with 

increasing vaccination of susceptible individuals 

( , while the infection transmission 

remain constant (  Figure 4 

display a substantive decline of cholera burden by increasing 

or improving treatment rate (  

Figure 5 also show a decreasing number of infected human by 

increasing the sanitation of contaminated water 

( , while Figure 6 a decreasing cholera 

infection with increasing, expanded and consistent public 

health education campaigns. 

 

Figure 7 and Figure 8 reveals the impact of combining the four 

intervention strategies with weak control and strong control 

measures. With a combination of weak controls 

(  

Figure 7 display a decreasing cholera burden in the population. 

With the basic reproduction number  in each case, it 

also shows convergence of the solution profile to the disease-

free equilibrium (DFE). This is consistent with Theorem 4 and 

Lemma 5.   

 

With strong controls 

(  Figure 8 

further shows a decreasing cholera infection in the population. 

It further reveals, with the basic reproduction number 

 in each case, it also shows a rapid convergence of 

the solution profile to the disease-free equilibrium (DFE) . 

Thus we can deduce from Figure 8 that with a combination of  

mass and consistent public health education campaigns, 

expanded vaccination coverage, prompt treatment of infected 

individuals, with water sanitation cholera infection can be 

eliminated from the population. 

 

CONCLUSION 

A deterministic epidemiological model of a cholera infection 

dynamics was presented. This study extended the model by 

Falaye et al, (2018) by incorporating four types of intervention 

strategies based on public health education campaigns, 

vaccination of susceptible human, treatment of infected 

humans and water sanitation. 

 

The analysis of the model shows that there exist a unique 

solution that bounded and positively-invariant. The disease-

free equilibrium (DFE) state of the model was determined and 

used to compute the basic reproduction number  as a 

threhold in the study of cholera infection both for predicting its 

outbreak and for evaluating its control strategies. Stability 

analysis for the disease-free equilibrium state (DFEs) was 

carried out and the results shows that it is locally as well as 

globally asymptotically stable whenever the basic reproduction 

number   
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Sensitivity analysis of  with respect to the model 

parameters was carried out. The results of the sensitivity index 

of ,shows that the threshold , is sensitive proportionally 

to the changes in the parameter values of    and  On 

the contrary, the threshold,  is sensitive inversely 

proportional to the variation in the values of      

   and . In other words, an increase (or decrease) in 

the value of each of the parameter in this case leads to a 

corresponding decrease (or increase) in . 

 

Numerical simulations of the model show that the infection 

transmission rate will play a significant role in eradicating 

cholera infection in the population. The effect of single 

intervention strategy also revealed that each of the control 

measures is vital in cholera eradication. It was further deduced 

that with a combination of mass and consistent public health 

education campaigns, expanded vaccination coverage, prompt 

treatment of infected individuals, with water sanitation cholera 

infection can be eliminated from the population in faster than 

single control strategy. 
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