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ABSTRACT 

Statistical distributions already in existence are not the most appropriate model that adequately describes 

real-life data such as those obtained from experimental investigations. Therefore, there are needs to come 

up with their extended forms to give substitutive adaptable models. By adopting the method of Transformed-

Transformer family of distributions, an extension of Exponentiated Rayleigh distribution titled Gompertz- 

Exponentiated Rayleigh (GOM-ER) distribution was proposed and proved to be valid. Some properties of 

the new distribution including random number generator, quartiles, distribution of smallest and largest 

order statistics, reliability function, hazard rate function, cumulative or integrated hazard function, odds 

function, non-central moments, moment generating function, mean, variance and entropy measures were 

derived.  Using the methods of maximum likelihood and maximum product of spacing, the four unknown 

parameters were estimated.  Shapes of the hazard function depicts that GOM-ER is a distribution that is 

strictly increasing while those of the PDF depicts that GOM-ER can be skewed or symmetrical. Two datasets 

were fitted to determine the flexibility of GOM-ER. Simulation study evaluates the consistency, accuracy 

and unbiasedness of the GOM-ER parameter estimates obtained from the two frequentist estimation 

methods adopted. 

Keywords: Gompertz-Exponentiated Rayleigh; Probability Distribution; Order statistics; Entropy 

measures; Maximum Product of Spacing. 

 

 

INTRODUCTION  

Long time ago, probability distributions are known to be used 

by researchers to fit any given data adequately.  As time goes 

by, data became large and tend to exhibit additional properties 

that are difficult to capture which leads to a problem in 

flexibility and improved inferences. These problems drew the 

attention of researchers in inferential statistics, after which 

they came up with an idea of generalizing and extending 

existing distributions with the aim of procuring distributions 

having additional tails features and different failure rates, and 

as a result makes them more flexible and capable of capturing 

real-world data in different areas. 

Dating back to 19th century, several methods of defining 

probability distributions have been proposed , some of which 

include; ”Method of transformation” by (Johnson, 1949), 

”Method of Generating Skewed Distributions” by (Azzalini, 

1985), modified by (Azzalini, 1986), ”the Method of adding 

parameters” by (Mudholkar and Srivastava, 1993) and 

(Marshal and Olkin), ”Beta-Generated” by (Eugene et al., 

2002) and (Jones, 2009), 

”Kumaraswamy-Generated” by (Cordeiro and de Castro, 2011) 

and lastly the modern and most used method in the recent decade 

”Transformed- Transformer(T-X)” by (Alzaatreh et al., 2013) 

modified to ”Exponentiated (T-X)” by (Alzaghal et al., 2013). 

These methods expand families of distributions for more 

flexibility and applications. 

Adopting the method of ”Transformed- Transformer(T-X)”, a 

handful families of distributions namely “Weibull-G” by 

(Bourgiugnon et al., 2014) “Kumaraswamy-G” by (Cordeiro 

and De Castro, 2011)” “The generalized transmuted-G” by 

(Nofal et al., 2017), “Gompertz-G” by (Alizadeh et al., 2017), 

“The Inverse Lomax-G” by (Falgore and Doguwa., 2020) 

among many others have been developed. 

 

Exponentiated Rayleigh (ER) also known as Generalized 

Rayleigh which is a special case of Exponentiated Weibull by 

(Mudholkar and Srivastava, 1993) was introduced by (Vod˘a, 

1976).  It have some properties of gamma with two 

parameters, (Weibull, 1939) and Generalized Exponential 

(Gupta and Kundu, 1999) distributions.  To mention few 

studies on ER continuous distribution: Pathak and Chaturvedi, 

(2014) derived the reliability function; Kundu and Raqab, 

(2005) estimated the parameters using different frequentist 

approach while (Madi and Raqab, 2009) used Bayesian 

approach; Abd-Elfattah, (2011) studied the goodness of fit 

tests; centered on Unified Hybrid and generalized Type-II 

hybrid Censored Data, (Mahmoud and Ghazal, (2017) and  

(Ghazal and Hasaballah, 2017) respectively utilized the 

methods of maximum likelihood, Bayes and percentile 

bootstrap in estimating the unknown parameters. 

Areas including communication theory, medical imaging 

science and engineering among others benefits from this 

distribution. More so, compared to other widely used classical 

distributions, lesser source of materials were found on ER 

distribution. 

 

The Maximum Likelihood Estimation (MLE) is the most 

frequently used method of estimation because of its desirable 

properties. The method, however have it setbacks making the 

estimators fail sometimes. Maximum Product of Spacing 

Estimation (MPSE), introduced by (Cheng and Amin, 1983) is 

likely to serve as a competitor to MLE in cases where the 
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estimates from MLE breaks down. The estimators obtained by 

maximizing the geometric mean of spacings between 

cumulative distribution function in close observations are 

consistent and as efficient as MLEs. 

Ranneby (1984) noted that “The ML estimates perfectly the 

parameters of discrete distributions if the contribution to the 

likelihood function is bounded from above but not for 

compound continuous distributions”. In addition, the 

consistency of MPS was studied and shown that it works in 

place of MLEs. 

Compound continuous distributions by (Sen et al., 2019) and 

(Al-Mofleh and Afify, 2019) among many adopted MPS 

along with other frequentist methods to estimates the 

distribution’s parameters. The two studies found MPS to be 

consistent and efficient. 

 

Numerous modified distributions using Gompertz-G family 

have been established by a number of researchers, yet none was 

found on Gompertz-Exponentiated Rayleigh distribution. For 

this reason, we propose a four parameter lifetime distribution 

called Gompertz-Exponentiated Rayleigh (GOM-ER) 

distribution. The fact that few extensions of Exponentiated 

Rayleigh exist in literature also served as motivation for this 

study. More so, in addition to the method of Maximum 

likelihood frequently used in estimation of parameters, a 

competitive method known as MPS is explored. 

 

MATERIALS AND METHOD 

Gompertz-G family and Exponentiated Rayleigh 

distribution 

Gompertz-G family 

Alizaadeh et al., (2017) introduced a new generator of 

continuous distributions by adding two shape parameters to any 

given baseline distribution and was named Gompertz-G. The 

cumulative distribution function (CDF) of Gompertz-G is 

given as: 

𝐹(𝑥) = ∫ 𝛽𝑒𝛼𝑥𝑒−
𝛽
𝛼

(𝑒𝛼𝑥−1)
𝑑𝑥                                                                     

− log[1−𝐺(𝑥;𝜖)]

0

 

= 1 − 𝑒
𝛽
𝛼

{1−[1−𝐺(𝑥;𝜖)]−𝛼}
                                                                                        (1) 

 

where 𝐺(𝑥; 𝜖) is the cumulative distribution of the baseline distribution depending on the parameter space 𝜖 and 𝛼 > 0, 𝛽 > 0  are 

the additional positive shape parameters. 

 

The probability density function (PDF) was obtained from (1) as: 

𝑓(𝑥;  𝛼, 𝛽, 𝜖) =  𝛽𝑔(𝑥; 𝜖)[1 − 𝐺(𝑥; 𝜖)]−𝛼−1𝑒
𝛽
𝛼

{1−[1−𝐺(𝑥;𝜖)]−𝛼}
                    (2) 

 

Exponentiated Rayleigh (ER) is a continuous distribution with scale and shape parameters studied by (Vod˘a, 1976). The CDF 

and PDF are respectively derived as: 

𝐺(𝑥, 𝜎, 𝛿) =  [1 − 𝑒−(𝜎𝑥)2
]
𝛿
                                                                  (3)   

𝑔(𝑥, 𝜎, 𝛿) =  2𝛿𝜎2𝑥𝑒−(𝜎𝑥)2
[1 − 𝑒−(𝜎𝑥)2

]
𝛿−1

                                                                  (4) 

      𝑥, 𝛿, 𝜎 > 0. 

 

It is important to note that ER distribution satisfy the following conditions provided in (Alzaatreh et al., 2013) when 𝑊[𝐺(𝑥)] was 

set − log[1 − 𝐺(𝑥)].  
(i) 𝑊 [𝐺(𝑥)]  ∈  [𝑎, 𝑏],  
(ii) 𝑊 [𝐺(𝑥)] is differentiable and monotonically non decreasing, and  

(iii) 𝑊 [𝐺(𝑥)]  →  𝑎 as 𝑥 →  −∞ and 𝑊 [𝐺(𝑥)]  →  𝑏 as 𝑥 →  ∞ 

where 𝑊[𝐺(𝑥)] is a function of the CDF of x.  

 

 

Gompertz-Exponentiated Rayleigh (GOM-ER) distribution 

To obtain the CDF and PDF of GOM-ER distribution, equations (3) and (4) are substituted respectively into equation (1) and 

equation (2). These give:  

                                  𝐹(𝑥; 𝛼, 𝛽, 𝜎, 𝛿) = 1 − 𝑒

𝛽

𝛼
(1−{1− [1− 𝑒−(𝜎𝑥)2]

𝛿
}
−𝛼

)
                                     (5)           

and  

𝑓(𝑥; 𝛼, 𝛽, 𝜎, 𝛿) =  2 𝛽 𝛿 𝜎2 𝑥 𝑒−(𝜎𝑥)2
 [1 − 𝑒−(𝜎𝑥)2

]
𝛿−1

 {1 − [1 − 𝑒−(𝜎𝑥)2
]
𝛿−1

}
−𝛼−1

𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)
                         (6) 

where 𝛼, 𝛽, 𝛿 >  0 are shape parameters while 𝜎 >  0 is a scale parameter and 𝑥 >  0 . 

Note that, if the exponentiated parameter, 𝛿 = 1 and 𝜎 =  √
𝜃

2
, then equation (6) reduces to the PDF of Gompertz-Rayleigh by 

(Mohammed et al., 2020). 

Useful Representation 

The CDF and PDF of GOM-ER distribution can be represented in simpler form as follows: 

By applying the power series expansion:  
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𝑒𝑥 =  ∑
𝑥𝑖

𝑏1!

∞

𝑏1

 

 

and generalized binomial series:  

(1 − 𝑚)𝑏 =  ∑ ( 𝑏
𝑏2

)−1𝑏2𝑚𝑏2∞
𝑏2=1   

 (1 − 𝑚)−𝑏 = ∑ (𝑏+𝑏3−1
𝑏3

)𝑚𝑏3∞
𝑏3=0  

where  
|𝑚| < 1 and 𝑏𝑖 > 0  

gives the simplified densities as 

𝐹(𝑥;  𝛼, 𝛽, 𝜎, 𝛿) = 1 − ∑ ∑ ∑ ∑
1

𝑏1!

∞

𝑏4=0

∞

𝑏3=0

∞

𝑏1=0

∞

𝑏1=0

(
𝛽

𝛼
)
𝑏1

(
𝑏1

𝑏2
) (−1)𝑏2+𝑏4 (

𝛼𝑏1 + 𝑏3 − 1

𝑏3
) (

𝛿𝑏3

𝑏4
) 𝑒−𝑏4(𝜎𝑥)2

                (7) 

𝑓(𝑥;  𝛼, 𝛽, 𝜎, 𝛿)  =  2 𝛽 𝛿 𝜎2 𝑥 ∑ ∑ ∑ ∑ Ψ𝑏1𝑏2𝑏3𝑏4

∞

𝑏4=0

∞

𝑏3=0

∞

𝑏1=0

∞

𝑏1=0

𝑒−(𝜎𝑥)2(1+𝑏4)                                                                     (8) 

where 

Ψ𝑏1𝑏2𝑏3𝑏4
= (

𝛽

𝛼
)
𝑏1

(
𝑏1

𝑏2
) (−1)𝑏2+𝑏4 (

𝛼(𝑏2 + 1) + 𝑏3

𝑏3
) (

𝛿(𝑏3 + 1) − 1

𝑏4
) 

 

 

 

 

Validity of the Gompertz-Exponentiated Rayleigh distribution 

For a PDF f(x) to be valid, it is expected to satisfy  

 

∫ 𝑓(𝑥)𝑑𝑥
∞

−∞

= 1 

thus 

 

∫ 𝑓(𝑥)𝑑𝑥
∞

−∞

 

= ∫  2 𝛽 𝛿 𝜎2 𝑥 𝑒−(𝜎𝑥)2  [1 − 𝑒−(𝜎𝑥)2]
𝛿−1

 {1 − [1 − 𝑒−(𝜎𝑥)2
]
𝛿−1

}
−𝛼−1

𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)
𝑑𝑥

∞

0

 

let 

𝑢 =  
𝛽

𝛼
(1 − {1 − [1 − 𝑒−(𝜎𝑥)2

]
𝛿
}
−𝛼

) 

then 
𝑑𝑢

𝑑𝑥
=  

𝛽

𝛼
 . 𝛼 . {1 − [1 − 𝑒−(𝜎𝑥)2

]
𝛿
}
−𝛼−1

 . −𝛿 . [1 − 𝑒−(𝜎𝑥)2
]
𝛿−1

 . −𝑒−(𝜎𝑥)2
 . −2(𝜎𝑥). 𝜎 

Now  

as 𝑥 → 0, 𝑢 → 0 and as 𝑥 → ∞, 𝑢 → −∞ 

∫ 𝑒−𝑢  𝑑𝑢
0

−∞

 

= 1 
therefore, GOM-ER is proved to be a valid probability distribution. 

Possible shapes of GOM-ER 

At different parameter values, the shapes of GOM-ER are depicted in the following figures. 
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FIGURE 1: CDF OF GOM-ER 
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FIGURE 2: PDF OF GOM-ER 
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FIGURE 3: HAZARD FUNCTION OF GOM-ER 
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FIGURE 4: RELIABILITY FUNCTION OF GOM-ER 

The plots showed that CDF of GOM-ER for different parameters values converges to one implying a valid probability distribution. 

The PDF is skewed and also symmetrical deducing it applications on different datasets. However, GOM-ER had hazard function that 

is strictly increasing for all parameter values. 

 

Basic mathematical properties of GOM-ER distribution 

Random number generator (RNG) and quartiles 

Given any CDF, F(x) the RNG also referred to as quartile function Q (u) can be obtained using: 
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                                                         𝑄(𝑢) = 𝐹−1(𝑢)   0 < 𝑢 < 1 
Hence the RNG was obtained as follows: 

Let  

                                                              𝑈 = 𝐹(𝑥;  𝛼, 𝛽, 𝜎, 𝛿)                                                        (9) 

then 

                                                𝑈 =  1 − 𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)
                                           (10) 

Solving for x results to 

                             𝑥 =  

[− log𝑒 (1 − {1 − [1 −
𝛼
𝛽

𝑙𝑜𝑔𝑒(1 − 𝑈)]
−

1
𝛼
}

1
𝛿

)]

1
2

                   

𝜎
          (11) 

therefore 

𝑄(𝑢) =  

[− log𝑒(1−{1−[1−
𝛼

𝛽
𝑙𝑜𝑔𝑒(1−𝑈)]

−
1
𝛼}

1
𝛿

)]

1
2

𝜎
   0 < 𝑢 < 1         (12) 

Substituting u = 0.5, 0.50 and 0.75, we obtained the 1st, 2nd (median) and 3rd quartiles of the GOM-ER respectively as; 

1st quartile, 𝑄(0.25) =  

[− log𝑒(1−{1−[1−
𝛼

𝛽
𝑙𝑜𝑔𝑒(0.75)]

−
1
𝛼
}

1
𝛿

)]

1
2

𝜎
     (13) 

2nd quartile, 𝑄(0.50) =  

[− log𝑒(1−{1−[1−
𝛼

𝛽
𝑙𝑜𝑔𝑒(0.50)]

−
1
𝛼}

1
𝛿

)]

1
2

𝜎
   (14) 

3rd quartile, 𝑄(0.75) =  

[− log𝑒(1−{1−[1−
𝛼

𝛽
𝑙𝑜𝑔𝑒(0.25)]

−
1
𝛼}

1
𝛿

)]

1
2

𝜎
   (15) 

Order statistic of the GOM-ER distribution 

Given a distribution from whom a random sample of independent characteristics 𝑋1, 𝑋2, … , 𝑋𝑛was drawn. This sample can be 

represented in an ordered form as: notation 𝑋(1,𝑛) ≤ 𝑋(2,𝑛) ≤ · · · ≤ 𝑋(𝑛,𝑛))or 𝑋(1) ≤ 𝑋(2) ≤ · · · ≤ 𝑋(𝑛). 𝑋(1) 
representing the 1𝑠𝑡  order is considered the minimum , 𝑋(2)) representing the 2𝑛𝑑 

order, the second minimum while the 𝑛𝑡ℎ 

order statistics, 𝑋(𝑛), is the maximum. 

PDF of the 𝒌𝒕𝒉 order statistics of GOM-ER distribution 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 obtained from GOM-ER distribution is ordered 𝑋(1) ≤ 𝑋(2) ≤ …  ≤ 𝑋(𝑛) as the order statistic, then the PDF, 

𝑓(𝑘,𝑛)(𝑥), the kth order statistic is expressed as: 

𝑓(𝑘,𝑛)(𝑥) =  
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
 𝑓(𝑥) × 𝐹(𝑥)𝑘−1 × [1 − 𝐹(𝑥)]𝑛−𝑘                            (16) 

Where of F(x) and f(x) are the CDF and PDF of the GOM-ER distribution. 

For easier simplifications, the binomial expansion of [1 − 𝐹(𝑥)]𝑛−𝑘 was used as: 

[1 − 𝐹(𝑥)]𝑛−𝑘 = ∑ (
𝑛 − 𝑘

𝑏5
) (−1)𝑏5[𝐹(𝑥)]𝑏5                                                                          (17)

𝑛−𝑘

𝑏5

 

Substituting (17) and (16) yields 

𝑓(𝑘,𝑛)(𝑥) =  ∑
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
 𝑓(𝑥) .  (

𝑛 − 𝑘

𝑏5
) (−1)𝑏5[𝐹(𝑥)]𝑏5+𝑘−1                            (18)

∞

𝑏5

 

Again, substituting (5) and (6) into (18), gives the kth order statistic of the GOM-ER distribution as  
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𝑓(𝑘,𝑛)(𝑥) =  ∑
𝑛! (−1)𝑏5

(𝑘 − 1)! (𝑛 − 𝑘 − 𝑏5)! 𝑏5!
  2 𝛽 𝛿 𝜎2 𝑥 𝑒−(𝜎𝑥)2  [1 − 𝑒−(𝜎𝑥)2]

𝛿−1
  {1

∞

𝑏5

− [1 − 𝑒−(𝜎𝑥)2]
𝛿−1

}
−𝛼−1

𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)
 [1

− 𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)
]

𝑏5+𝑘−1

                                                               (19) 

PDF of the smallest and largest order statistics 

Substituting k=1 into (19) gives the PDF of minimum or 1st order statistic as: 

 

𝑓(1,𝑛)(𝑥) =  ∑
𝑛! (−1)𝑏5

 (𝑛 − 1 − 𝑏5)! 𝑏5!
  2 𝛽 𝛿 𝜎2 𝑥 𝑒−(𝜎𝑥)2

 [1 − 𝑒−(𝜎𝑥)2
]
𝛿−1

  {1

∞

𝑏5=0

− [1 − 𝑒−(𝜎𝑥)2
]
𝛿−1

}
−𝛼−1

𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)
 [1

− 𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)
]

𝑏5

                                                                       (20) 

Similarly, the nth order or the maximum order statistic was obtained by substituting k=n as 

 

𝑓(𝑛,𝑛)(𝑥) =  ∑
𝑛! (−1)𝑏5

(𝑛 − 1)! (−𝑏5)! 𝑏5!
  2 𝛽 𝛿 𝜎2 𝑥 𝑒−(𝜎𝑥)2  [1 − 𝑒−(𝜎𝑥)2]

𝛿−1
  {1

∞

𝑏5

− [1 − 𝑒−(𝜎𝑥)2]
𝛿−1

}
−𝛼−1

𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)
 [1

− 𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)
]

𝑏5+𝑛−1

                                                    (21) 

Reliability Analysis of GOM-ER distribution 

Suppose a random variable X follows GOM-ER distribution with PDF, f(x) and CDF, F(x); the following properties were 

attained. 

 

Reliability function 

Having an event or a system, the probability that the event or system fail or die beyond a given time, say x is known as the 

reliability or survival function S(x). It is derived using the relation: 

𝑃(𝑋 > 𝑥) = 𝑆(𝑥)               𝑥 > 0   
this implies 

𝑆(𝑥) = 1 − 𝐹(𝑥)                                                       

                                             =   𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)
                                                           (22)   

Hazard function (hf) 

Unlike the survival function which is a probability, the hazard function is a conditional density expressed as the ratio of PDF and 

survival function. It is also referred to as failure rate and is derived as follows: 

ℎ(𝑥) =  
𝑓(𝑥)

𝑆(𝑥)
 

= 
2 𝛽 𝛿 𝜎2 𝑥 𝑒−(𝜎𝑥)2  [1 − 𝑒−(𝜎𝑥)2]

𝛿−1
 {1 − [1 − 𝑒−(𝜎𝑥)2]

𝛿−1
}
−𝛼−1

𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)

𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)

 

 

       =  2 𝛽 𝛿 𝜎2 𝑥 𝑒−(𝜎𝑥)2  [1 − 𝑒−(𝜎𝑥)2]
𝛿−1

                                                                                            (23)        

Cumulative or integrated hazard function 
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This is a risk function and not a probability. The cumulative hazard function of GOM-ER is derived as follows: 

 

      𝐻(𝑥) =  ∫ ℎ(𝑥)𝑑𝑥                                                                                                                              
𝑡

0

 

= ∫ 2 𝛽 𝛿 𝜎2 𝑥 𝑒−(𝜎𝑥)2
 [1 − 𝑒−(𝜎𝑥)2

]
𝛿−1

 {1 − [1 − 𝑒−(𝜎𝑥)2]
𝛿−1

}
−𝛼−1

𝑑𝑥
𝑡

0

 

=  2 𝛽 𝛿 𝜎2 ∫  𝑥 𝑒−(𝜎𝑥)2
 [1 − 𝑒−(𝜎𝑥)2

]
𝛿−1

 {1 − [1 − 𝑒−(𝜎𝑥)2
]
𝛿−1

}
−𝛼−1

𝑑𝑥
𝑡

0

 

Adopting integration by substitution 

Let 𝑃 = 1 − [1 − 𝑒−(𝜎𝑥)2
]
𝛿
then  

𝑑𝑃

𝑑𝑥
= −𝛿 . [1 − 𝑒−(𝜎𝑥)2]

𝛿−1
. − 𝑒−(𝜎𝑥)2 . −2𝜎2𝑥 

Now, as 𝑥 → 0, 𝑃 → 1 and as  𝑥 → 𝑡, 𝑃 → 1 − [1 − 𝑒−(𝜎𝑡)2]
𝛿

 

= −𝛽 ∫ 𝑃−𝛼−1𝑑𝑃
1− [1− 𝑒−(𝜎𝑡)2]

𝛿

1

 

=  −𝛽 [
𝑃−𝛼

−𝛼
]
1

[1− [1− 𝑒−(𝜎𝑡)2]
𝛿
]

 

= 
𝛽

𝛼
({1 − [1 − 𝑒−(𝜎𝑡)2]

𝛿
}
−𝛼

)                                                                                        (24) 

 

Odds function 

This is the odds of the probability that the failure of a unit is bound to happen at a given time, say x, to the probability that it is 

bound to survive beyond that time. That is; 

𝑂(𝑥) =  
𝐹(𝑥)

𝑆(𝑥)
                                                                                                                  

=  
1 − 𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)

𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)

                                                                                       (25) 

Moment and Moment generating function  

rth non-central moment 

This is an important property of any distribution and used in obtaining some measures comprising shapes, dispersion, central 

tendencies and so on. 

Suppose a random variable X follows GOM-ER distribution, the rth non-central moment, 𝜇𝑟
′ , can be obtained using the expression 

 

𝜇𝑟
′ = 𝐸(𝑋𝑟)                   

= ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥
∞

−∞

 

= ∫ 𝑥𝑟2 𝛽 𝛿 𝜎2 𝑥 𝑒−(𝜎𝑥)2  [1 − 𝑒−(𝜎𝑥)2]
𝛿−1

 {1 − [1 − 𝑒−(𝜎𝑥)2]
𝛿−1

}
−𝛼−1

𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)
 𝑑𝑥

∞

−∞

 

Recalling the useful representation 

𝜇𝑟
′ = ∫ 𝑥𝑟2 𝛽 𝛿 𝜎2 𝑥 ∑ ∑ ∑ ∑ Ψ𝑏1𝑏2𝑏3𝑏4

∞

𝑏4=0

∞

𝑏3=0

∞

𝑏1=0

∞

𝑏1=0

𝑒−(𝜎𝑥)2(1+𝑏4)𝑑𝑥
∞

0

 

 

= 2 𝛽 𝛿 𝜎2 ∑ ∑ ∑ ∑ Ψ𝑏1𝑏2𝑏3𝑏4

∞

𝑏4=0

∞

𝑏3=0

∞

𝑏1=0

∞

𝑏1=0

∫ 𝑥𝑟+1𝑑𝑥
∞

0

𝑒−(𝜎𝑥)2(1+𝑏4)𝑑𝑥 

Where 

Ψ𝑏1𝑏2𝑏3𝑏4
= (

𝛽

𝛼
)
𝑏1

(
𝑏1

𝑏2
) (−1)𝑏2+𝑏4 (

𝛼(𝑏2 + 1) + 𝑏3

𝑏3
) (

𝛿(𝑏3 + 1) − 1

𝑏4
) 

let 𝑞 =  𝜎2𝑥2(1 + 𝑏4),          then 
𝑑𝑞

𝑑𝑥
= 2𝜎2𝑥 (1 + 𝑏4)𝑑𝑥   and         𝑥 =  

𝑞
1
2

𝜎 (1+𝑏4)
1
2

 

therefore 

𝜇𝑟
′ = 

2𝛽𝛿𝜎2

𝜎
∑ ∑ ∑ ∑ Ψ𝑏1𝑏2𝑏3𝑏4

∞

𝑏4=0

∞

𝑏3=0

∞

𝑏1=0

∞

𝑏1=0

∫ (
𝑞

1
2

𝜎(1 + 𝑏4)
1
2

)

𝑟+1

𝑒−q  .  
𝑑𝑚

2𝜎2. (1 + 𝑏4)𝑥

∞

0
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further substitutions and simplifications yield:  

𝛽𝛿 ∑ ∑ ∑ ∑ Ψ𝑏1𝑏2𝑏3𝑏4

1

 𝜎𝑟(1 + 𝑏4)
1
2
+1

∞

𝑏4=0

∞

𝑏3=0

∞

𝑏1=0

∞

𝑏1=0

 ∫ 𝑞
𝑟
2𝑒−𝑞𝑑𝑞

∞

0

 

hence 

𝜇𝑟
′ = 

𝛽𝛿

𝜎𝑟  ∑ ∑ ∑ ∑ Ψ𝑏1𝑏2𝑏3𝑏4

1

 (1 + 𝑏4)
1
2
+1

 . Γ (1 +
𝑟

2
)

∞

𝑏4=0

∞

𝑏3=0

∞

𝑏1=0

∞

𝑏1=0

                                                (26) 

MGF 

Generally, the MGF of any random variable can be obtained using the relation: 

𝑀(𝜃) = 𝐸(𝑒𝜃𝑥) 
since X is a continuous random variable with PDF f(x), 

𝑀(𝜃) = ∫ 𝑒𝑡𝑥𝑓(𝑥)
∞

0
 dx  

or in simpler form 

𝑀(𝜃) = ∑
𝑡𝑟

𝑟!
∞
𝑟=0 ∫ 𝑥𝑟𝑓(𝑥)

∞

0
𝑑𝑥  ;  since  𝑒𝑡𝑥 =  ∑

(𝑡𝑥)𝑟

𝑟!
∞
𝑟=0  

= ∑
𝑡𝑟

𝑟!
∞
𝑟=0 𝜇𝑟

′   

where  𝜇𝑟
′   is the rth non-central moment 

hence, the MGF of GOM-ER is given by: 

𝛽𝛿 ∑ ∑ ∑ ∑ ∑
𝑡𝑟

𝜎𝑟𝑟!
Ψ𝑏1𝑏2𝑏3𝑏4

1

 (1 + 𝑏4)
1
2
+1

 . Γ (1 +
𝑟

2
)

∞

𝑏4=0

∞

𝑏3=0

∞

𝑏1=0

∞

𝑏1=0

∞

𝑟=0

                          (27) 

Mean and variance of GOM-ER 

These properties are obtained from the rth non-central moment of GOM-ER distribution. 

 

Mean 

If in equation (26), r takes on value 1, the resulting equation gives the mean (1th moment) of GOM-ER distribution, given by: 

 

𝜇1
′ = 𝐸(𝑋) 

= 
𝛽𝛿

𝜎
 ∑ ∑ ∑ ∑ Ψ𝑏1𝑏2𝑏3𝑏4

1

 (1 + 𝑏4)
3
2

 . Γ (
3

2
)                                            (28)

∞

𝑏4=0

∞

𝑏3=0

∞

𝑏1=0

∞

𝑏1=0

 

Variance  

Using the relation 

𝑉𝑎𝑟 (𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 

where 𝐸(𝑋2) is the 2nd moment and obtained when r=2 in (26). 

  𝜇2
′ = 𝐸(𝑋2)                                                                                                

                      =  
𝛽𝛿

𝜎2  ∑ ∑ ∑ ∑ Ψ𝑏1𝑏2𝑏3𝑏4

1

 (1 + 𝑏4)
2  . Γ(2)                                        (29)

∞

𝑏4=0

∞

𝑏3=0

∞

𝑏1=0

∞

𝑏1=0

 

but  Γ(2) = (2 − 1)! = 1  

thus  

  𝜇2
′ =

𝛽𝛿

𝜎2  ∑ ∑ ∑ ∑ Ψ𝑏1𝑏2𝑏3𝑏4

1

 (1 + 𝑏4)
2                                                                       (30) 

∞

𝑏4=0

∞

𝑏3=0

∞

𝑏1=0

∞

𝑏1=0

 

therefore the variance of GOM-ER is  

𝑉𝑎𝑟 (𝑋) =  
𝛽𝛿

𝜎2  ∑ ∑ ∑ ∑ Ψ𝑏1𝑏2𝑏3𝑏4

1

 (1 + 𝑏4)
2 

∞

𝑏4=0

∞

𝑏3=0

∞

𝑏1=0

∞

𝑏1=0

− [
𝛽𝛿

𝜎
 ∑ ∑ ∑ ∑ Ψ𝑏1𝑏2𝑏3𝑏4

1

 (1 + 𝑏4)
3
2

 . Γ (
3

2
)

∞

𝑏4=0

∞

𝑏3=0

∞

𝑏1=0

∞

𝑏1=0

]

2

                                        (31) 

Entropy  

The Renyi entropy (Renyi, 1961) is a measure of uncertainty defined as: 

𝐼𝑅(𝑐) =  
1

1−𝑐
log ∫ 𝑓𝑐(𝑥)𝑑𝑥

∞

0
   𝑐 > 0, 𝑐 ≠ 1     (32) 

Suppose a random variable X follows the GOM-ER distribution, the degree of uncertainty can be derived as follows: 

𝑓𝑐(𝑥; 𝛼, 𝛽, 𝜎, 𝛿) =  (2 𝛽 𝛿 𝜎2)𝑐 𝑥𝑐 𝑒−𝑐 (𝜎𝑥)2  [1 − 𝑒−(𝜎𝑥)2]
𝑐(𝛿−1)

 {1

− [1 − 𝑒−(𝜎𝑥)2
]
𝛿−1

}
−𝑐(𝛼+1)

𝑒

𝑐𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)
                                  (33) 
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Using the expansions earlier 

𝑒

𝑐𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)
=  ∑ ∑

1

𝑑1!
(−1)𝑑2

∞

𝑑2=0

(
𝑑1

𝑑2
) (

𝑐𝛽

𝛼
)
𝑑1

∞

𝑑1=0

{1 − [1 − 𝑒−(𝜎𝑥)2
]
𝛿
}
−𝛼𝑑2

 

implying that  

𝑓𝑐(𝑥; 𝛼, 𝛽, 𝜎, 𝛿) =  (2 𝛽 𝛿 𝜎2)𝑐 𝑥𝑐 𝑒−𝑐 (𝜎𝑥)2  [1 − 𝑒−(𝜎𝑥)2
]
𝑐(𝛿−1)

 ∑ ∑
1

𝑑1!
(−1)𝑑2

∞

𝑑2=0

(
𝑑1

𝑑2
) (

𝑐𝛽

𝛼
)
𝑑1

∞

𝑑1=0

{1

− [1 − 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼(𝑑2+𝑐)+𝑐)

 

but 

{1 − [1 − 𝑒−(𝜎𝑥)2
]
𝛿
}
−(𝛼(𝑑2+𝑐)+𝑐)

= ∑(
(𝛼(𝑑2 + 𝑐) + 𝑐) + 𝑑3 − 1

𝑑3
) [1 − 𝑒−(𝜎𝑥)2]

𝛿𝑑3
               (34)

∞

𝑑3

 

hence 

𝑓𝑐(𝑥; 𝛼, 𝛽, 𝜎, 𝛿) =  (2 𝛽 𝛿 𝜎2)𝑐 𝑥𝑐 𝑒−𝑐 (𝜎𝑥)2
 

×  ∑ ∑ ∑
1

𝑑1!
(−1)𝑑2

∞

𝑑3=0

(
𝑑1

𝑑2
) (

𝑐𝛽

𝛼
)
𝑑1

∞

𝑑2=0

∞

𝑑1=0

(
(𝛼(𝑑2 + 𝑐) + 𝑐) + 𝑑3 − 1

𝑑3
) [1 − 𝑒−(𝜎𝑥)2]

𝛿(𝑑3+𝑐)−𝑐
 

= (2 𝛽 𝛿 𝜎2)𝑐 𝑥𝑐

× ∑ ∑ ∑ ∑
1

𝑑1!
(−1)𝑑2

∞

𝑑4=0

(
𝑑1

𝑑2
) (

𝑐𝛽

𝛼
)
𝑑1

∞

𝑑3=0

∞

𝑑2=0

∞

𝑑1=0

 (
(𝛼(𝑑2 + 𝑐) + 𝑐) + 𝑑3 − 1

𝑑3
)(

𝛿(𝑑3 + 𝑐) − 𝑐

𝑑4
) 𝑒−𝑑4(𝜎𝑥)2−𝑐 (𝜎𝑥)2  

= (2 𝛽 𝛿 𝜎2)𝑐 𝑥𝑐 ∑ ∑ ∑ ∑ ℧(𝑑1,𝑑2,𝑑3,𝑑4)

∞

𝑑4=0

𝑒−(𝜎𝑥)2(𝑑4+𝑐)

∞

𝑑3=0

∞

𝑑2=0

∞

𝑑1=0

 

where 

℧(𝑑1,𝑑2,𝑑3,𝑑4) = 
1

𝑑1!
(−1)𝑑2 (𝑑1

𝑑2
) (𝑐𝛽

𝛼
)
𝑑1

((𝛼(𝑑2+𝑐)+𝑐)+ 𝑑3−1
𝑑3

) (𝛿(𝑑3+𝑐)−𝑐
𝑑4

)  

 

𝐼𝑅(𝐶) =
1

1 − 𝑐
log [ (2 𝛽 𝛿 𝜎2)𝑐  ∑ ∑ ∑ ∑ ℧(𝑑1,𝑑2,𝑑3,𝑑4)

∞

𝑑4=0

∫ 𝑥𝑐 𝑒−(𝜎𝑥)2(𝑑4+𝑐)
∞

0

𝑑𝑥

∞

𝑑3=0

∞

𝑑2=0

∞

𝑑1=0

] 

by letting 𝑛 = 𝜎2𝑥2(𝑑4 + 𝑐)  then  
𝑑𝑛

𝑑𝑥
= 2𝜎2𝑥(𝑑4 + 𝑐)   and  𝑥 =  

𝑛
1
2

𝜎(𝑑4+𝑐)
1
2

 

 

𝐼𝑅(𝐶) =
1

1 − 𝑐
log [ ∑ ℧(𝑑1,𝑑2,𝑑3,𝑑4) ∫ [

𝑛
1
2

𝜎(𝑑4 + 𝑐)
1
2

]

𝑐−1

𝑒−𝑛  
𝑑𝑛

2𝜎2𝑥(𝑑4 + 𝑐)

∞

0

∞

𝑑1,𝑑2,𝑑3,𝑑4=0

] 

 =
1

1−𝑐
 log [

2𝑐−1𝛽𝑐𝛿𝑐𝜎2𝑐

𝜎
𝑐−1
2

]∑ ℧(𝑑1,𝑑2,𝑑3,𝑑4)
∞
𝑑1,𝑑2,𝑑3,𝑑4=0

1

(𝑑4+𝑐)
𝑐−3
2

∫ 𝑛
𝑐−1

2  𝑒−𝑛 𝑑𝑛
∞

0
 

 =
1

1−𝑐
log[2𝑐−1](𝛿𝛽)𝑐𝜎𝑐−1 ∑ ℧𝑑𝑖

1

(𝑑4+𝑐)
𝑐−3
2

∞
𝑑1,𝑑2,𝑑3,𝑑4=0  Γ (

1+𝑐

2
)                                   (35) 

Parameter Estimation 

This section provides the estimates of the four unknown parameters (β, α, δ, σ) of GOM-ER distribution using the methods of 

MLE and MPS. 

 

MLE 

Assuming 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample of size n drawn from GOM-ER distribution. 

𝑓(𝑥; 𝛼, 𝛽, 𝜎, 𝛿) =  2 𝛽 𝛿 𝜎2 𝑥 𝑒−(𝜎𝑥)2
 [1 − 𝑒−(𝜎𝑥)2

]
𝛿−1

 {1 − [1 − 𝑒−(𝜎𝑥)2
]
𝛿−1

}
−𝛼−1

𝑒

𝛽
𝛼

(1−{1− [1− 𝑒−(𝜎𝑥)2]
𝛿
}
−𝛼

)
 

Thus the likelihood function 

 𝐿(𝑋1, 𝑋2, … , 𝑋𝑛;  𝛼, 𝛽, 𝜎, 𝛿) = 𝐿(𝛼, 𝛽, 𝜎, 𝛿) 

= (2 𝛽 𝛿 𝜎2)𝑛 ∏𝑥𝑖 ∏𝑒−𝜎2𝑥𝑖
2
∏(1

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

− 𝑒−𝜎2𝑥𝑖
2
)
𝛿−1

∏[1 − (1 − 𝑒−𝜎2𝑥𝑖
2
)
𝛿
]
−(𝛼+1)

∏𝑒

𝛽
𝛼

{1−[1− (1− 𝑒−𝜎2𝑥𝑖
2
)
𝛿

]

−𝛼

}
𝑛

𝑖=1

𝑛

𝑖=1

 

The corresponding log-likelihood function is obtained as: 
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log 𝐿(𝛼, 𝛽, 𝜎, 𝛿) = 𝑛 log(2 𝛽 𝛿 𝜎2) + ∑log 𝑥𝑖

𝑛

𝑖=1

− 𝜎2 ∑𝑥𝑖
2

𝑛

𝑖=1

+ (𝛿

− 1)∑log(1 − 𝑒−𝜎2𝑥𝑖
2
)

𝑛

𝑖=1

− (𝛼 + 1)∑log [1 − (1 − 𝑒−𝜎2𝑥𝑖
2
)
𝛿
] + 

𝛽

𝛼
∑{1 − [1 − (1 − 𝑒−𝜎2𝑥𝑖

2
)
𝛿
]
−𝛼

}

𝑛

𝑖=1

         (36)

𝑛

𝑖=1

 

 

The estimates of the parameters (�̂�, �̂�, �̂�, �̂�), we differentiatelog 𝐿(𝛼, 𝛽, 𝜎, 𝛿) with respect to individual parameter and equate to 

zero. The resulting differentials are, 

𝜕 log 𝐿(𝛼, 𝛽, 𝜎, 𝛿)

𝜕𝛽
=  

𝑛

𝛽
+ 

1

𝛼
∑{1 − [1 − (1 − 𝑒−𝜎2𝑥𝑖

2
)
𝛿
]
−𝛼

}

𝑛

𝑖=1

                                                      (37) 

𝜕 log 𝐿(𝛼, 𝛽, 𝜎, 𝛿)

𝜕𝛼
=  −∑log [1 − (1 − 𝑒−𝜎2𝑥𝑖

2
)
𝛿
] + {

𝛽

𝛼
[1 − (1 − 𝑒−𝜎2𝑥𝑖

2
)
𝛿
]
−𝛼

log [1 − (1 − 𝑒−𝜎2𝑥𝑖
2
)
𝛿
] }

𝑛

𝑖=1

−
𝛽

𝛼2 ∑{1 − [1 − (1 − 𝑒−𝜎2𝑥𝑖
2
)
𝛿
]
−𝛼

}

𝑛

𝑖=1

                                                                    (38) 

𝜕 log 𝐿(𝛼, 𝛽, 𝜎, 𝛿)

𝜕𝛿
=  

𝑛

𝛿
+ ∑log(1 − 𝑒−𝜎2𝑥𝑖

2
) + (𝛼 + 1)∑

(1 − 𝑒−𝜎2𝑥𝑖
2
)
𝛿
log(1 − 𝑒−𝜎2𝑥𝑖

2
)

1 − (1 − 𝑒−𝜎2𝑥𝑖
2
)
𝛿

𝑛

𝑖=1

𝑛

𝑖=1

−  𝛽 ∑{(1 − 𝑒−𝜎2𝑥𝑖
2
)
𝛿
[1 − (1 − 𝑒−𝜎2𝑥𝑖

2
)
𝛿
]
−(𝛼+1)

log(1 − 𝑒−𝜎2𝑥𝑖
2
)
𝛿
}                                                (39)

𝑛

𝑖−1

 

 

𝜕 log 𝐿(𝛼, 𝛽, 𝜎, 𝛿)

𝜕𝜎
=  

2𝑛

𝜎
− 2𝜎 ∑𝑥𝑖

2

𝑛

𝑖=1

+ (𝛿 − 1)∑
2𝜎𝑥2𝑒−𝜎2𝑥𝑖

2

1 − 𝑒−𝜎2𝑥𝑖
2

𝑛

𝑖=1

+ (𝛼

+ 1)∑−2𝛼𝛿𝜎 ∑𝑥2𝑒−𝜎2𝑥𝑖
2
(1 − 𝑒−𝜎2𝑥𝑖

2
)
𝛿−1

[1

𝑛

𝑖=1

𝑛

𝑖=1

− (1 − 𝑒−𝜎2𝑥𝑖
2
)
𝛿−1

]
−(𝛼+1)

                                                                       (40) 

The above equations are not in explicit form, hence, do not have exact solution. Therefore, the MLE can be obtained using some 

iterative methods such as Newton-Raphson to solve the equations analytically. 

 

MPS 

The maximum likelihood estimation is the most common and widely used estimation method but in cases such as that involving 

compound continuous distributions and large samples, the method might break down. 

Cheng and Amin (1983) introduced the MPS method serving as an alternative to MLE method. Also, (Ranneby, 1989) 

independently studied the method as an approximation to Kullback-Leibler information and explained its consistency property. 

 

If 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample from GOM-ER distribution having CDF 𝐹(𝑥, 𝜖) and 𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛) represents the 

corresponding ordered sample. The spacing  

𝐷𝑖 = 𝐹(𝑥(𝑖)) − 𝐹(𝑥(𝑖−1)) for 𝑖 = 1, 2,… , 𝑛 + 1     (41) 

where   

     𝐹(𝑥(0)) = 0 and 𝐹(𝑥(𝑛+1)) = 1    

therefore  

𝐷𝑖 =

[
 
 
 
 

1 − 𝑒

𝛽
𝛼

(1−{1− [1− 𝑒
−(𝜎𝑥(𝑖))

2

]

𝛿

}

−𝛼

)

]
 
 
 
 

− 

[
 
 
 
 

1 − 𝑒

𝛽
𝛼

(1−{1− [1− 𝑒
−(𝜎𝑥(𝑖−1))

2

]

𝛿

}

−𝛼

)

]
 
 
 
 

                          (42) 

The parameter estimates are obtained by maximizing  
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𝑃(𝛽, 𝛼, 𝛿, 𝜎) =  
1

𝑛 + 1
∑ log𝑒 𝐷𝑖

𝑛+1

𝑖=1

(𝛽, 𝛼, 𝛿, 𝜎) 

𝑃(𝛽, 𝛼, 𝛿, 𝜎) =  
1

𝑛 + 1
∑ log𝑒

[
 
 
 
 

 𝑒

𝛽
𝛼

(1−{1− [1− 𝑒
−(𝜎𝑥(𝑖−1))

2

]

𝛿

}

−𝛼

)𝑛+1

𝑖=1

− 𝑒

𝛽
𝛼

(1−{1− [1− 𝑒
−(𝜎𝑥(𝑖))

2

]

𝛿

}

−𝛼

)

]
 
 
 
 

                                                                                       (43) 

The parameters estimates �̂�𝑀𝑃𝑆, �̂�𝑀𝑃𝑆, �̂�𝑀𝑃𝑆 𝑎𝑛𝑑 �̂�𝑀𝑃𝑆 can be found by differentiating P with respect to the individual parameters 

and solving the non-linear equations 

𝜕𝑃(𝛽, 𝛼, 𝛿, 𝜎) 

𝜕𝛽
=  

1

𝑛 + 1
 .  ∑

1

𝐷𝑖(𝛽, 𝛼, 𝛿, 𝜎)

𝑛+1

𝑖=1

 . {Λ1[𝑥(𝑖−1);  𝜖] − {Λ1[𝑥(𝑖), ; 𝜖]}}                            (44) 

𝜕𝑃(𝛽, 𝛼, 𝛿, 𝜎) 

𝜕𝛼
=  

1

𝑛 + 1
 .  ∑

1

𝐷𝑖(𝛽, 𝛼, 𝛿, 𝜎)

𝑛+1

𝑖=1

 . {Λ2[𝑥(𝑖−1); 𝜖] −  {Λ1[𝑥(𝑖); 𝜖]}}                           (45) 

𝜕𝑃(𝛽, 𝛼, 𝛿, 𝜎) 

𝜕𝛿
=  

1

𝑛 + 1
 .  ∑

1

𝐷𝑖(𝛽, 𝛼, 𝛿, 𝜎)

𝑛+1

𝑖=1

 . {Λ3[𝑥(𝑖−1); 𝜖] −  {Λ3[𝑥(𝑖); 𝜖]}}                            (46) 

𝜕𝑃(𝛽, 𝛼, 𝛿, 𝜎) 

𝜕𝜎
=  

1

𝑛 + 1
 .  ∑

1

𝐷𝑖(𝛽, 𝛼, 𝛿, 𝜎)

𝑛+1

𝑖=1

 . {Λ4[𝑥(𝑖−1);  𝜖]

− {Λ4[𝑥(𝑖);  𝜖]}}                                                                                                            (47) 

where 

Λ1[𝑥(𝑖−1);  𝜖] =  𝑒

𝛽
𝛼

(1−{1− [1− 𝑒
−(𝜎𝑥(𝑖−1))

2

]

𝛿

}

−𝛼

)

 ×  
𝛽

𝛼
 {1 − [1 − 𝑒−(𝜎𝑥(𝑖−1))

2

]
𝛿

}
−𝛼

log {1 − [1 − 𝑒−(𝜎𝑥(𝑖−1))
2

]
𝛿

}

−
𝛽

𝛼2 (1 − {1 − [1 − 𝑒−(𝜎𝑥(𝑖−1))
2

]
𝛿

}
−𝛼

) 

Λ1[𝑥(𝑖);  𝜖] =  𝑒

𝛽
𝛼

(1−{1− [1− 𝑒
−(𝜎𝑥(𝑖))

2

]

𝛿

}

−𝛼

)

 ×  
𝛽

𝛼
 {1 − [1 − 𝑒−(𝜎𝑥(𝑖))

2

]
𝛿

}

−𝛼

log {1 − [1 − 𝑒−(𝜎𝑥(𝑖))
2

]
𝛿

}

−
𝛽

𝛼2
(1 − {1 − [1 − 𝑒−(𝜎𝑥(𝑖))

2

]
𝛿

}

−𝛼

) 

Λ2[𝑥(𝑖−1);  𝜖] =  𝑒

𝛽
𝛼

(1−{1− [1− 𝑒
−(𝜎𝑥(𝑖−1))

2

]

𝛿

}

−𝛼

)

× 
1

𝛼
(1 − {1 − [1 − 𝑒−(𝜎𝑥(𝑖−1))

2

]
𝛿

}
−𝛼

) 

Λ2[𝑥(𝑖);  𝜖] =  𝑒

𝛽
𝛼

(1−{1− [1− 𝑒
−(𝜎𝑥(𝑖))

2

]

𝛿

}

−𝛼

)

× 
1

𝛼
(1 − {1 − [1 − 𝑒−(𝜎𝑥(𝑖))

2

]
𝛿

}

−𝛼

) 

Λ3[𝑥(𝑖−1); 𝜖] =  𝑒

𝛽
𝛼

(1−{1− [1− 𝑒
−(𝜎𝑥(𝑖−1))

2

]

𝛿

}

−𝛼

)

  

×  (−𝛽 . [1 − 𝑒−(𝜎𝑥(𝑖−1))
2

]
𝛿

. {1 − [1 − 𝑒−(𝜎𝑥(𝑖−1))
2

]
𝛿

}
−𝛼−1

log [1 − 𝑒−(𝜎𝑥(𝑖−1))
2

])  

 

 

Λ3[𝑥(𝑖);  𝜖] =  𝑒

𝛽
𝛼

(1−{1− [1− 𝑒
−(𝜎𝑥(𝑖))

2

]

𝛿

}

−𝛼

)

  ×  (−𝛽 . [1 − 𝑒−(𝜎𝑥(𝑖))
2

]
𝛿

. {1 − [1 − 𝑒−(𝜎𝑥(𝑖))
2

]
𝛿

}

−𝛼−1

log [1 − 𝑒−(𝜎𝑥(𝑖))
2

])  
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Λ4[𝑥(𝑖−1);  𝜖] =  𝑒

𝛽
𝛼

(1−{1− [1− 𝑒
−(𝜎𝑥(𝑖−1))

2

]

𝛿

}

−𝛼

)

  

× ( −2𝛼𝛿𝜎𝑥(𝑖−1)
2  . 𝑒−(𝜎𝑥(𝑖−1))

2

. [1 − 𝑒−(𝜎𝑥(𝑖−1))
2

]
𝛿−1

 .  {1 − [1 − 𝑒−(𝜎𝑥(𝑖−1))
2

]
𝛿

}
−𝛼−1

) 

Λ4[𝑥(𝑖);  𝜖] =  𝑒

𝛽
𝛼

(1−{1− [1− 𝑒
−(𝜎𝑥(𝑖))

2

]

𝛿

}

−𝛼

)

  × ( −2𝛼𝛿𝜎𝑥(𝑖)
2  . 𝑒−(𝜎𝑥(𝑖))

2

. [1 − 𝑒−(𝜎𝑥(𝑖))
2

]
𝛿−1

 .  {1 − [1 − 𝑒−(𝜎𝑥(𝑖))
2

]
𝛿

}

−𝛼−1

)  

 

The solutions of (44), (45), (46) and (47) are the MPS parameter estimates. However, like the MLE, the equations cannot be 

obtained analytically but rather with the use of numerical solutions. 

 

 

Results and Discussion 

Simulation study 

In this subsection, Monte Carlo approach to simulation study was developed. The important objective of simulations was to 

determine the most efficient between ML and MPS methods for the GOM-ER distribution parameters. Using different parameters 

values and sample sizes (25-1000), the estimation methods were compared based on bias and root mean square error (RMSE) of 

the estimators. 

𝐵𝑖𝑎𝑠 =  
1

1000
∑ (𝜃𝑖 − 𝜃𝑖)

1000

𝑖=1

 

𝑅𝑀𝑆𝐸 =  √ 
1

1000
∑ (𝜃𝑖 − 𝜃𝑖)

1000

𝑖=1

 

Steps adopted are as follows: 

1. Set the sample size and the vector of parameter values 𝜃 = (𝛼, 𝛽, 𝛿, 𝜎) 

2. Generate sample of size n from GOM-ER (𝛼, 𝛽, 𝛿, 𝜎) using equation (12) 

3. Using the values obtained above, obtain 𝛼, �̂�,  �̂�
 
𝑎𝑛𝑑 �̂� using MLE and MPSE. 

4. In 1000 times, repeat steps (2) and (3). 

5. Using 𝜃 and �̂� compute Bias and RMSE. 

 

 

 

 

 

Table 1: Means, Bias and RMSEs for the parameter estimates when 

 𝛼 =  0.3, 𝛽 =  1.5, 𝛿 =  2.0, 𝜎 =  0.7 

                      MLE                  MPSE 

            N 
 

Means        Bias        RMSE Means        Bias        RMSE 

           25 
𝛼 

0.3378      0.0378      0.2298 0.4028      0.1028      0.2673 

 𝛽 1.5905      0.0905      0.3499 1.5104      0.0104      0.3722 

 𝛿 2.1360      0.1360      0.5172 1.9177     -0.0823     0.5115 

 
 𝜎 

0.7058      0.0058      0.0579 0.6683     -0.0317     0.0732 

          100 
𝛼 

0.3408      0.0408      0.1359 0.3510      0.0510      0.1508 

 
𝛽 

1.5401      0.0401      0.1778 1.5199      0.0199      0.1883 

 𝛿 2.0995      0.0995      0.3259 1.9688     -0.0312     0.3604 

 
 𝜎 

0.6961     -0.0039     0.0348 0.6825     -0.0175     0.0431 

          250 
𝛼 

0.3300      0.0300      0.0959 0.3294      0.0294      0.0992 
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𝛽 

1.5383      0.0383      0.1289 1.5040      0.0040      0.1043 

 𝛿 2.0624      0.0624      0.2397 1.9960     -0.0040     0.2290 

  𝜎 0.6941     -0.0059     0.0242 0.6915     -0.0085     0.0262 

         450 
𝛼 

0.3269      0.0269      0.0774 0.3208      0.0208      0.0765 

 
𝛽 

1.5332      0.0332      0.0972 1.5077      0.0077      0.0858 

 
𝛿 

2.0480      0.0480      0.1694 1.9916     -0.0084     0.1617 

 
 𝜎 

0.6936     -0.0064     0.0196 0.6933     -0.0067     0.0214 

          1000 
𝛼 

0.3203      0.0203      0.0534 0.3148      0.0148      0.0523 

 𝛽 
1.5261      0.0261      0.0756 1.5059      0.0059      0.0708 

 𝛿 
2.0291      0.0291      0.1167 1.9980     -0.0020     0.1173 

   𝜎 0.6943     -0.0057     0.0157 0.6954     -0.0046     0.0165 

  

Table 2: Means, Bias and RMSEs for the parameter estimates when 

 𝛼 =  1.8, 𝛽 =  5.9, 𝛿 =  0.5, 𝜎 =  3.4 

                      MLE                   MPSE 

          n 

 

 
Means        Bias        RMSE Means        Bias        RMSE 

         25 𝛼 2.0437      0.2437      1.1881 2.1088      0.3088      1.1858 

 𝛽 6.0190      0.1190      1.2015 5.7158     -0.1842     1.2369 

 𝛿 0.5369      0.0369      0.1107 0.4901     -0.0099     0.0903 

  𝜎 3.7146      0.3146      0.9172 3.2374     -0.1626     0.7443 

        100 𝛼 2.0437      0.2437      0.7466 2.0226      0.2226      0.7773 

 𝛽 6.0468      0.1468      0.7570 5.9087      0.0087      0.7112 

 𝛿 0.5207      0.0207      0.0619 0.4978     -0.0022     0.0571 

  𝜎 3.4374      0.0374      0.3734 3.2630     -0.1370     0.3688 

         250 𝛼 1.9735      0.1735      0.5593 1.9165      0.1165      0.5831 

 𝛽 6.0378      0.1378      0.5399 5.9031      0.0031      0.5191 

 𝛿 0.5122      0.0122      0.0436 0.4984     -0.0016     0.0432 

  𝜎 3.3877     -0.0123     0.1884 3.3275     -0.0725     0.2199 

          450 𝛼 1.9525      0.1525      0.4745 1.8928      0.0928      0.4494 

 𝛽 6.0278      0.1278      0.4405 5.9126      0.0126      0.3936 

 𝛿 0.5100      0.0100      0.0362 0.5000      0.0000      0.0348 

  𝜎 3.3752     -0.0248     0.1522 3.3489     -0.0511     0.1569 

         1000 𝛼 1.9126      0.1126      0.3442 1.8715      0.0715      0.3441 

 𝛽 5.9827      0.0827      0.3181 5.9055      0.0055      0.2851 

 𝛿 0.5069      0.0069      0.0274 0.5008      0.0008      0.0270 

   𝜎 3.3772     -0.0228     0.0912 3.3686     -0.0314     0.0982 

 

Table 3: Means, Bias and RMSEs for the parameter estimates when 

 𝛼 =  1.2, 𝛽 =  3.5, 𝛿 =  0.9, 𝜎 =  2.0 
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                     MLE                 MPSE 

N  Means        Bias        RMSE Means        Bias        RMSE 

25 𝛼 1.3915      0.1915      0.8480 1.4199      0.2199      0.8496 

 𝛽 3.5712      0.0712      0.9337 3.3904     -0.1096     0.8865 

 𝛿 1.0010      0.1010      0.2754 0.8857     -0.0143     0.2277 

  𝜎 2.1023      0.1023      0.3203 1.9278     -0.0722     0.3027 

100 𝛼 1.3656      0.1656      0.5274 1.3387      0.1387      0.5420 

 𝛽 3.5662      0.0662      0.5715 3.4566     -0.0434     0.5737 

 𝛿 0.9467      0.0467      0.1483 0.8988     -0.0012     0.1354 

  𝜎 2.0101      0.0101      0.1559 1.9638     -0.0362     0.1457 

250 𝛼 1.3229      0.1229      0.4104 1.2903      0.0903      0.4136 

 𝛽 3.5669      0.0669      0.3759 3.4885     -0.0115     0.3638 

 𝛿 0.9280      0.0280      0.1009 0.9009      0.0009      0.0972 

  𝜎 1.9939     -0.0061     0.0853 1.9775     -0.0225     0.0852 

450 𝛼 1.2905      0.0905      0.3025 1.2609      0.0609      0.3171 

 𝛽 3.5369      0.0369      0.2713 3.4767     -0.0233     0.2646 

 𝛿 0.9201      0.0201      0.0765 0.9017      0.0017      0.0787 

  𝜎 1.9952     -0.0048     0.0578 1.9882     -0.0118     0.0597 

1000 𝛼 1.2572      0.0572      0.2253 1.2329      0.0329      0.2194 

 𝛽 3.5282      0.0282      0.1818 3.4865     -0.0135     0.1742 

 𝛿 0.9103      0.0103      0.0553 0.8997     -0.0003     0.0560 

  𝜎 1.9932     -0.0068     0.0399 1.9931     -0.0069     0.0365 

 

The results showed that both estimation methods were consistence as the sample size increases from 25 to 1000 since the RMSE 

decreases and the means converges to the actual values of the parameters. The consistency of MPSE justify the work of (Ranneby, 

1984). Moreso, MPS estimators have the lower RMSEs and Bias closer to zero for most parameters notably for 𝛼 and 𝛽 when n 

= 1000 demonstrating efficiency of the estimators. 

 

Applications of GOM-ER 

The advantage of GOM-ER over some related distributions having at least a parameter was portrayed by fitting two data sets. The 

comparison was done using the log-likelihood, Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), Corrected 

Akaike’s Information Criteria (CAIC) and Hannan-Quinn Information Criteria (HQIC). 

    𝐴𝐼𝐶 =  −(𝑙𝑙) + 2𝑘 

𝐵𝐼𝐶 =  −(2 ∗ 𝑙𝑙)+ ) + (𝑘 ∗ (ln(𝑛))) 

𝐶𝐴𝐼𝐶 = 𝐴𝐼𝐶 + 2𝑘(𝑘 + 1)/(𝑛 − 𝑘 − 1) 

𝐻𝑄𝐼𝐶 =  −(2 ∗ 𝑙𝑙) + (2 ∗ 𝑘 ∗ (ln(ln(𝑛))) 

where ll is the log-likelihood, n is the sample size and k is the number of parameters to be fitted. 

 

Using both data sets, measures of goodness of fit were compared with those of Gompertz Rayleigh (GomR), Kumaraswamy 

Exponentiated Rayleigh (KWER), Kumaraswamy Exponentiated Inverse Rayleigh (KEIR), Exponentiated Rayleigh (ER) and 

Rayleigh (R). 

 

 

 

 

 

First data 

Table 4: breaking stress of carbon fibers (in Gba) 

0.39 0.81 0.85 0.98 1.08 1.12 1.17 1.18 1.22 1.25 1.36 
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1.41 1.47 1.57 1.57 1.59 1.59 1.61 1.61 1.69 1.69 1.71 

1.73 1.8 1.84 1.84 1.87 1.89 1.92 2 2.03 2.03 2.05 

2.12 2.17 2.17 2.17 2.35 2.38 2.41 2.43 2.48 2.48 2.5 

2.53 2.55 2.55 2.56 2.59 2.67 2.73 2.74 2.76 2.77 2.79 

2.81 2.81 2.82 2.83 2.85 2.87 2.88 2.93 2.95 2.96 2.97 

2.97 3.09 3.11 3.11 3.15 3.15 3.19 3.19 3.22 3.22 3.27 

3.28 3.31 3.31 3.33 3.39 3.39 3.51 3.56 3.6 3.65 3.68 

3.68 3.68 3.7 3.75 4.2 4.38 4.42 4.7 4.9 4.91 5.08 

5.56                     

 

This data has already been used by (Mohammed, et al., 2020), (Bhat & Ahmad, 2020), (Yahaya & Ieren, 2017). It represents the 

breaking stress of carbon fibers of 50 mm length (GPa). The table below provide the descriptive statistics of the data 

 

Table 5: Description statistics of breaking stress of carbon fibers (in Gba) 

Variables Description 

Sample size 100 

Maximum and Minimum value 5.56, 0.39 

Mode 2.75 

Kurtosis, Skewness 0.1049, 0.3682 

Mean, Median, Variance 2.6214, 2.7, 1.02796 

 

Table (6) presents each distribution with their maximum likelihood estimates and maximum product of spacing estimates while 

table (7) the distributions and their corresponding measures of comparison. 

Table 6: Models parameters estimates 

 MLE MPSE 

Model 𝛼           𝛽          𝜎       𝛿 𝛼          𝛽          𝜎       𝛿 

GOM-ER 2.8426     0.0195      1.6140    0.2737 0.7914     0.0436      1.6471    0.4423 

GomR 1.6931     0.9097      3.0589          --- 1.5923     0.6521      2.8951        ---- 

KWER 1.6003     4.4361      0.2575    0.4253 4.5686     1.0345      0.3653    0.4079 

ER ------          -------     1.8388     0.4253        -----          -------      1.6837     0.4126         

KEIR 1.5687     1.1403      0.9527    2.3990 1.6822     1.1084      0.8695    2.4051 

R ---            ---          1.9861         ---- ----          ----         2.0047        ---- 
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Table 7: Log-likelihood and information criteria 

  MLE MPSE 

Model AIC BIC CAIC HQIC      ll AIC BIC CAIC HQIC     ll 

GOM-ER 274.66 264.24 274.24 270.44 -141.33 275.43 265.01 275.01 271.21 -141.72 

GOmR 283.76 275.94 283.51 280.59 -144.88 284.23 276.42 283.98 281.07 -145.12 

KWER 275.19 264.77 274.77 270.97 -141.59 275.76 265.34 275.34 271.54 -141.88 

ER 279.19 273.98 279.06 277.08 -141.59 279.54 274.33 279.41 277.43 -141.77 

KEIR 341.68 331.26 341.26 337.46 -174.84 341.72 331.30 341.30 337.50 -174.86 

R 297.00 294.40 296.96 295.95 -149.50 297.04 294.43 297.00 295.98 -149.52 

 

 

 

Second data 

 

Table 8: Strength of 1.5cm glass fiber 

0.55 0.74 0.77 0.81 0.84 1.24 0.93 1.04 

1.11 1.13 1.3 1.25 1.27 1.28 1.29 1.48 

1.36 1.39 1.42 1.48 1.51 1.49 1.49 1.5 

1.5 1.55 1.52 1.53 1.54 1.55 1.61 1.58 

1.59 1.6 1.61 1.63 1.61 1.61 1.62 1.62 

1.67 1.64 1.66 1.66 1.66 1.7 1.68 1.68 

1.69 1.7 1.78 1.73 1.76 1.76 1.77 1.89 

1.81 1.82 1.84 1.84 2 2.01 2.24  

 

This data comprises 63 observations collected by employees of United Kingdom National Physical Laboratory of the strengths of 1.5 cm glass fibers has been used in earlier 

studies by (Bourguignon et al., 2014),  (Oguntunde et al., 2014), (Falgore and Doguwa, 2020), (Eghwerido et al., 2020) among others. Table (9) depicts the descriptive 

statistics of the data. 

 

Table 9: Descriptive statistics of strength of 1.5cm glass fiber 

Variables Description 

Sample size 63 

Maximum and Minimum 2.24 , 0.55 

Mode 1.7 
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Kurtosis, Skewness 0.9238, -0.8999 

Mean, Median, Variance 1.5068, 1.59, 0.1051 

 

Table (10) gives each distribution with their maximum likelihood estimates and maximum product of spacing estimates while table (11) the distributions and their corresponding 

measures of comparison. 

Table 10: Models parameters estimates 

 MLE MPS 

Model    𝛼          𝛽            𝜎          𝛿  𝛼            𝛽            𝜎        𝛿 

GOM-ER 3.3424     4.1661     2.4712    0.5018 6.3660      6.6758     2.1602    0.3962 

GomR 0.2810     3.7359     1.3921         ---- 0.3373      3.6672     1.4329        --- 

KWER 1.8336     3.4323     0.8726    0.9872 2.1675      1.4260     2.0683    0.8963 

ER -----           -----      5.4845     0.9869  ------          ------     4.7256      0.9551 

KEIR 1.2644     5.7986     1.5318    2.3313 2.01649     4.6683     1.5881   1.2623 

R   ------         -----       1.0894    ------   -----          ------       1.0984    ------- 

  

Table 11: Log-likelihood and information criteria 

  MLE MPSE 

Model      AIC    BIC   CAIC   HQIC        ll AIC BIC CAIC   HQIC        ll 

GOM-ER 23.2798 14.7073 22.5901 19.9082 -15.6399 24.034 15.4615 23.3443 20.6624 -16.0170 

GOmR 26.9978 20.5684 26.5910 24.4691 -16.4989 27.5026 21.0732 21.0732 24.9739 -16.7513 

KWER 39.8574 31.2849 39.1677 36.4858 -23.9288 57.4938 48.9213 56.8041 54.1222 -32.7469 

ER 43.8576 39.5713 43.6576 42.1718 -23.9288 44.3284 40.0421 44.1284 42.6426 -24.1642 

KEIR 40.3284 31.7559 39.6387 36.9568 -33.6669 59.9792 51.4067 59.2895 56.6076 -33.9896 

R 97.5818 95.4387 97.5162 96.7389 -49.7909 97.5984 95.4553 97.5328 96.7555 -49.7992 

The distribution with lower information criteria and higher log likelihood is considered to better fit the data.  For both parameter estimation methods, GOM-ER had the lowest 

AIC, BIC, CAIC, and HQIC compared to others as shown in table (7) and (11) with GomR and KWER also having lower values. However, values from MLE are lower than those 

from MPSE. These implies that although GomR and KWER are good models, the GOM-ER is a better model in fitting the two data sets.  Furthermore, MLE having lower values of 

the measures used than MPSE are better considering GOM-ER distribution. 
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CONCLUSION 

 

As aforementioned in the prior sections, little information has 

been established on generalization of ER distribution which 

has limitation of fitting data sets that are only tailed to the 

right. This study has been able to generalize the ER 

distribution using a generator in an earlier study.  

The generated compound distribution has unimodal densities 

that are; positively skewed, leptokurtic and mesokurtic, hazard 

functions that are non-decreasing. Furthermore, as the value of 

x approach infinity, CDFs of the new distribution equal one, 

implying that the CDF and, by extension, the corresponding 

PDF is real. 

Major statistical properties were studied and its applications 

was demonstrated using two real data sets to ascertained its 

flexibility over the sub models and related distributions. Upon 

application to these data sets and considering goodness-of-

tests statistics, the proposed distribution provides better fit 

compared to Gompertz Rayleigh (GomR), Kumaraswamy 

Exponentiated Rayleigh (KWER), Kumaraswamy 

Exponentiated Inverse Rayleigh (KEIR), Exponentiated 

Rayleigh (ER) and Rayleigh (R). 

The parameters were estimated using two frequentist 

approach, MLE and MPSE. Albeit application to two data sets 

portray the advantage of MLE over MPSE considering AIC 

and BIC, simulation study showed that the parameter 

estimates via both methods were consistence since as the 

sample size increases, the means converges to the actual 

values. However, the estimators �̂�𝑀𝑃𝑆, �̂�𝑀𝑃𝑆 and �̂�𝑀𝑃𝑆 are 

more efficient than �̂�𝑀𝐿, �̂�𝑀𝐿 and �̂�𝑀𝐿 at larger sample sizes.  
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