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ABSTRACT 

This work penciled down the Composition Series of Factor Abelian Group over the 

source of all polynomial equations gleaned through  the nth roots of unity regular 

gons on a unit circle, a circle of radius one and centered at zero. To get the 

composition series, the third isomorphism theorem has to be passed through. But, 

the third isomorphism theorem itself gleaned via the first which is a deduction of 

the naturally existing canonical map. The solution of the source atom of the 

equation of all equation of polynomials are solvable by the intertwine of the Euler’s 

Formula and the De Moivre’s Theorem which after the inter-math, they become 

within the domain of complex analysis. For the source root of the equations, there 

is a recursive set of homomorphisms and ontoness of the mappings geneting the 

sequential terms in the composition series.  
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INTRODUCTION 

One of the two greatest achievement of group theory 

inventing is solving equations. The other one is 

‘counting’.  The 𝑥𝑛𝑚 + 𝑎 is solvable by radicals since 

𝑥𝑛𝑚 − 𝑎 is. Hence 𝑥𝑛𝑚 ± 𝑎 is solvable by 

composition series despite 𝑆𝑛𝑚, 𝑛𝑚 ≥ 5 – the 

symmetric groups of length 5 and above – are not 

soluble, not even by the radical. When 𝑎 = 1, all the 

solvable groups are multiplicative and are P-Factor 

Groups. They all lie on the unit circle |𝑧| ≤ 1. Since 

they are P-Factor Groups, they have normal P-Sylow 

Subgroups. The normality comes from the Index 

Theorem. Because they all have index 2 in their P-

Groups, they are the maximal proper normal P-Sylow 

Subgroups and their factor groups are abelian 

accounting to the solubility of 𝑥𝑛𝑚 ± 1 by 

composition series.  We combine the classical Euler 

Formula and the De Moivre Theorem to present the 

solvability of 𝑥𝑛𝑚 ± 𝑎. The P-Groups over 𝑥2𝑛𝑚 ±

𝑎 and 𝑥2𝑛𝑚+1 ± 𝑎 are multiplicative. 𝑥2𝑛𝑚 ± 𝑎 are 

subsequences of  𝑥𝑛𝑚 ± 𝑎  and it converges to the 

limit point of the  𝑥𝑛𝑚 ± 𝑎. 

 

Group is the father, father as in personification, of 

other algebraic structures viz: Ring (additive abelian 

group equipped with an associative multiplicative 

binary operation that is both left and right distributive 

over the addition), vector space(group acting on a 

set), module(ring acting on a set), field(both additive 

and multiplicative abelian groups), semigroup (a 

generalization of group, Christopher (2009), that was 

born 87 years after group) and other consequences of 

group all under the universal algebra Stanley and 

Sankappanavar (1981).. Group has analyzed very 

many regular shapes (symmetry groups) and numbers 

are partly regular shapes. Symmetry groups are 

embedded in the symmetric groups. We shall present 

the bottom line of construction of regular shapes 

using 𝑥𝑛 − 𝑎 in the anal of this article.  The p-groups 

of the aforementioned multiplicative solvable groups 

all lie on the unit circle |𝑧| = 1. There are 

uncountable infinitely many number of complex 

numbers on |𝑧| = 1 as there are uncountable 

infinitely many number of real numbers in (0, 1) ⊆

ℝ (Alechenu et al., 2021). 

Whenever there is a subgroup of a finite group, then 

the order of the subgroup divides the order of the 

group. This is the statement of Lagrange Theorem, 

first stated by Lagrange himself in 1771 almost 58 

years before the definition of group by Galois. 30 

years after the statement, Petro Abati proved the 

theorem (Richard , 2001). Today, like many other 
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decoded theorems, there are numerous alternative 

proofs of Lagrange Theorem. This brings us to: 

Proving a theorem is easier than stating it. The 

converse of the theorem is: Whenever there is a group 

of a finite order 𝑛, is there a subgroup of an order a 

divisor of 𝑛?  The answer is yes if the group is abelian 

of a prime power order. Cauchy stated and proved 

that the group needs not to be abelian so far it is finite 

of prime order. The group is forced to equal its centre, 

the abelian subgroup of every group.  

That is, Cauchy proved that every 𝑃-Group has a P-

Subgroup; but his proof contained egregious error. 

Today, there is a simple proof of  Cauchy Theorem 

via the Class Equation, Heinstein (1975). Sylow 

(John and Robertson (2017)) narrowly states that 

there are 𝑃𝑚𝑟 -Group where 𝑟 is a positive integer 

that does not divide P. It has the largest P-Subgroup, 

the P-Sylow Subgroup that forms a single conjugacy 

class of all the other  P-non Sylow Subgroups. Sylow 

further gave ≡ 1 mod p , the formula that could find 

the number 𝑛 of distinct P-Sylow Subgroups .  That 

is, 
𝑛−1

𝑝
= 𝑚 ∈ ℤ. That is, 1 + 𝑚𝑝\ 𝑝𝑚𝑟.  

Every P-Group is nilpotent and every nilpotent group 

is solvable. Every group has a composition series 

which may be trivial or non-trivial (interesting). The 

terms of the composition series of the group over 

𝑥𝑛 − 1 are P-Groups having P-Sylow Subgroups of 

Index 2. Hence, the factor group is abelian due to 

blending the following theorems Vasistha and 

Vasistha (2006) and Heinstein (1975). 

Theorem 1.1. If 𝐻 is a subgroup of index 2 in 𝐺, then 

𝐻 is a normal subgroup of 𝐺 and 𝐺
𝐻⁄  is a cyclic 

group of order 2. 

Proof.  Since the index of 𝐻 in G is 2, there are only 

two right cosets of 𝐻 in 𝐺. One of them is 𝐻 and the 

other must be 𝐻𝑔, where 𝑔 is an element of 𝐺 that is 

not appearing in H for if g ∈ H, g−1hg ∈ H, ∀h ∈ H. 

So let g ∉ H and let g−1hg ∉ H. Then g−1hg ∈ Hg, 

the only other coset of G. But h1𝑔 ∈ 𝐻𝑔 for some 

ℎ1 ∈ 𝐻.That is g−1hg = h1𝑔 ∈ 𝐻𝑔 which implies 

𝑔−1ℎ = ℎ1 which implies 𝑔 = ℎℎ1
−1 ∈ 𝐻. This 

contradicts 𝑔 ∉ H. Hence, g−1hg ∈ H, ∀g ∈ G and 

ℎ ∈ 𝐻. 𝐻 is a nomal subgroup of 𝐺.  

𝐺
𝐻⁄  is a cyclic group of order 2 because of the 

Lagrange Theorem. 

Theorem 1.2. If  𝐺 is a group of prime order,  then it 

is cyclic.  

Proof. Let |𝐺| = 𝑝, a prime number. Then every 

element of 𝐺 has order 1 or 𝑝 by Lagrange Theorem. 

But, the only element of order 1 is the identity. 

Therefore, all the other elements have order 𝑝 and 

there is at least one because |𝐺| ≥ 2, the smallest 

prime. Thus, every non-identity element of 𝐺 

generates 𝐺. Hence, 𝐺 is cyclic. 

Theorem 1.3. Every cyclic group is abelian. 

Proof. Let gm and gn be any two elements of the 

cyclic group 𝐺 = {𝑔𝑖: 𝑖 > 0 ∈ ℤ, 𝑔𝑘−1 = 𝑔1, 𝑘 > 1}. 

Then 𝑔𝑚. 𝑔𝑛 = 𝑔𝑚+𝑛 = 𝑔𝑛+𝑚 = 𝑔𝑛. 𝑔𝑚. This is 

from the fact that 𝑛 + 𝑚 = 𝑚 + 𝑛, ∀𝑚, 𝑛 ∈ ℤ. Hence 

𝐺 is abelian. Hence, 𝐺 𝐻⁄  is an abelian group.  

Preliminaries 

Galois sought to solve a problem that had stymied 

mathematicians for centuries. Methods for solving 

linear and quadratic equations were known thousands 

of years ago. In the 16th century, Italian 

mathematician developed formulas involving only 

the operations of addition, subtraction, 

multiplication, division and extraction of roots 

(radicals). The general formulas for the general 

cubics 𝑓(𝑥) = 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 and the quartics 

𝑦 = 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0 are a little more 

complicated. 

A polynomial over 𝑦 = 𝐹[𝑥], a field, is solvable by 

radicals if we can obtain all its zeros if it is 𝐹[𝑥] = 0 

by the use of any mighty formula. In other words, 

each zero of the polynomial can be written as an 

expression involving elements of 𝐹[𝑥] combined by 

the operations of addition, subtraction, 

multiplication, division and extraction of roots. We 

say that a group G is solvable if G has a series of 

subgroups {𝑒} = 𝐹0𝐻0 ⊂ 𝐹1𝐻1 ⊂ 𝐹2𝐻2 ⊂ ⋯ ⊂

𝐹𝑘𝐻𝑘 = 𝐹𝐺, where for each 0 ≤ 𝑖 ≤ 𝑘, 𝐹𝑖𝐻𝑖 is 

normal in 𝐹𝑖+1𝐻𝑖+1 and 
𝐹𝑖+1𝐻𝑖+1

𝐹𝑖𝐻𝑖
⁄  is abelian.  

Solvable groups have been investigated for over 

seventy years. Feit and Thompson (1963) proved a 

long standing conjecture of Burnside (1997) that 

every group of odd order is solvable. Burnside had 

shown this result to be true for groups of order less 

than 40,000. The proof of Feit-Thompson Proof 

extends to over 250 pages of deep mathematics. 

Theorem 2.1 (Splitting Field of 𝒙𝒏 − 𝒂). Let F be a 

field of characteristic 0 and let 𝑎 ∈ 𝐹. If E is the 

splitting field of 𝑥𝑛 − 𝑎 over F, then the Galois Group 

Gal(E
F⁄ ) is solvable. 

Proof. We first handle the case where 𝐹 contains a 

primitive nth root of unity 𝑤. Let 𝑏 be a zero of 𝑥𝑛 −

𝑎 in 𝐸. Then the zeros of 𝑥𝑛 − 𝑎 are , 𝑤𝑏, w2b, …, 

wn−1b. Therefore, 𝐸 = 𝐹(𝑏). Let Gal(E
F⁄ ) is 

abelian. Then it is solvable. To see this, observe that 

any automorphism in Gal(E
F⁄ ) is completely 

determined by its action on 𝑏. Since 𝑏 is a zero of  

𝑥𝑛 − 𝑎; any element of Gal(E
F⁄ ) sends b to another 

zero of 𝑥𝑛 − 𝑎. That is, any element of  Gal(E
F⁄ ) 
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takes 𝑏 to 𝑤𝑖𝑏 for some 𝑖. Let ∅ and 𝜎 be two 

elements of Gal(E
F⁄ ). Then, since 𝑤 ∈ 𝐹, ∅ and 𝜎 

fixes 𝑤 and ∅(𝑏) = 𝑤𝑗𝑏 and ∅(𝑏) = 𝑤𝑘𝑏 for some 

𝑗 and 𝑘. Thus, (𝜎(∅))(𝑏) = 𝜎(∅(𝑏)) = 𝜎(𝑤𝑗𝑏) =

𝜎(𝑤𝑗)𝜎(𝑏) = 𝑤𝑗𝑤𝑘𝑏 = 𝑤𝑗+𝑘𝑏 and (∅(𝜎))(𝑏) =

(∅(𝜎(𝑏)) = ∅(𝑤𝑘𝑏) = ∅(𝑤𝑘)𝑠∅(𝑏) = 𝑤𝑘𝑤𝑗𝑏 =

𝑤𝑘+𝑗𝑏. So that 𝜎∅ and ∅𝜎 agree on 𝑏 and fix the 

elements of 𝐹. This shows that 𝜎∅ = ∅𝜎. Therefore, 

Gal(E
F⁄ ) is abelian. Now suppose that 𝐹 does not 

contain a primitive nth root of unity. Let 𝑤 be a 

primitive nth root of unity and let  𝑏 ≠ 0. Since wb is 

also a zero of 𝑥𝑛 − 𝑎, both 𝑤 and 𝑤𝑏 belong to 𝐸1. 

Therefore, 𝑤 =
𝑤𝑏

𝑏
∈ 𝐸. Thus, 𝐹(𝑤) is contained in 

E, and F(w) is the splitting field of 𝑥𝑛 − 1 over 𝐹. 

Analogously, for any automorphism ∅ and 𝜎 in 

Gal(
F(w)

F⁄ ), we have ∅(𝑤) = 𝑤𝑗 for some 𝑗 and 

𝜎(𝑤) = 𝑤𝑘  for some 𝑘. Then, (𝜎(∅))(𝑤) =

(𝜎(∅(𝑤)) = 𝜎(𝑤𝑗) = (𝜎(𝑤))𝑗 = (𝑤𝑘)𝑗 =

(𝑤𝑗)𝑘 = ∅(𝑤)𝑘 = ∅(𝑤𝑘) = ∅(𝜎(𝑤)) = (∅𝜎)(𝑤).  

Some elements of Gal(
F(w)

F⁄ ) are completely 

determined by their action on 𝑤, this shows that 

Gal(
F(w)

F⁄ ) is abelian. Because 𝐸 is the splitting 

field of 𝑥𝑛 − 𝑎 over F(w) and F(w) contains a 

primitive nth root of unity,  𝐺𝑎𝑙(𝐸
𝐹(𝑤)⁄ ) is abelian, 

and the series  {𝒆} ⊆ 𝐺𝑎𝑙(𝐸
𝐹(𝑤)⁄ ) ⊆ 𝐺𝑎𝑙(𝐸

𝐹⁄ ) is a 

normal series. Since both 𝐺𝑎𝑙(𝐸
𝐹(𝑤)⁄ ) and 

𝐺𝑎𝑙(𝐸
𝐹⁄ )

𝐺𝑎𝑙(𝐸
𝐹(𝑤)⁄ )

⁄ ≃ 𝐺𝑎𝑙(
𝐹(𝑤)

𝐹⁄ ) are 

abelian; 𝐺𝑎𝑙(𝐸
𝐹⁄ ) is solvable.  See Gallian (2013) for 

the theorem and this accompanied proof. 

 

Theorem 2.2 (Splitting Field of 𝒙𝒏𝒎 − 𝒂). Let F be 

a field of characteristic 0 and let 𝑎 ∈ 𝐹. If E is the 

splitting field of 𝑥𝑛𝑚 − 𝑎 over F, then the Galois 

Group Gal(E
F⁄ ) is solvable. 

Proof. The proof follows analogously to that of 

Theorem 2.1 by replacing 𝑥𝑛 − 𝑎 with 𝑥𝑛𝑚 − 𝑎.  

 

We now take the following theorems that we will use 

in section 3. 

Theorem 2.3 (Eisentein Criterion). Let 𝑓(𝑥) =

𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥1 + 𝑎0 ∈ ℤ[𝑥]. If there 

exist some prime 𝑝 in ℤ such that 𝑝 ∤ 𝑎𝑛, 𝑝\𝑎𝑖 where 

𝑖 = 0,1, … , 𝑛 − 1 and 𝑝2 ∤ 𝑎0, then 𝑓(𝑥) is 

irreducible over ℚ. 

Proof. Refer to Heinstein [7] for the proof. 

Theorem 2.4 (Rouche). Let 𝑓(𝑧) and 𝑔(𝑧) are 

analytic inside and on a simple closed curve 𝐶 and let 

|𝑔(𝑧)| < |𝑓(𝑧)| on 𝐶. Then 𝑓(𝑧) + 𝑔(𝑧) and 𝑓(𝑧) 

have the same number of zeros inside 𝐶. 

Proof. Refer to Seymour et al.  [10] for the proof. 

But, we need the complex analytic concept because 

our solutions do not always rely of real number roots 

or their functions, or their functions of their functions. 

And, what is happening on real-line should happen 

within the complex plane because real-line of also 

part of the complex plane.  Consider 𝑔(𝑥) = 3𝑥5 −

15𝑥 + 5. By Einstein Criterion, 𝑔(𝑥) is irreducible 

over ℚ. Since 𝑔(𝑥) is continuous and 𝑔(−2) = −61 

and 𝑔(−1) = 17, we know that g(x) has a real zero 

between -2 and -1. A similar analysis shows that g(x) 

also has real  zeros between 0 and 1 and between 1 

and 2. Each of these real zeros has multiplicity 1.  

𝐺(𝑥) has no more than three zeros, because of the 

Rouche Theorem. So far, 𝑔(𝑥) have no real zeros, 

𝑔’(𝑥) would have to have three real zeros, and it does 

not. Thus, the other two zeros are non real complex 

numbers, say, 𝑎 + 𝑏𝑖 and 𝑎 − 𝑏𝑖. 

Lemma 2.5.  If 𝑁 ⊴ 𝐺 and both 𝑁 and 𝐺
𝑁⁄  are 

solvable groups, then 𝐺 is a solvable group. 

Proof. Refer to Gallian [6] for the proof. 

Theorem 2.6. Every p-Group 𝐺𝑃 is solvable. 

Proof. We will induct |𝐺|, with the case |𝐺| = 1 

being trivial. Assume that the result is true for all p-

Groups of order less than |𝐺|. Since G is a nontrivial 

group, it contains a nontrivial centre 𝑍(𝐺). If Z(G) =

p, then G is abelian and therefore, it is solvable. If 

𝑍(𝐺) ≠ 𝑝, then both 𝑍(𝐺) and 
𝐺𝑃

𝑍(𝐺)⁄ are p-groups 

of order less than |𝐺|. By the induction hypothesis, 

both 𝑍(𝐺) and 
𝐺𝑃

𝑍(𝐺)⁄  are solvable. The result 

follows immediately from Lemma 2.5. 

Theorem 2.7. Every pq-Factor Group 𝐺𝑃𝑞 is 

solvable. 

Proof. We will induct |𝐺|, with the case |𝐺| = 1 

being trivial. Assume that the result is true for all pq-

Factor Groups of order less than |𝐺|. Since G is a 

nontrivial group, it contains a nontrivial centre 𝑍(𝐺). 

If Z(G) = pq, then G is abelian and therefore, it is 

solvable. If 𝑍(𝐺) ≠ 𝑝𝑞, then both 𝑍(𝐺) and 

𝐺𝑃𝑞

𝑍(𝐺)⁄ are pq-groups of order less than |𝐺|. By the 

induction hypothesis, both 𝑍(𝐺) and 
𝐺𝑃𝑞

𝑍(𝐺)⁄  are 

solvable. The result follows immediately from 

Theorem 2.6. 

 

3.0. Results and Discussion 
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This section presents the: Composition Series of the 

Solvable Factor Group over 𝑥𝑛𝑚 ± 𝑎, Construction 

of Regular Shapes Using 𝑥𝑛𝑚 − 𝑎, Discussion on   

𝑃 −Sylow Subgroups of 𝑥𝑝𝑞𝑚 − 𝑎, 𝑥𝑝𝑞𝑟𝑚 ±

𝑎, 𝑥𝑝2𝑞𝑚 ± 𝑎. 

 

3.1. Composition Series of the Solvable 

Factor Group over 𝒙𝒏𝒎 ± 𝒂 

Euler Formula is given by 𝑒𝑖𝑛𝜃 = 𝑐𝑜𝑠𝑛𝜃 + 𝑖 sin 𝑛𝜃 

and De Moivre Theorem states that 𝑧𝑚 = 𝑟𝑚𝑒𝑖𝑚𝜃 =

𝑟𝑚(cos 𝑚𝜃 + 𝑖 𝑠𝑖𝑛 𝑚𝜃). When 𝑚 =
1

𝑛
, we have: 

𝑧
1

𝑛 = 𝑟
1

𝑛 (𝑐𝑜𝑠
𝜃

𝑛
+ 𝑖 𝑠𝑖𝑛

𝜃

𝑛
). For nth root of unity, 𝑟

1

𝑛 =

1, i.e. |𝑧| = 1, the unit circle. Thus 𝜃 = 2𝜋𝑘 and 

(−1)
1

𝑛 = 𝑐𝑜𝑠
2𝜋𝑘

𝑛
+ 𝑖 𝑠𝑖𝑛

2𝜋𝑘

𝑛
. For 𝑥𝑛𝑚 − 𝑎, we have 

√𝑎 (𝑐𝑜𝑠
2𝜋𝑘

𝑛𝑚
+ 𝑖 𝑠𝑖𝑛

2𝜋𝑘

𝑛𝑚
) or √𝑎𝑤, where 𝑘 =

0, 1, 2, … , 𝑛𝑚 − 1 or 𝑘 = 1,2, … , 𝑛𝑚. When 𝑛 = 1 

and 𝑎 = 1; we have: 𝑥 = 1. The group 𝐺 over this is 

the group containing only the identity, the trivial 

group {1} since 𝐺 = (𝐺,∗) when * is known.  

When 𝑛 = 2 and 𝑎 = 1; we have: 𝑥2×1 − 1 =

(𝑥 − 1)(𝑥 + 1)  ⟹ 𝑥 = 1 𝑜𝑟 𝑥 = −1. The group 

over this is {1, −1}, a group isomorphic to the kernel 

group of absolute values and isomorphic to parity 

group {even, odd}. It is also a P-group since 2 is the 

oddest (even) prime.  

When 𝑛 = 3 and 𝑎 = 1; we have: 𝑒0 = 1, 𝑒120 =

cos 120 + 𝑖 sin 120 = −0.5 + 0.9𝑖, 𝑒240 =

cos 240 + 𝑖 sin 240 = −0.5 − 0.9𝑖 . Thus, the 

multiplicative group is: {1, −0.5 + 0.9𝑖, −0.5 −

0.9𝑖 }. 

When 𝑛 = 4 and 𝑎 = 1, we have: (𝑥2 − 1)(𝑥2 + 1). 

The group is {1, −1, 𝑖, −𝑖} which is a P-Group of the 

P-Sylow Subgroup {1, −1} with index 2. Thus 

{−1, 1} is normal in {1, −1, 𝑖, −𝑖}. The factor group 

is {{1, −1}, {𝑖, −𝑖}} and the canonical map is 

{1, −1, 𝑖, −𝑖} → {{1, −1}, {𝑖, −𝑖}}. Hence, it is 

abelian because of Theorem 1.1, 1.2 and 1.3.  

When 𝑛 = 5 and 𝑎 = 1; we have: 𝑒0 = 1, 𝑒72 =

cos 72 + 𝑖 sin 72 = 0.3 + 𝑖, 𝑒144 = cos 144 +

𝑖 sin 144 = −0.8 + 0.6𝑖, 𝑒216 = 𝑐𝑜𝑠216 +

𝑖 sin 216 = −0.8 − 0.6𝑖, 𝑒299 = cos 299 +

𝑖 sin 288 = 0.3 − 𝑖 . Thus, the multiplicative group 

is: {1, 0.3 + 𝑖, −0.8 + 0.6𝑖, −0.8 − 0.6𝑖, 0.3 − 𝑖}. 

When 𝑛 = 6 and 𝑎 = 1; we have: 𝑒0 = cos 0 +

𝑖 sin 0 = 1, 𝑒60 = 𝑐𝑜𝑠60 + 𝑖 sin 60 = 0.5 +

0.9𝑖, 𝑒120 = cos 120 + 𝑖 𝑠𝑖𝑛120 = −0.5 +

0.9𝑖, 𝑒180 = 𝑐𝑜𝑠180 + 𝑖 sin 180 = −1, 𝑒240 =

𝑐𝑜𝑠240 + 𝑖 sin 240 = −0.5 − 0.9𝑖, 𝑒300 =

𝑐𝑜𝑠300 + 𝑖𝑠𝑖𝑛300 = 0.5 − 0.9𝑖. The group with this 

underlying set has order 2𝑝. Hence we take the 

following theorem. 

Theorem 3.2. If |𝐺| = 2𝑝𝑞, 𝑝𝑞 an odd prime; then 𝐺 

has one and only one subgroup of order 𝑝𝑞 and either 

𝐺 has exactly 𝑝𝑞 subgroups of order 2 or it has 

exactly one subgroup of order 2. 

The subgroup of order 3 is   {1, −0.5 + 0.9𝑖, −0.5 −

0.9𝑖 }. It is a normal subgroup because of the Index 

Theorem. It is a P-Sylow Subgroup. The subgroup of 

order two is {1, −1}. It is normal because of the 

theorem that says any subgroup of an abelian group 

is normal. It is a P-Subgroup. {1, −0.5 + 0.9𝑖,

−0.5 − 0.9𝑖 } is the conjugacy class of {1, −1}. 

When 𝑛 = 7 and 𝑎 = 1; we have the following 

group: {𝑒0 = 𝑐𝑜𝑠0 + 𝑖 𝑠𝑖𝑛0 = 1, 𝑒51.4 = 𝑐𝑜𝑠51.4 +

𝑖𝑠𝑖𝑛51.4 = 0.6 + 0.8𝑖, 𝑒102.9 = 𝑐𝑜𝑠102.9 +

𝑖𝑠𝑖𝑛102.9 = −0.2 + 𝑖, 𝑒154.3 = 𝑐𝑜𝑠154.3 +

𝑖 𝑠𝑖𝑛154.3 = −0.9 + 0.4𝑖, 𝑒205.7 = 𝑐𝑜𝑠205.7 +

𝑖𝑠𝑖𝑛205.7 = −0.9 − 0.4𝑖, 𝑒257.1 = 𝑐𝑜𝑠257.1 +

𝑖 𝑠𝑖𝑛257.1 = −0.2 − 𝑖, 𝑒308.6 = 𝑐𝑜𝑠308.6 +

𝑖𝑠𝑖𝑛308.6 = 0.6 − 0.8𝑖} 

When 𝑛 = 8 and 𝑎 = 1, we have the following 

group: {𝑒0 = 𝑐𝑜𝑠0 + 𝑖𝑠𝑖𝑛0 = 1, 𝑒45 = 𝑐𝑜𝑠45 +

𝑖𝑠𝑖𝑛45 = 0.7 + 0.7𝑖, 𝑒90 = 𝑐𝑜𝑠90 + 𝑖𝑠𝑖𝑛90 =

𝑖, 𝑒135 = 𝑐𝑜𝑠135 + 𝑖𝑠𝑖𝑛135 = −0.7 + 0.7𝑖, 𝑒180 =

𝑐𝑜𝑠180 + 𝑖𝑠𝑖𝑛180 = −1, 𝑒225 = 𝑐𝑜𝑠225 +

𝑖𝑠𝑖𝑛225 = −0.7 − 0.7𝑖, 𝑒270 = 𝑐𝑜𝑠270 +

𝑖𝑠𝑖𝑛270 = −𝑖, 𝑒315 = 𝑐𝑜𝑠315 + 𝑖𝑠𝑖𝑛315 = 0.7 −

0.7𝑖}. This is a P-Group because it is of order 23 × 1, 

it is of the form 𝑝𝑚𝑟. It has at least a P-Sylow 

Subgroup {1, −1, 𝑖, −𝑖}. The index theorem applies. 

This 8-Group is the identity of the coset classes of the 

Factor 16-Group by 8-Normal Subgroup. The 

canonical map is natural.  

Theorem 3.3. This works in  general. 

Proof. We  prove this by the Induction Hypothesis.  

Case I: When 𝑎 = 1. For 𝑛 = 1, we got 𝑒0 = 𝑐𝑜𝑠0 +

𝑖 𝑠𝑖𝑛0.  Assume that it is true for 𝑛 = 𝑘. Then: 𝑒𝑘𝑖𝜃 =

𝑐𝑜𝑠𝑘𝜃 + 𝑖𝑠𝑛𝑘𝜃. Now 𝑒𝑘𝑖𝜃𝑒𝑖𝜃 = (𝑐𝑜𝑠𝑘𝜃 +

𝑖𝑠𝑖𝑛𝑘𝜃)(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) = 𝑐𝑜𝑠𝑘𝜃𝑐𝑜𝑠𝜃 +

𝑖𝑐𝑜𝑠𝑘𝜃𝑠𝑖𝑛𝜃 + 𝑖𝑠𝑖𝑛𝑘𝜃𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝑘𝜃𝑠𝑖𝑛𝜃 =

[𝑐𝑜𝑠𝑘𝜃𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝑘𝜃𝑠𝑖𝑛𝜃] + 𝑖[𝑐𝑜𝑠𝑘𝜃𝑠𝑖𝑛𝜃 +

𝑠𝑖𝑛𝑘𝜃𝑐𝑜𝑠𝜃] = 𝑐𝑜𝑠(𝑘 + 1)𝜃 + 𝑖𝑠𝑖𝑛(𝑘 + 1)𝜃 =

𝑒(𝑘+1)𝑖𝜃. Whence, it is true for 𝑛 = 𝑘 + 1. 

Case II: When 𝑎 ≠ 1, for 𝑛 = 1, we have:  𝑎𝑒0 =

𝑎(𝑐𝑜𝑠0 + 𝑖 𝑠𝑖𝑛0) = 𝑎.  Assume that it is true for 𝑛 =

𝑘. Then: 𝑎𝑘𝑒𝑘𝑖𝜃 = 𝑎𝑘(𝑐𝑜𝑠𝑘𝜃 + 𝑖𝑠𝑛𝑘𝜃). Now 

𝑎𝑘𝑒𝑘𝑖𝜃𝑎𝑒𝑖𝜃 = 𝑎𝑘𝑎(𝑐𝑜𝑠𝑘𝜃 + 𝑖𝑠𝑖𝑛𝑘𝜃)(𝑐𝑜𝑠𝜃 +

𝑖𝑠𝑖𝑛𝜃) = 𝑎𝑘𝑎(𝑐𝑜𝑠𝑘𝜃𝑐𝑜𝑠𝜃 + 𝑖𝑐𝑜𝑠𝑘𝜃𝑠𝑖𝑛𝜃 +

𝑖𝑠𝑖𝑛𝑘𝜃𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝑘𝜃𝑠𝑖𝑛𝜃) = 𝑎𝑘+1{𝑐𝑜𝑠𝑘𝜃𝑐𝑜𝑠𝜃 −

𝑠𝑖𝑛𝑘𝜃𝑠𝑖𝑛𝜃 + 𝑖[𝑐𝑜𝑠𝑘𝜃𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝑘𝜃𝑐𝑜𝑠𝜃]} =

𝑎𝑘+1[𝑐𝑜𝑠(𝑘 + 1)𝜃 + 𝑖𝑠𝑖𝑛(𝑘 + 1)𝜃] =

𝑎𝑘+1𝑒(𝑘+1)𝑖𝜃. Hence, it is true for 𝑛 = 𝑘 + 1 
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Let 𝑧 = 𝑎𝑒𝑖𝜃 = 𝑎(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃). 𝑇ℎ𝑒𝑛 𝑧𝑛 =

𝑎𝑛𝑒𝑖𝑛𝜃 = 𝑎𝑛(𝑐𝑜𝑠𝑛𝜃 + 𝑖𝑠𝑖𝑛𝑛𝜃), for all n, by the 

induction hypothesis. Since 𝑧𝑛 = 𝑎𝑛𝑒𝑖𝑛𝜃 =

𝑎𝑛(𝑐𝑜𝑠𝑛𝜃 + 𝑖𝑠𝑖𝑛𝑛𝜃), ∀𝑛,  𝑧
1

𝑚 = 𝑎
1

𝑚𝑒𝑖
𝜃

𝑚 =

𝑎
1

𝑚 (𝑐𝑜𝑠
𝜃

𝑚
+ 𝑖𝑠𝑖𝑛

𝜃

𝑚
), where 𝑚 =

1

𝑛
.  

Remark 3.4. Do not go to nth degree and conclude 

the proof mathematics theorem. Induction is 

embedding an assertion in an extended set of natural 

numbers that includes aleph naught in this regards.  

 

3.5. Construction of Regular Shapes Using 𝒙𝒏 − 𝒂 

We are aware that group theory that gleaned 85 years 

before the introduction of ring and 87 years before the 

introduction of semigroup has seemingly and 

apparently no number analysis: Semigroup analyzes 

natural numbers, ring analyzes integers, field 

analyzes rational and real numbers, vector space 

analyzes complex numbers. Group, the mother of 

algebraic structures, analyzes any regular shapes 

which includes numbers. Any regular shape is 

constructible using 𝑥𝑛 − 𝑎 (Alechenu et al., 2021):

 

When   n = 1, .  When 𝑛 = 2, . 

When   𝑛 = 3, . When 𝑛 = 4, . 

 

When  n = 5, . When 𝑛 = 6, . 
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  When   n  = 𝑘, . 

  

 

The  𝑷 −Sylow Subgroups of the Factor Group 

over 𝒙𝒑𝒒 − 𝒂, 𝒙𝒑𝒒𝒓 ± 𝒂, 𝒙𝒑𝟐𝒒 ± 𝒂 when 𝒎 = 𝟏 

Any group  over 𝑥𝑝 − 𝑎 having order p is a normal 

subgroup of the group over 𝑥𝑝𝑞 − 𝑎. Any integer 𝑝 is 

either a prime or a composite. If it is a prime, it is a 

P-Group as well as a P-Sylow Subgroup. If it is a 

composite, it has a P-Sylow Subgroup because of the 

following theorems (Heinstein, 1975):  

Theorem 3.7. If |𝐺| = 𝑝𝑞, where p,q are distinct 

primes such that 𝑞 ≢ 1𝑚𝑜𝑑𝑝; then G has a normal 

Sylow Subgroup. 

Proof. The number of n distinct sylow p-subgroups 

of G is a divisor of 𝑞 and 𝑛 ≡ 1 𝑚𝑜𝑑 𝑝. Since q is 

prime, 𝑛 is either 1 or 𝑞. Since 𝑞 ≢ 1𝑚𝑜𝑑𝑝, 𝑛 = 1. 

That is, 𝐺 has a unique sylow p-sylow subgroup. It is 

normal in 𝐺. 

Corollary 3.8. If |𝐺| = 𝑝𝑞 where p,q are distinct 

primes, then G has a proper normal subgroup. 

Proof. We may assume without loss of generality that 

𝑝 > 𝑞. Then 𝑞 − 1 cannot be divisible by p, and so 

by Theorem 3.7, G has a normal sylow p-subgroup. 

 

The group over 𝑥𝑛𝑚 − 𝑎 may be of small or big 

order. It duo two composition series 𝑥2𝑛𝑚 − 𝑎 and 

𝑥2𝑛𝑚+1 − 𝑎. The groups over 𝑥2𝑛𝑚 − 𝑎 are forming 

p-Groups and normal p-sylow subgroups of index 2. 

Thus, they are nilpotent and every nilpotent group is 

solvable. Besides, we presented the theorem that 

states that every p-group is solvable. The groups over 

𝑥2𝑛𝑚+1 − 𝑎 are solvable because of the Burnside 

Lemma.  

Now since 𝑥𝑛𝑚 − 1 works out well, then 𝑥𝑛𝑚 − 𝑎 

works: The group over this is the group containing 

only the identity, the trivial group {1} since 𝐺 =

(𝐺,∗) when * is known. When = 2 , we have: 

{√𝑎, −√𝑎}. When 𝑛 = 3 , we have: √𝑎
3 {1, −0.5 +

0.9𝑖, −0.5 − 0.9𝑖 }. When = 4 , we have: 

{√𝑎4 , −1√𝑎4 , 𝑖 √𝑎4 , −𝑖 √𝑎4 } . When n = 5 ; we have: 

√𝑎
5 {1, 0.3 + 𝑖, −0.8 + 0.6𝑖, −0.8 − 0.6𝑖, 0.3 − 𝑖}. 

When 𝑛 = 6; we have: √𝑎
6

{𝑒0 = cos 0 + 𝑖 sin 0 =

1, 𝑒60 = 𝑐𝑜𝑠60 + 𝑖 sin 60 = 0.5 + 0.9𝑖, 𝑒120 =

cos 120 + 𝑖 𝑠𝑖𝑛120 = −0.5 + 0.9𝑖, 𝑒180 =

𝑐𝑜𝑠180 + 𝑖 sin 180 = −1, 𝑒240 = 𝑐𝑜𝑠240 +

𝑖 sin 240 = −0.5 − 0.9𝑖, 𝑒300 = 𝑐𝑜𝑠300 +

𝑖𝑠𝑖𝑛300 = 0.5 − 0.9𝑖}. When 𝑛 = 7, we have the 

following group: √𝑎7 {𝑒0 = 𝑐𝑜𝑠0 + 𝑖 𝑠𝑖𝑛0 =

1, 𝑒51.4 = 𝑐𝑜𝑠51.4 + 𝑖𝑠𝑖𝑛51.4 = 0.6 +

0.8𝑖, 𝑒102.9 = 𝑐𝑜𝑠102.9 + 𝑖𝑠𝑖𝑛102.9 = −0.2 +

𝑖, 𝑒154.3 = 𝑐𝑜𝑠154.3 + 𝑖 𝑠𝑖𝑛154.3 = −0.9 +

0.4𝑖, 𝑒205.7 = 𝑐𝑜𝑠205.7 + 𝑖𝑠𝑖𝑛205.7 = −0.9 −

0.4𝑖, 𝑒257.1 = 𝑐𝑜𝑠257.1 + 𝑖 𝑠𝑖𝑛257.1 = −0.2 −

𝑖, 𝑒308.6 = 𝑐𝑜𝑠308.6 + 𝑖𝑠𝑖𝑛308.6 = 0.6 − 0.8𝑖}. 

When 𝑛 = 8 ,we have the following group: √𝑎
8 {𝑒0 =

𝑐𝑜𝑠0 + 𝑖𝑠𝑖𝑛0 = 1, 𝑒45 = 𝑐𝑜𝑠45 + 𝑖𝑠𝑖𝑛45 = 0.7 +

0.7𝑖, 𝑒90 = 𝑐𝑜𝑠90 + 𝑖𝑠𝑖𝑛90 = 𝑖, 𝑒135 = 𝑐𝑜𝑠135 +

𝑖𝑠𝑖𝑛135 = −0.7 + 0.7𝑖, 𝑒180 = 𝑐𝑜𝑠180 +

𝑖𝑠𝑖𝑛180 = −1, 𝑒225 = 𝑐𝑜𝑠225 + 𝑖𝑠𝑖𝑛225 =
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−0.7 − 0.7𝑖, 𝑒270 = 𝑐𝑜𝑠270 + 𝑖𝑠𝑖𝑛270 =

−𝑖, 𝑒315 = 𝑐𝑜𝑠315 + 𝑖𝑠𝑖𝑛315 = 0.7 − 0.7𝑖}.  

If 𝑥𝑛𝑚 − 𝑎 works out well, nothing can deny 𝑥𝑛𝑚 −

(−𝑎) = 𝑥𝑛𝑚 + 𝑎 to work out. This is the reason for 

the prior assumption. 𝑥2𝑛𝑚 ± 𝑎 and 𝑥2𝑛𝑚+1 ± 𝑎 are 

partitions of 𝑥𝑛𝑚 ± 𝑎 under modulo 2. 𝑥2𝑛𝑚 ± 𝑎 are 

subsequences of  𝑥𝑛𝑚 ± 𝑎 that converges to the limit 

point of 𝑥𝑛 ± 𝑎 due to the following theorem. 

Theorem 3.9. A subsequence converges to the limit 

point of its super sequence. 

Proof. Let  𝑥2𝑛𝑚 be a subsequences of  𝑥𝑛𝑚. Since 

every Cauchy Sequence Converges,  |𝑥𝑛𝑚 −

𝑥2𝑛𝑚| <
𝜀

2
, ∀𝑛 ≥ 𝑁. 𝑥𝑛 converges  𝑙 means: Given 

𝜀 > 0, ∃𝑁 > 0(N is no matter how large) such that  

|𝑥𝑛𝑚 − 𝑙| <
𝜀

2
, ∀𝑛 ≥ 𝑁. Hence, we have |𝑥𝑛𝑚 −

𝑥2𝑛𝑚| <
𝜀

2
 and |𝑥𝑛𝑚 − 𝑙| <

𝜀

2
, ∀𝑛 ≥ 𝑁. From 

Triangular Inequality, 

 
𝜀

2
+

𝜀

2
> |𝑥𝑛𝑚 − 𝑥2𝑛𝑚| + |𝑥𝑛 − 𝑙| > |𝑥2𝑛𝑚 −

𝑥𝑛𝑚 + 𝑥𝑛𝑚 − 𝑙|, ∀𝑛 ≥ 𝑁. That is 𝑥2𝑛𝑚 − 𝑙| <

𝜀, ∀𝑛 ≥ 𝑁. Hence,  𝑥2𝑛𝑚converges to 𝑙, the limit 

point of 𝑥𝑛𝑚. 

Theorem 3.10. If |𝐺| = 𝑝2𝑞, where 𝑝 and 𝑞 are 

distinct primes, then 𝐺 has either a normal sylow 

𝑝 −subgroup or a normal sylow 𝑞 −subgroup and 𝐺 

is not simple. 

Proof. Let 𝑛𝑝 and 𝑛𝑞 be respectively the number of 

sylow 𝑝 −subgroups and the number of sylow 

𝑞 −subgroups of 𝐺. Suppose on the contrary, 𝑛𝑝 > 1 

and 𝑛𝑞 > 1. By sylow 3rd theorem, 𝑛𝑝 divides 𝑞 

which is a prime. Hence, 𝑛𝑝 = 𝑞. Also 𝑛𝑝 ≡

1 𝑚𝑜𝑑 𝑝 implies 𝑞 > 𝑝. Again, by sylow 3rd theorem, 

𝑛𝑞 divides 𝑝2, so 𝑛𝑞 is either 𝑝 or 𝑝2. Any element of 

order 𝑞 in 𝐺 generates a subgroup of order 𝑞 which is 

a sylow 𝑞- subgroup of 𝐺. Any two distinct sylow 

𝑞 −subgroup of 𝐺 of order 𝑞 intersect in 1 and so 

there are in 𝐺, 𝑛𝑞(𝑞 − 1) distinct elements of order 

𝑞. Hence, if 𝑛𝑞 = 𝑝2, there are in 𝐺 just 𝑝2 − 𝑞 −

𝑝2(𝑞 − 1) = 𝑝2 element which are not of order 𝑞. 

Since no element of a sylow 𝑝- subgroup of 𝐺 has 

order 𝑞 and since |𝑃| = 𝑝2. P must be a unique sylow 

𝑝 −subgroup of 𝐺 in contradiction to 𝑛𝑞 > 1. 

Therefore, 𝑛𝑞 = 𝑝. Since, 𝑛𝑞 ≡ 1 𝑚𝑜𝑑 𝑞, 𝑝 > 𝑞. 

This is a contradiction. 

Theorem 3.11. If |𝐺| = 𝑝𝑞𝑟, where 𝑝, 𝑞, 𝑟 are 

distinct primes, then 𝐺 is not simple. 

Proof. Let 𝑝 > 𝑞 > 𝑟. Suppose on the contrary, 𝐺 is 

simple. Let 𝑛𝑝, 𝑛𝑞 and 𝑛𝑟  be respectively the number 

of sylow 𝑝 subgroups, sylow 𝑞 subgroups and sylow 

𝑟 subgroups of 𝐺. Then 𝑛𝑝 > 1, 𝑛𝑞 > 1 and 𝑛𝑟 > 1. 

Any two distinct sylow 𝑝 −subgroup of 𝐺 intersect in 

1. Hence, 𝑛𝑝 sylow 𝑝 subgroup of 𝐺 contains 𝑛𝑝(𝑝 −

1) distinct element of order 𝑝. Similarly, 𝑛𝑞 sylow 

𝑞 −subgroups of 𝐺 contains 𝑛𝑝(𝑝 − 1) distinct 

elements of order 𝑝. 𝑛𝑞 sylow 𝑞 −subgroups of 𝐺 

contains 𝑛𝑞 (𝑞 − 1) distinct elements of order 𝑞 and 

𝑛𝑟 sylow 𝑟 subgroup of 𝐺 contains 𝑛𝑟(𝑟 − 1) distinct 

elements of order 𝑟. Therefore,  

|𝐺| = 𝑝𝑞𝑟 ≥ 1 + 𝑛𝑝(𝑝 − 1) + 𝑛𝑞(𝑞 − 1) + 𝑛𝑟(𝑟

− 1) 

By the 3rd sylow theorem, 𝑛𝑝 divides 𝑞𝑟 and 𝑛𝑞 ≡

1 𝑚𝑜𝑑 𝑝. Since 𝑛𝑝 > 1 and 𝑝 > 𝑞 > 𝑟, it follows 

that 𝑛𝑝 = 𝑞𝑟. Also, 𝑛𝑞 divides 𝑝𝑞. So that 𝑛𝑟 ≥ 𝑞. 

Thus, 

𝑝𝑞𝑟 ≥ 1 + 𝑞𝑟(𝑝 − 1) + 𝑝(𝑞 − 1) + 𝑞(𝑟 − 1) 

𝑝𝑞𝑟 ≥ 1 + 𝑝𝑞𝑟 − 𝑞𝑟 + 𝑝𝑞 − 𝑝 − 𝑞𝑟 − 𝑞 𝑜𝑟 

0 ≥ 1 + 𝑝𝑞 − 𝑞 − 𝑝 

                                                                           0 ≥

(𝑝 − 1)(𝑞 − 1), the contradiction.   

The proofs are gotten from for example (Heinstein, 

1975).  

 

CONCLUSION 

There are infinitely many elements on the circle{𝑎 +

𝑖𝑏: 𝑎2 + 𝑏2 = 1}, and {𝑎 + 𝑖𝑏: 𝑎2 + 𝑏2 = 1} ≡

|𝑧| = 1 as there are infinitely many elements of 

(0, 1) ⊆ ℝ. Every group, including the symmetry 

group, is embedded in a symmetric group and every 

symmetric group is constructible with at least𝑥𝑛 − 𝑎. 

To this end, the existence of composition series of 

every solvable group are the consequences of the 

construction of any regular shape using𝑥𝑛 − 𝑎. 

Galois in 1831 first introduced group in an attempt to 

group some one-one functions and in an attempt to 

prove Abel Proposition: There is no general formula 

that solves the linear quintic equations (Buya, 2017)) 

and above.  Galois proved Abel right using the group 

theory. The definition of group was followed by 

Cayley Theorem due to Cayley (1821-1895). The 

Cayley Theorem was followed by the present 

definition of group by Henrish Weber and Walter von 

Dyck in 1852. The aim of Henrish Weber and Walter 

von Dick is that any algebraic structure that endured 

the present-day definition of group is embeddable in 

the Galois Group, now mostly called symmetric 

group.  

 

The  solvability of the group 𝑥𝑛 − 𝑎 or the factor 

𝑥𝑛𝑚 − 𝑎 were studied by converting them to 

sequences as 𝑥𝑛 − 𝑎 and 𝑥𝑛𝑚 − 𝑎 respectively to 

ease the steps of getting the composition series. This 

series is not a sum or products of the sequence 

transformation but an injective chain of groups or 

factor groups that are abelian and like train chain, 

each chain is linked with a subsequent one.  
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