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ABSTRACT

Household reliance on biomass energy is a major driver of land-cover change in rural Nigeria. This study used
socio-economic surveys (n = 150), statistical analyses, and NDVI-based Land Use and Land Cover (LULC)
assessment from multi-temporal Landsat imagery (1990-2025) to examine fuelwood consumption and
vegetation dynamics in Dorok District, Plateau State. Results show high fuelwood use, with mean daily
consumption of 14.27 kg per household (1.78 kg per capita). Female-headed households consumed more than
male-headed households, and consumption increased with household size, while education had minimal effect.
NDVI analysis revealed that vegetation loss was not significantly driven by fuelwood harvesting, with broader
land-use changes as the dominant factor. The 2025 LULC classification showed high reliability: water bodies
and built-up areas were mapped most accurately, while vegetation classes had moderate accuracy due to
heterogeneous landscapes. Overall Accuracy (85%) and Kappa (0.77) confirm the dataset’s robustness for
spatial and ecological analysis. These findings highlight the need for gender-sensitive energy interventions,
adoption of alternative household fuels, and community-based conservation. The study demonstrates the value
of validated LULC datasets for monitoring landscape change, understanding vegetation dynamics, and

informing sustainable land management in rural Nigeria.

Keywords: Biomass Energy Dependence, Socio-Demographic Determinants, Remote Sensing
and NDVI, Rural Household Energy, Land-Cover Change Analysis

INTRODUCTION

Fuelwood remains a critical household energy source
globally, particularly in low- and middle-income countries
where access to clean cooking technologies is limited. Recent
estimates indicate that more than 2.3 billion people continue
to rely on biomass fuels, including fuelwood, charcoal, and
agricultural residues, for cooking and heating (WHO, 2022;
IEA, 2023). Persistent dependence on fuelwood reflects
widespread energy poverty, low household incomes, and
limited access to affordable modern fuels. Despite sustained
clean-cooking initiatives, fuelwood demand remains high due
to population growth, affordability, cultural preferences, and
fuel-stacking behavior (Van der Kroon et al., 2013; Shankar
et al., 2020).

Global assessments indicate that fuelwood removals
constitute a significant share of total roundwood extraction,
resulting in reductions in canopy cover, altered species
composition, and increased carbon emissions where
harvesting exceeds natural regeneration (FAO, 2020, 2024;
WHO, 2024). Recent advances integrating household energy
data with remote-sensing indicators such as the Normalized
Difference Vegetation Index (NDVI) and land-cover time
series have improved the identification of fuelwood extraction
hotspots and associated vegetation change (IEA, 2023; FAO,
2024). The literature increasingly emphasizes the need for
integrated  socio-ecological frameworks that combine
household-level energy assessment with spatial analysis to
support sustainable land and energy management (Shankar et
al., 2020; FAO, 2024).

In Africa, fuelwood accounts for approximately 60-70% of
household energy consumption in many countries (FAO,
2020; IEA, 2023). Sub-Saharan Africa hosts over 900 million
fuelwood users, with continued growth projected due to rapid
population increase and persistent energy-infrastructure
deficits (Zulu & Richardson, 2013; Jeuland et al., 2021).

Sustained extraction places considerable pressure on forest
and woodland resources, leading primarily to vegetation
degradation rather than outright deforestation, particularly
within  savanna ecosystems characterized by slow
regeneration rates (Arnold et al., 2006; Chidumayo & Gumbo,
2013).

In Nigeria, wood is the major source of energy (Salisu,
Muhammad & Umar, 2019). Consequently, Nigeria is among
the most fuelwood-dependent countries in Africa, with
approximately 60—70% of households relying primarily on
wood-based fuels, increasing to over 80% in rural areas
(FAO, 2017; NBS, 2024). Although agricultural expansion
and urbanization contribute to deforestation, unsustainable
fuelwood harvesting remains a key driver of woodland
degradation within the Guinea and Sudan savanna zones
(FAO, 2020). Empirical studies in Plateau State and adjoining
regions demonstrate strong associations between household
socio-economic characteristics and fuelwood consumption,
underscoring the need for integrated analyses linking energy
use, livelihoods, and spatial vegetation change (Chaskda et
al., 2021; FAO, 2024).

Fuelwood dependence in Plateau State is increasing due to
population growth, widespread poverty, and limited access to
clean cooking energy, yet its environmental impacts remain
insufficiently examined (Chaskda et al., 2021; NBS, 2024).
Recent studies indicate that biomass energy continues to
dominate household energy use in the state, reflecting
persistent energy poverty and constrained energy transitions
(Chaskda et al., 2021). In the Jos Plateau, geospatial evidence
reveals significant vegetation loss and land-cover change
driven by human activities, underscoring the vulnerability of
the savanna-woodland ecosystem to sustained biomass
extraction (Alfred et al., 2023; Choji & Nanchang, 2025).
Given this context, this study aims to assess vegetation
dynamics and household fuelwood consumption in Dorok
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District, Shendam Local Government Area, Plateau State.
Specifically, the study seeks to: examine the socio-
demographic characteristics of households and their influence
on fuelwood consumption; assess variations in daily per
capita fuelwood use across gender, household size, and
educational attainment; identify factors influencing the
adoption of alternative energy sources among households;
and analyze land-use and land-cover changes in Dorok
District between 2000 and 2025. Moreover, to guide this
investigation, the study tests four hypotheses: (1) there is no
significant difference in per capita daily fuelwood use
between male- and female-headed households; (2) household
size does not significantly influence daily per capita fuelwood
consumption; (3) educational attainment of household heads
does not significantly affect fuelwood consumption patterns;
and (4) land-use and land-cover changes in Dorok District
between 2000 and 2025 are not significantly associated with
household fuelwood extraction. By integrating household
energy assessment with geospatial analysis, the study seeks to
provide actionable insights for sustainable energy
management and vegetation conservation in the region.
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MATERIALS AND METHODS

The study was conducted in Dorok District, Shendam Local
Government Area, Plateau State, Nigeria. A quantitative
research design was adopted to examine household and socio-
economic determinants of per-capita fuelwood consumption,
enabling statistical assessment of relationships between
socio-demographic factors and consumption outcomes.
Geospatial analysis using NDVI and land-use classification
was integrated to assess temporal and spatial vegetation
dynamics and their link to household fuelwood harvesting.

The Study Area

Dorok District, in Shendam LGA, Plateau State, Nigeria
(8°34'-8°46'N, 9°20'- 9°36'E), is a rural area heavily reliant on
fuelwood. Located in the tropical savanna, its vegetation
comprises tall grasses, scattered deciduous trees, and gallery
forests along Fadama lowlands. With a population of ~
170,833, the district experiences distinct wet and dry seasons,
supporting mainly agrarian livelihoods, including cultivation
of cereals, legumes, and tuber crops (Buba, 2014).
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Figure 1: Map Showing the Study Area

Population and Sample Size

The study population consisted of households across five
villages in Dorok, selected to provide a comprehensive
representation of the area's socio-economic and demographic
variability. Stratified random sampling was used to select
respondents from the five districts. Stratification ensured
proportional representation while reducing selection bias and
facilitating meaningful socio-economic comparisons (Cohen,
Manion & Morrison, 2018) A total of 150 structured
questionnaires were administered, with 30 questionnaires
distributed per district to ensure both adequate sample size
and spatial representativeness. This distribution allows for
meaningful comparisons across districts and reduces the

likelihood of sampling bias. The sample size was sufficient to
satisfy the requirements for Chi-square tests to examine
associations between categorical variables, one-way ANOVA
to assess differences in mean fuelwood consumption across
groups, and non-parametric correlation tests for exploring
monotonic  relationships  between  variables.  This
comprehensive sampling approach provides a robust
foundation for both inferential and descriptive statistical
analyses.
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Sampling Technique

Stratified random sampling was used to select respondents
from the five districts. Stratification ensured proportional
representation while reducing selection bias and facilitating
meaningful socio-economic comparisons (Cohen, Manion &
Morrison, 2018).

Data Collection Through Structural Questionnaires
Structured, closed-ended questionnaires were administered to
household heads or adult representatives. Data captured

included socio-demographic characteristics (age, sex,
education, occupation, household  size), fuelwood
consumption metrics (quantity, frequency, collection

distance), and adoption of alternative energy sources. Closed
ended items facilitated standardization and robust quantitative
analysis (Saunders Lewis & Thornhill, 2023).

Geospatial Data Collection and Analysis

Vegetation dynamics were assessed using multi-temporal
Landsat imagery (1990-2025). Landsat 4 TM, 7 ETM+, and 8
OLI images (Path 187, Row 54) were acquired from USGS
Earth Explorer based on minimal cloud cover and seasonal
comparability. Preprocessing included radiometric and
atmospheric correction to surface reflectance, geometric
correction, reprojection to UTM (WGS84), subsetting, and
gap-filling for SLC-off gaps.

NDVI1 was computed as NDVI = (NIR - Red) / (NIR + Red),
where NIR and Red are reflectance values in the near-infrared
and red bands. NDVI ranges from -1 to + 1, with higher values
indicating denser, healthier vegetation. NDVI rasters were
classified into water, built-up, barren, shrub/grassland, sparse,
and dense vegetation using supervised classification guided
by field data and high-resolution imagery. Zonal statistics and
raster differencing were used to quantify the change in
vegetation. Confusion matrices, overall accuracy, user and
producer accuracy, and the Kappa coefficient were all used in
the accuracy assessment.

Accuracy of Lulc Chage Classification

The 2025 land-use and land-cover (LULC) classification was
evaluated using Overall Accuracy (OA), Kappa coefficient
(), User’s Accuracy (UA), and Producer’s Accuracy (PA),
derived from a confusion matrix based on ground truth
reference samples. The matrix compares map classes (rows)
to reference classes (columns), with diagonal elements
representing correctly classified pixels and off-diagonal
elements representing misclassifications.
Overall Accuracy is the proportion of correctly classified
pixels to total samples. The Kappa coefficient adjusts OA for
agreement due to chance, calculated as:

k= (Po-Pe)/(1-Pe)

where Po is observed agreement (OA) and Pe is expected
agreement by chance, calculated as:
Pe = X (Row total x Column total) / N2
Here, Row total and Column total are the marginal totals for
each class, and N is the total number of validation samples.
Producer’s Accuracy (PA) reflects omission error, calculated
as the proportion of reference pixels correctly classified for a
class. User’s Accuracy (UA) reflects commission error,
calculated as the proportion of map-classified pixels that are
correct. Combined, these metrics provide a robust, class-
specific evaluation of LULC change reliability, ensuring that
NDVI-based  vegetation analyses and landscape
interpretations are based on validated data.
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Statistical Analyses

Statistical analyses were employed to examine socio-
demographic determinants of fuelwood consumption and the
adoption of alternative energy sources. Chi-square tests were
used to assess associations between categorical variables,
while one-way ANOV A tested differences in mean per-capita
fuelwood consumption across educational  groups.
Spearman's rank correlation was applied to evaluate
monotonic relationships between household size and per-
capita fuelwood use. Repeated measures ANOV A was
applied to NDVI time-series data to evaluate temporal
changes in vegetation cover while accounting for within-unit
correlations. All analyses were conducted at a 5%
significance level.

Ethical Considerations

Ethical standards were strictly observed. Respondents were
informed of the purpose of the study, assured of
confidentiality, and participation was voluntary. No personal
identifiers were included in the dataset. The study adhered to
recognised ethical guidelines for social science research and
environmental studies (WHO).

RESULTS AND DISCUSSION

This study examined household fuelwood consumption,
socio-demographic characteristics, and land-use dynamics in
Dorok District, integrating survey data and remote sensing
analyses to understand patterns of biomass energy use,
environmental perceptions, and vegetation changes over a 25-
year period.

Results of Socioeconomic Characteristics

This section presents the socioeconomic characteristics of the
150 surveyed households in Dorok District, including
demographic, educational, and occupational profiles (Table 1)
The survey assessed socio-demographics, fuelwood
consumption, environmental perceptions, and adaptation
strategies among 150 households across five districts of
Dorok (Table 1).

Males constituted 60% of respondents, with 60% married and
40% aged 31-45 years. Education levels were varied, with
secondary school graduates and BSc/HND holders each at
27%. Farmers formed the largest occupational group (47%),
and most households had 4-6 members (40%).

Fuelwood remained the dominant household energy source
(67%), collected mainly weekly (40%) from farmlands and
nearby forests (30% each). Daily consumption was typically
5-10 kg (40%), driven by affordability (50%) and availability
(30%). Half of respondents perceived a decline in fuelwood
availability, traveling mainly 1-3 km (40%) for collection.
Regarding environmental perception, 80% noticed vegetation
changes, primarily decreases (60%), attributed to fuelwood
harvesting (40%), farming (30%), and population growth
(20%). Awareness of local harvesting regulations was
moderate (60%).

For adaptation, only 27% had adopted alternative energy
sources. Barriers included cost (40%), limited availability of
alternatives (30%), and cultural preference (20%). Proposed
solutions highlighted afforestation (50%), alternative energy
promotion (40%), government policies (30%), and
community education (35%). A majority (70%) expressed
willingness to participate in tree-planting initiatives,
indicating potential for community-based conservation
interventions.
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Table 1: Socio-Demographics, Fuelwood Use, Environmental Perception, and Adaptation (n = 150)
Section/ Variable Category Frequency (n) Percentage (%)
A. Demographics Sex Male 90 60
Female 60 40
Marital Status Single 45 30
Married 90 60
Divorced 15 10
Age Group 18-30 40 27
31-45 60 40
46-60 35 23
>60 15 10
Education No formal 10 7
FSLC 20 13
GCE/WAEC/NABTEB 40 27
Diploma/NCE 30 20
BSc/HND 40 27
Masters/PhD 10 7
Occupation Farmer 70 47
Business 50 33
Civil Servant 20 13
Household Size 1-3 20 13
4-6 60 40
7-9 40 27
>10 30 20
B. Fuelwood Use Main Energy Source Fuelwood 100 67
Charcoal 25 17
Gas 15 10
Frequency of Daily 45 30
Collection
Weekly 60 40
Monthly 30 20
Occasionally 15 10
Source of Firewood Farmland 45 30
Nearby forest 45 30
Market 22 15
Own land 15 10
Daily Quantity Used <5kg 30 20
5-10kg 60 40
11-20kg 45 30
C. Environmental Vegetation Change Yes 120 80
Perception Noticed
No 30 20
Type of Change Decrease 72 60
Increase 18 15
No significant change 30 25
Causes of Change Fuelwood harvesting 60 40
Farming 45 30
Urban expansion 22 15
Grazing 15 10
Population growth 30 20
Climate change 22 15
D. Adaptation & Adopted Alternatives Yes 40 27
Alternatives
No 110 73
Challenges Cost 60 40
Auvailability of alternatives 45 30
Cultural preference 30 20
Lack of awareness 15 10
Proposed Solutions Afforestation 75 50
Alternative energy 60 40
Government policies 45 30
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Section/ Variable Category Frequency (n) Percentage (%)
Community education 52 35
Willingness for Tree Yes 105 70
Planting
No 45 30

Household Size and Fuelwood Consumption

Table 2 presents the distribution of household sizes in Dorok
District. Households were grouped into size classes, and the
midpoint of each class was calculated as the average of the
lower and upper limits:Midpoint = (Lower limit + Upper
limit) + 2

The midpoint represents the typical household size for each
class. Each midpoint was then multiplied by its class

frequency (f x x) to obtain the total contribution of that class.
Summing these products (X f x x = 1,192) and dividing by the
total number of households (X f = 150) gives the average
household size:Mean Household Size=X (fx x) + X f

Mean Household Size = 1,192 + 150 = 795 = 8
persons/household

This indicates that the typical household in Dorok District
comprises about 8 members.

Table 2: Household Size Classes, Midpoints, Frequencies, and F x X for Dorok District

Household Size Class (persons) Midpoint (x) Frequency (f) fxx
1-3 2 3 6
4-6 5 45 225
7-9 8 64 512
10-12 11 30 330
13-15 14 7 98
16-19 175 0 0
20-22 21 1 21
Total - 150 1,192

Calculation of Average Daily Fuelwood Consumption

Average daily household fuelwood consumption was
estimated using the grouped mean method. Households were
classified into <5 kg, 5-10 kg, and 11-20 kg per day (Table 3).
As no household consumed less than 5 kg, this category was
excluded. Midpoints of 7.5 kg (5-10 kg) and 15.5 kg (11-20

kg) were multiplied by their frequencies, yielding a total
weighted consumption of 2,141.0 kg across 150 households.
The mean daily consumption was therefore:

x =Y fx/Yf=2141.0/150 = 14.27 kg day*

Households thus consume an average of ~14.3 kg/day,
reflecting a strong dependence on biomass energy.

Table 3: Distribution and Average Daily Fuelwood Consumption

Fuelwood (kg/day) Midpoint (kg) Frequency % fxx
<5 - 0 0 0.0
5-10 7.5 23 15.33 1725
11-20 15.5 127 84.67 1968.5
Total 150 100 2141.0

Most households (84.7%) consume 11-20 kg/day, indicating heavy reliance on fuelwood due to traditional cooking practices

and limited alternative energy access.

Land Use and Land Cover (LULC) Changes in the Study
Area (2000-2025)

Land Use and Land Cover (LULC) analysis from 2000 to
2025 are presented in (Table 4) and Figure 2. The results
revealed that dense vegetation declined from 5.59 km2
(2.84%) to 0.49 km2 (0.33%), sparse vegetation from 82.70
km2 (41.91 %) to 10.36 km2 (6.96%), shrubs and grassland

fluctuated, peaking at 21.80 km2 (14.67%) in 2020 and
slightly decreasing to 20.96 km2 (14.08%) in 2025, barren
land increased from 13.83 km2 (7.01 %) to 18.51 km2
(12.43%), built-up areas expanded from 15.27 km2 (7.74%)
to 87.25 km2 (58.62%), and water bodies decreased from
64.57 km2 (32.73%) to 11.30 km2 (7.59%), reflecting
urbanization and landscape transformation

Table 4: Land Use and Land Cover (LULC) Changes in the Study Area (2000-2025)

Dense Sparse Shrubs . Total
Year Vegetation Vdetation &Grassland ’(3;;230”/0 ;‘ and ?klinllzt/(;g Ylﬁ;g/gc’dy Area

(km?/%) (km?/%) (km?/%) (km?)
2000 5.59/2.8% 82.70/41.91% 15.34/7.77%  13.83/7.01%  15.27/7.74%  64.57/32.73%  197.29
2005 60.79/31.69%  17.09/8.91%  16.76/8.74%  11.19/5.83%  62.72/32.69% 23.29/12.14%  191.83
2010 61.02/33.34%  13.15/7.19%  18.21/9.95%  14.67/8.01%  66.25/36.20% 9.71/5.31% 183.00
2015 56.70/37.19%  12.10/7.94%  14.22/9.33%  13.55/8.89%  9.55/6.27% 46.30/30.37%  152.42
2020 0.64/0.43% 10.42/7.01%  21.80/14.67% 17.63/11.86% 80.35/54.08% 17.80/11.98%  148.63
2025 0.49/0.33% 10.36/6.96%  20.96/14.08%  18.51/12.43% 87.25/58.62% 11.30/7.59% 148.85
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Association Between Sex and Per Capita Fuelwood consumption (Table 2). Females predominated in the higher
Consumption consumption category (11-20 kg/day).

Chi-square analysis (n = 150) examined the relationship

between respondents’ sex and daily per capita fuelwood

Table 5: Test of Daily per Capital Fuelwood Consumption by Sex (kg/day, n = 150)

Sex <10 kg/day (O/E) 11-20 kg/day (O/E) x> Contribution
Male 5/2.30 10/12.70 3.74
Female 18/20.70 117/114.30 0.41
Total * — — 4.15

Result: y? calculated (4.15) > 2 critical (3.84, df = 1, a = 0.05). Females consume significantly more fuelwood than males.

Per Capita Fuelwood Consumption by Educational 3). Although mean consumption varied slightly among
Qualification groups, the differences were not statistically significant F (5,
One-way ANOVA assessed differences in mean daily per 144)=0.92, p=0.47), indicating that education does not
capita fuelwood consumption across educational levels (Table influence household fuelwood use.

Table 6: Mean Daily Per Capita Fuelwood Consumption by Educational Qualification (kg/day, n = 150)

Educational Qualification N Mean Daily Consumption (Kg) Std. Dev.
First School Leaving Certificate 52 15.8 2.1
GCE/WAEC/NABTEB 52 16.2 2.3
Diploma 31 15.1 1.9
NCE 9 14.9 1.8
HND 3 15.4 2.0
B.Sc./B.A./Master’s 2 147 15

Note: Values represent mean daily per capita fuelwood consumption. The total mean and standard deviation are overall sample
statistics and not arithmetic sums of subgroup means. Standard deviation is not computed for categories with a single
observation (n = 1). Result: No significant difference was observed (p > 0.05).

Household Size and Fuelwood Consumption consumed more, with an average household size of 8, daily
In Table 4, Spearman's rank correlation showed a strong household consumption of 14.27 kg, and per capita
positive association between household size and per capita consumption of 1.78 kg/day.

fuelwood consumption (p = 1, P < 0.05). Larger households
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Table 7: Household Size Versus Daily Per Capita Fuelwood Consumption (kg/day, n = 150)

Household Size Mean (kg/day) Rank (Size) Rank (Consumption) dz
1-3 10.2 1 1 0
4-6 13.8 2 2 0
7-9 16.5 3 3 0
10-12 18.1 4 4 0
13-15 19.0 5 5 0
20-22 20.0 6 6 0
Household Fuelwood Use and Vegetation Dynamics 10)=0.469, p = 0.792), indicating household fuelwood

Repeated-measures ANOVA of NDVI-derived vegetation
cover (2000-2025) Table 5, considering household size and
fuelwood consumption, showed no significant change (F (5,

harvesting was not a dominant driver of vegetation change at
the landscape scale.

Table 8: Ndvi-derived Vegetation Cover (%) from 2000 to 2025

Year Dense Sparse Shrubs/Grass Total
2000 2.84 4191 1.77 52.52
2005 31.69 8.91 8.74 49.34
2010 33.34 7.19 9.95 50.48
2015 37.19 7.94 9.33 54.46
2020 0.43 7.01 14.67 22.11
2025 0.33 6.96 14.08 21.37

Summary: Household fuelwood consumption is influenced by
sex and household size but not education. NDVI trends
suggest that land-use changes, rather than household
fuelwood harvesting, are the main drivers of vegetation
dynamics, consistent with regional and international studies.

Accuracy Assessment of LULC Classification (2025)
Percent- Ages

Table 6 presents the land-use and land-cover (LULC) changes
in the study area from 2000 to 2025, alongside a detailed
classification accuracy assessment for 2025. The 2025
classification was validated using a confusion (error) matrix
constructed from reference ground truth data. The matrix
allows calculation of class-specific accuracy metrics,

including User’s Accuracy (UA), which indicates the
reliability of the map in representing each land-cover class,
and Producer’s Accuracy (PA), which reflects the extent to
which reference pixels are correctly mapped. The overall
reliability of the classification is summarized using Overall
Accuracy (OA) and the Kappa Coefficient (x), which
accounts for agreement occurring by chance. The table shows
the number of correctly classified pixels, total map pixels
(row totals), and total reference pixels (column totals),
providing a clear framework for assessing omission and
commission errors for each LULC class. This combined
presentation of LULC change and accuracy metrics ensures
that subsequent spatial and ecological analyses are based on
validated, reliable data.

Table 9: LULC Changes (2000-2025) and 2025 Classification Accuracy

LULC Class Corre_c_tly ) Total Map Pixels Total Reference Pixels User’s Producer’s
Classified Pixels (Row Total) (Column Total) Accuracy (%) Accuracy (%)

Dense Vegetation 33 43 42 76.7 78.6

Sparse Vegetation 40 54 54 74.1 74.1

Shrubs/Grassland 47 64 66 734 71.2

Barren Land 38 50 49 76.0 77.6

Built-up 61 67 67 91.0 91.0

Water Body 46 46 46 100.0 100.0

Overall Accuracy 275 324 - 85.0 -

(OA)

Kappa Coefficient - - - 0.77 -

()

Notes:

i User’s Accuracy (UA) = Correctly Classified Pixels + Total Map Pixels x 100

ii. Producer’s Accuracy (PA) = Correctly Classified Pixels + Total Reference Pixels x 100
iii. Overall Accuracy (OA) = Sum of Correctly Classified Pixels + Total Samples x 100
iv. Kappa (k) = OA adjusted for chance agreement using the confusion matrix

Discussion

Household fuel wood consumption in Dorok District reflects
long-established patterns in rural Nigeria, where traditional
biomass remains the dominant household energy source due

to affordability, accessibility, and limited availability of
modern alternatives (Arnold et al., 2006; Karekezi &
Kithyoma, 2003; Abubakar et al., 2024). The predominance
of male, married household heads and farming households is
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consistent with earlier studies demonstrating that household
structure and livelihood type significantly influence domestic
energy demand in rural settings (Bhattacharya et al., 2002;
Ighe Akeh et al., 2023).

Fuelwood consumption was significantly higher among
female-headed households than male-headed households (2
=4.15,p < 0.05), reflecting the gendered division of labour in
cooking and fuelwood collection. This finding aligns with
long-standing evidence from sub-Saharan Africa that
identifies women as the primary managers of household
biomass energy (Bhattacharya et al., 2002; Arnold et al.,
2006). Household size exhibited a strong positive correlation
with fuelwood consumption (p = 1, P < 0.05), confirming that
larger households require greater quantities of biomass fuel to
meet daily cooking needs, as observed in comparable rural
African contexts (Arnold et al., 2006; Alem et al., 2023).
Educational attainment did not significantly influence per-
capita fuelwood consumption (Fs, 1 4 4 = 0.92, P = 0.47),
suggesting that education alone does not automatically lead to
energy transition without supportive infrastructure,
affordability, and policy interventions. This finding supports
earlier arguments that structural constraints, rather than
awareness alone, shape rural household energy choices
(Karekezi & Kithyoma, 2003; Abubakar et al., 2024). Only
27% of households reported using alternative energy sources,
with high costs, limited access, and cultural preferences acting
as major patterns widely documented in rural African energy
studies (Karekezi & Kithyoma, 2003).

NDVI-based land-use and land-cover (LULC) analysis
revealed substantial landscape transformation between 2000
and 2025, including significant declines in dense and sparse
vegetation, expansion of built-up areas, and reduction in water
bodies. These trends are consistent with foundational land-
change research identifying urban expansion and agricultural
intensification as dominant drivers of vegetation loss in
developing regions (Lambin et al., 2003; Song et al., 2018).
Repeated-measures ANOV A further showed that household
fuelwood consumption did not significantly influence
landscape-scale NDVI change (FO,0 0 = 0.469, P = 0.792),
reinforcing evidence that broader land-use conversion
processes, rather than localized biomass harvesting, primarily
control vegetation dynamics (Lambin et al., 2003; Song et al.,
2018).

Community perceptions supported the quantitative fmdings,
with most respondents reporting noticeable vegetation decline
and expressing willingness to participate in tree-planting
initiatives. This aligns with established literature emphasizing
community participation as a critical factor for successful
environmental restoration and sustainable land management
(Pretty & Smith, 2004; Reed, 2008).

The 2025 LULC classification shows that water bodies and
built-up areas were mapped with the highest reliability, with
User’s and Producer’s Accuracies of 100% and 91%,
respectively. Dense and sparse vegetation and
shrubs/grassland exhibited moderately high accuracies (UA
73-77%, PA 71-79%), reflecting challenges in
heterogeneous landscapes where spectral overlap and mixed
pixels can cause misclassification (Adepoju & Salami, 2024;
Lawal & Gulma, 2024). This suggests caution is needed when
interpreting vegetation-dominated classes.

Overall Accuracy (85%) and Kappa Coefficient (0.77)
indicate strong agreement beyond chance, confirming the
classification’s reliability for spatial and ecological analyses.
Comparable accuracies have been reported in Nigeria and
sub-Saharan Africa for Landsat- and Sentinel-based LULC
classifications (Akinyemi & Sangodoyin, 2022; Ologunde,
Kelani, Biru, Olayemi, & Nunes, 2025), and internationally in
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India and Southeast Asia (Lambin, Geist, & Lepers, 2003;
Song, Hansen, Stehman, et al., 2018). These results
underscore the importance of confusion matrices in validating
LULC data and ensuring confidence in subsequent analyses.
High UA and PA for water bodies reflect the ease of mapping
spectrally distinct classes, while lower accuracies for
vegetation classes reveal limitations of remote sensing in
complex land covers. Nevertheless, the dataset is suitable for
monitoring landscape change, analyzing vegetation
dynamics, and guiding land management. Overall, the study
highlights the need for careful validation of vegetation classes
and demonstrates the value of rigorous accuracy assessment
in remote sensing-based LULC research.

CONCLUSION

Household fuelwood consumption in Dorok District remains
heavily dependent on traditional biomass due to affordability,
accessibility, and limited availability of modern energy
alternatives. Consumption patterns are influenced by
household structure, livelihood, and gender roles, with
women primarily responsible for cooking and fuel collection.
Education alone is insufficient to drive adoption of alternative
energy without supportive infrastructure and policy
interventions.

Land-use and land-cover (LULC) analysis from 2000 to 2025
revealed significant vegetation loss and expansion of built-up
areas, indicating that broader land-use conversion, rather than
local fuelwood harvesting, is the dominant driver of landscape
transformation. The 2025 LULC classification demonstrated
high reliability for water bodies and built-up areas (UA 100%,
PA 91%) and moderate accuracies for vegetation classes (UA
73-77%, PA 71-79%), with an Overall Accuracy of 85% and
Kappa Coefficient of 0.77. This confirms that the dataset is
robust for spatial and ecological analyses while highlighting
the need for careful validation of vegetation-dominated
classes.

Given these findings, it is recommended that interventions
combine the promotion of accessible and affordable
alternative energy sources with supportive policies and
infrastructure. Local communities should be actively engaged
in conservation and restoration efforts to ensure sustainable
land management. Furthermore, continued monitoring and
careful validation of vegetation classes using high-resolution
remote sensing data are essential to inform evidence-based
strategies for ecosystem management and landscape
sustainability.
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