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ABSTRACT 

Household reliance on biomass energy is a major driver of land-cover change in rural Nigeria. This study used 

socio-economic surveys (n = 150), statistical analyses, and NDVI-based Land Use and Land Cover (LULC) 

assessment from multi-temporal Landsat imagery (1990–2025) to examine fuelwood consumption and 

vegetation dynamics in Dorok District, Plateau State. Results show high fuelwood use, with mean daily 

consumption of 14.27 kg per household (1.78 kg per capita). Female-headed households consumed more than 

male-headed households, and consumption increased with household size, while education had minimal effect. 

NDVI analysis revealed that vegetation loss was not significantly driven by fuelwood harvesting, with broader 

land-use changes as the dominant factor. The 2025 LULC classification showed high reliability: water bodies 

and built-up areas were mapped most accurately, while vegetation classes had moderate accuracy due to 

heterogeneous landscapes. Overall Accuracy (85%) and Kappa (0.77) confirm the dataset’s robustness for 

spatial and ecological analysis. These findings highlight the need for gender-sensitive energy interventions, 

adoption of alternative household fuels, and community-based conservation. The study demonstrates the value 

of validated LULC datasets for monitoring landscape change, understanding vegetation dynamics, and 

informing sustainable land management in rural Nigeria. 

 

Keywords: Biomass Energy Dependence, Socio-Demographic Determinants, Remote Sensing  

and NDVI, Rural Household Energy, Land-Cover Change Analysis  

 

INTRODUCTION 

Fuelwood remains a critical household energy source 

globally, particularly in low- and middle-income countries 

where access to clean cooking technologies is limited. Recent 

estimates indicate that more than 2.3 billion people continue 

to rely on biomass fuels, including fuelwood, charcoal, and 

agricultural residues, for cooking and heating (WHO, 2022; 

IEA, 2023). Persistent dependence on fuelwood reflects 

widespread energy poverty, low household incomes, and 

limited access to affordable modern fuels. Despite sustained 

clean-cooking initiatives, fuelwood demand remains high due 

to population growth, affordability, cultural preferences, and 

fuel-stacking behavior (Van der Kroon et al., 2013; Shankar 

et al., 2020). 

Global assessments indicate that fuelwood removals 

constitute a significant share of total roundwood extraction, 

resulting in reductions in canopy cover, altered species 

composition, and increased carbon emissions where 

harvesting exceeds natural regeneration (FAO, 2020, 2024; 

WHO, 2024). Recent advances integrating household energy 

data with remote-sensing indicators such as the Normalized 

Difference Vegetation Index (NDVI) and land-cover time 

series have improved the identification of fuelwood extraction 

hotspots and associated vegetation change (IEA, 2023; FAO, 

2024). The literature increasingly emphasizes the need for 

integrated socio-ecological frameworks that combine 

household-level energy assessment with spatial analysis to 

support sustainable land and energy management (Shankar et 

al., 2020; FAO, 2024). 

In Africa, fuelwood accounts for approximately 60–70% of 

household energy consumption in many countries (FAO, 

2020; IEA, 2023). Sub-Saharan Africa hosts over 900 million 

fuelwood users, with continued growth projected due to rapid 

population increase and persistent energy-infrastructure 

deficits (Zulu & Richardson, 2013; Jeuland et al., 2021). 

Sustained extraction places considerable pressure on forest 

and woodland resources, leading primarily to vegetation 

degradation rather than outright deforestation, particularly 

within savanna ecosystems characterized by slow 

regeneration rates (Arnold et al., 2006; Chidumayo & Gumbo, 

2013). 

In Nigeria, wood is the major source of energy (Salisu, 

Muhammad & Umar, 2019). Consequently, Nigeria is among 

the most fuelwood-dependent countries in Africa, with 

approximately 60–70% of households relying primarily on 

wood-based fuels, increasing to over 80% in rural areas 

(FAO, 2017; NBS, 2024). Although agricultural expansion 

and urbanization contribute to deforestation, unsustainable 

fuelwood harvesting remains a key driver of woodland 

degradation within the Guinea and Sudan savanna zones 

(FAO, 2020). Empirical studies in Plateau State and adjoining 

regions demonstrate strong associations between household 

socio-economic characteristics and fuelwood consumption, 

underscoring the need for integrated analyses linking energy 

use, livelihoods, and spatial vegetation change (Chaskda et 

al., 2021; FAO, 2024). 

Fuelwood dependence in Plateau State is increasing due to 

population growth, widespread poverty, and limited access to 

clean cooking energy, yet its environmental impacts remain 

insufficiently examined (Chaskda et al., 2021; NBS, 2024). 

Recent studies indicate that biomass energy continues to 

dominate household energy use in the state, reflecting 

persistent energy poverty and constrained energy transitions 

(Chaskda et al., 2021). In the Jos Plateau, geospatial evidence 

reveals significant vegetation loss and land-cover change 

driven by human activities, underscoring the vulnerability of 

the savanna-woodland ecosystem to sustained biomass 

extraction (Alfred et al., 2023; Choji & Nanchang, 2025). 

Given this context, this study aims to assess vegetation 

dynamics and household fuelwood consumption in Dorok 
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District, Shendam Local Government Area, Plateau State. 

Specifically, the study seeks to: examine the socio-

demographic characteristics of households and their influence 

on fuelwood consumption; assess variations in daily per 

capita fuelwood use across gender, household size, and 

educational attainment; identify factors influencing the 

adoption of alternative energy sources among households; 

and analyze land-use and land-cover changes in Dorok 

District between 2000 and 2025. Moreover, to guide this 

investigation, the study tests four hypotheses: (1) there is no 

significant difference in per capita daily fuelwood use 

between male- and female-headed households; (2) household 

size does not significantly influence daily per capita fuelwood 

consumption; (3) educational attainment of household heads 

does not significantly affect fuelwood consumption patterns; 

and (4) land-use and land-cover changes in Dorok District 

between 2000 and 2025 are not significantly associated with 

household fuelwood extraction. By integrating household 

energy assessment with geospatial analysis, the study seeks to 

provide actionable insights for sustainable energy 

management and vegetation conservation in the region. 

MATERIALS AND METHODS 

The study was conducted in Dorok District, Shendam Local 

Government Area, Plateau State, Nigeria. A quantitative 

research design was adopted to examine household and socio-

economic determinants of per-capita fuelwood consumption, 

enabling statistical assessment of relationships between 

socio-demographic factors and consumption outcomes. 

Geospatial analysis using NDVI and land-use classification 

was integrated to assess temporal and spatial vegetation 

dynamics and their link to household fuelwood harvesting.  

 

The Study Area 

Dorok District, in Shendam LGA, Plateau State, Nigeria 

(8°34'-8°46'N, 9°20'- 9°36'E), is a rural area heavily reliant on 

fuelwood. Located in the tropical savanna, its vegetation 

comprises tall grasses, scattered deciduous trees, and gallery 

forests along Fadama lowlands. With a population of ~ 

170,833, the district experiences distinct wet and dry seasons, 

supporting mainly agrarian livelihoods, including cultivation 

of cereals, legumes, and tuber crops (Buba, 2014).  

 

 
Figure 1: Map Showing the Study Area 

 

Population and Sample Size 

The study population consisted of households across five 

villages in Dorok, selected to provide a comprehensive 

representation of the area's socio-economic and demographic 

variability. Stratified random sampling was used to select 

respondents from the five districts. Stratification ensured 

proportional representation while reducing selection bias and 

facilitating meaningful socio-economic comparisons (Cohen, 

Manion & Morrison, 2018) A total of 150 structured 

questionnaires were administered, with 30 questionnaires 

distributed per district to ensure both adequate sample size 

and spatial representativeness. This distribution allows for 

meaningful comparisons across districts and reduces the 

likelihood of sampling bias. The sample size was sufficient to 

satisfy the requirements for Chi-square tests to examine 

associations between categorical variables, one-way ANOVA 

to assess differences in mean fuelwood consumption across 

groups, and non-parametric correlation tests for exploring 

monotonic relationships between variables. This 

comprehensive sampling approach provides a robust 

foundation for both inferential and descriptive statistical 

analyses.  

 

 

 

 



GEOSPATIAL MODELLING AND SOCIOE…      Choji et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 10 No. 1, January, 2026, pp 185 – 193 187 

Sampling Technique 

Stratified random sampling was used to select respondents 

from the five districts. Stratification ensured proportional 

representation while reducing selection bias and facilitating 

meaningful socio-economic comparisons (Cohen, Manion & 

Morrison, 2018).  

 

Data Collection Through Structural Questionnaires 

Structured, closed-ended questionnaires were administered to 

household heads or adult representatives. Data captured 

included socio-demographic characteristics (age, sex, 

education, occupation, household size), fuelwood 

consumption metrics (quantity, frequency, collection 

distance), and adoption of alternative energy sources. Closed 

ended items facilitated standardization and robust quantitative 

analysis (Saunders Lewis & Thornhill, 2023). 

 

Geospatial Data Collection and Analysis 

Vegetation dynamics were assessed using multi-temporal 

Landsat imagery (1990-2025). Landsat 4 TM, 7 ETM+, and 8 

OLI images (Path 187, Row 54) were acquired from USGS 

Earth Explorer based on minimal cloud cover and seasonal 

comparability. Preprocessing included radiometric and 

atmospheric correction to surface reflectance, geometric 

correction, reprojection to UTM (WGS84), subsetting, and 

gap-filling for SLC-off gaps.  

NDVI was computed as NDVI = (NIR - Red) / (NIR + Red), 

where NIR and Red are reflectance values in the near-infrared 

and red bands. NDVI ranges from -1 to + 1, with higher values 

indicating denser, healthier vegetation. NDVI rasters were 

classified into water, built-up, barren, shrub/grassland, sparse, 

and dense vegetation using supervised classification guided 

by field data and high-resolution imagery. Zonal statistics and 

raster differencing were used to quantify the change in 

vegetation. Confusion matrices, overall accuracy, user and 

producer accuracy, and the Kappa coefficient were all used in 

the accuracy assessment.  

 

Accuracy of Lulc Chage Classification 

The 2025 land-use and land-cover (LULC) classification was 

evaluated using Overall Accuracy (OA), Kappa coefficient 

(κ), User’s Accuracy (UA), and Producer’s Accuracy (PA), 

derived from a confusion matrix based on ground truth 

reference samples. The matrix compares map classes (rows) 

to reference classes (columns), with diagonal elements 

representing correctly classified pixels and off-diagonal 

elements representing misclassifications. 

Overall Accuracy is the proportion of correctly classified 

pixels to total samples. The Kappa coefficient adjusts OA for 

agreement due to chance, calculated as: 

κ = (Po - Pe) / (1 - Pe) 

where Po is observed agreement (OA) and Pe is expected 

agreement by chance, calculated as: 

Pe = Σ (Row total × Column total) / N² 

Here, Row total and Column total are the marginal totals for 

each class, and N is the total number of validation samples. 

Producer’s Accuracy (PA) reflects omission error, calculated 

as the proportion of reference pixels correctly classified for a 

class. User’s Accuracy (UA) reflects commission error, 

calculated as the proportion of map-classified pixels that are 

correct. Combined, these metrics provide a robust, class-

specific evaluation of LULC change reliability, ensuring that 

NDVI-based vegetation analyses and landscape 

interpretations are based on validated data. 

 

Statistical Analyses 

Statistical analyses were employed to examine socio-

demographic determinants of fuelwood consumption and the 

adoption of alternative energy sources. Chi-square tests were 

used to assess associations between categorical variables, 

while one-way ANOV A tested differences in mean per-capita 

fuelwood consumption across educational groups. 

Spearman's rank correlation was applied to evaluate 

monotonic relationships between household size and per-

capita fuelwood use. Repeated measures ANOV A was 

applied to NDVI time-series data to evaluate temporal 

changes in vegetation cover while accounting for within-unit 

correlations. All analyses were conducted at a 5% 

significance level.  

 

Ethical Considerations 

Ethical standards were strictly observed. Respondents were 

informed of the purpose of the study, assured of 

confidentiality, and participation was voluntary. No personal 

identifiers were included in the dataset. The study adhered to 

recognised ethical guidelines for social science research and 

environmental studies (WHO).  

 

RESULTS AND DISCUSSION 

This study examined household fuelwood consumption, 

socio-demographic characteristics, and land-use dynamics in 

Dorok District, integrating survey data and remote sensing 

analyses to understand patterns of biomass energy use, 

environmental perceptions, and vegetation changes over a 25-

year period.  

 

Results of Socioeconomic Characteristics  

This section presents the socioeconomic characteristics of the 

150 surveyed households in Dorok District, including 

demographic, educational, and occupational profiles (Table 1) 

The survey assessed socio-demographics, fuelwood 

consumption, environmental perceptions, and adaptation 

strategies among 150 households across five districts of 

Dorok (Table 1). 

Males constituted 60% of respondents, with 60% married and 

40% aged 31-45 years. Education levels were varied, with 

secondary school graduates and BSc/HND holders each at 

27%. Farmers formed the largest occupational group (47%), 

and most households had 4-6 members (40%). 

Fuelwood remained the dominant household energy source 

(67%), collected mainly weekly (40%) from farmlands and 

nearby forests (30% each). Daily consumption was typically 

5-10 kg (40%), driven by affordability (50%) and availability 

(30%). Half of respondents perceived a decline in fuelwood 

availability, traveling mainly 1-3 km (40%) for collection. 

Regarding environmental perception, 80% noticed vegetation 

changes, primarily decreases (60%), attributed to fuelwood 

harvesting (40%), farming (30%), and population growth 

(20%). Awareness of local harvesting regulations was 

moderate (60%). 

For adaptation, only 27% had adopted alternative energy 

sources. Barriers included cost (40%), limited availability of 

alternatives (30%), and cultural preference (20%). Proposed 

solutions highlighted afforestation (50%), alternative energy 

promotion (40%), government policies (30%), and 

community education (35%). A majority (70%) expressed 

willingness to participate in tree-planting initiatives, 

indicating potential for community-based conservation 

interventions. 
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Table 1: Socio-Demographics, Fuelwood Use, Environmental Perception, and Adaptation (n = 150) 

Section/ Variable Category Frequency (n) Percentage (%)  

A. Demographics Sex Male 90 60 

  Female 60 40 

 Marital Status Single 45 30 

  Married 90 60 

  Divorced 15 10 

 Age Group 18–30 40 27 

  31–45 60 40 

  46–60 35 23 

  >60 15 10 

 Education No formal 10 7 

  FSLC 20 13 

  GCE/WAEC/NABTEB 40 27 

  Diploma/NCE 30 20 

  BSc/HND 40 27 

  Masters/PhD 10 7 

 Occupation Farmer 70 47 

  Business 50 33 

  Civil Servant 20 13 

 Household Size 1–3 20 13 

  4–6 60 40 

  7–9 40 27 

  ≥10 30 20 

B. Fuelwood Use Main Energy Source Fuelwood 100 67 

  Charcoal 25 17 

  Gas 15 10 

 Frequency of 

Collection 

Daily 45 30 

  Weekly 60 40 

  Monthly 30 20 

  Occasionally 15 10 

 Source of Firewood Farmland 45 30 

  Nearby forest 45 30 

  Market 22 15 

  Own land 15 10 

 Daily Quantity Used <5kg 30 20 

  5–10kg 60 40 

  11–20kg 45 30 

C. Environmental 

Perception 

Vegetation Change 

Noticed 

Yes 120 80 

  No 30 20 

 Type of Change Decrease 72 60 

  Increase 18 15 

  No significant change 30 25 

 Causes of Change Fuelwood harvesting 60 40 

  Farming 45 30 

  Urban expansion 22 15 

  Grazing 15 10 

  Population growth 30 20 

  Climate change 22 15 

D. Adaptation & 

Alternatives 

Adopted Alternatives Yes 40 27 

  No 110 73 

 Challenges Cost 60 40 

  Availability of alternatives 45 30 

  Cultural preference 30 20 

  Lack of awareness 15 10 

 Proposed Solutions Afforestation 75 50 

  Alternative energy 60 40 

  Government policies 45 30 
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Section/ Variable Category Frequency (n) Percentage (%)  

  Community education 52 35 

 Willingness for Tree 

Planting 

Yes 105 70 

  No 45 30 

 

Household Size and Fuelwood Consumption  

Table 2 presents the distribution of household sizes in Dorok 

District. Households were grouped into size classes, and the 

midpoint of each class was calculated as the average of the 

lower and upper limits:Midpoint = (Lower limit + Upper 

limit) ÷ 2 

The midpoint represents the typical household size for each 

class. Each midpoint was then multiplied by its class 

frequency (f × x) to obtain the total contribution of that class. 

Summing these products (Σ f × x = 1,192) and dividing by the 

total number of households (Σ f = 150) gives the average 

household size:Mean Household Size = Σ (f × x) ÷ Σ f 

Mean Household Size = 1,192 ÷ 150 ≈ 7.95 ≈ 8 

persons/household 

This indicates that the typical household in Dorok District 

comprises about 8 members. 

 

Table 2: Household Size Classes, Midpoints, Frequencies, and F × X for Dorok District 

Household Size Class (persons) Midpoint (x) Frequency (f) f × x 

1–3 2 3 6 

4–6 5 45 225 

7–9 8 64 512 

10–12 11 30 330 

13–15 14 7 98 

16–19 17.5 0 0 

20–22 21 1 21 

Total - 150 1,192 

 

Calculation of Average Daily Fuelwood Consumption  

Average daily household fuelwood consumption was 

estimated using the grouped mean method. Households were 

classified into <5 kg, 5-10 kg, and 11-20 kg per day (Table 3). 

As no household consumed less than 5 kg, this category was 

excluded. Midpoints of 7.5 kg (5-10 kg) and 15.5 kg (11-20 

kg) were multiplied by their frequencies, yielding a total 

weighted consumption of 2,141.0 kg across 150 households. 

The mean daily consumption was therefore:  

x̄ = ∑fx / ∑f = 2141.0 / 150 = 14.27 kg day⁻¹ 

Households thus consume an average of ~14.3 kg/day, 

reflecting a strong dependence on biomass energy.  

 

Table 3: Distribution and Average Daily Fuelwood Consumption 

Fuelwood (kg/day) Midpoint (kg) Frequency % f × x 

< 5 - 0 0 0.0 

5–10 7.5 23 15.33 172.5 

11–20 15.5 127 84.67 1968.5 

Total  150 100 2141.0 

Most households (84.7%) consume 11-20 kg/day, indicating heavy reliance on fuelwood due to traditional cooking practices 

and limited alternative energy access.  

 

Land Use and Land Cover (LULC) Changes in the Study 

Area (2000-2025)  

Land Use and Land Cover (LULC) analysis from 2000 to 

2025 are presented in (Table 4) and Figure 2. The results 

revealed that dense vegetation declined from 5.59 km2 

(2.84%) to 0.49 km2 (0.33%), sparse vegetation from 82.70 

km2 (41.91 %) to 10.36 km2 (6.96%), shrubs and grassland 

fluctuated, peaking at 21.80 km2 (14.67%) in 2020 and 

slightly decreasing to 20.96 km2 (14.08%) in 2025, barren 

land increased from 13.83 km2 (7.01 %) to 18.51 km2 

(12.43%), built-up areas expanded from 15.27 km2 (7.74%) 

to 87.25 km2 (58.62%), and water bodies decreased from 

64.57 km2 (32.73%) to 11.30 km2 (7.59%), reflecting 

urbanization and landscape transformation  

 

Table 4: Land Use and Land Cover (LULC) Changes in the Study Area (2000-2025)  

Year 

Dense 

Vegetation 

(km²/%) 

Sparse 

Vegetation 

(km²/%) 

Shrubs 

&Grassland 

(km²/%) 

Barren Land 

(km²/%) 

Built-up 

(km²/%) 

Water Body 

(km²/%) 

Total 

Area 

(km²) 

2000 5.59/2.8% 82.70/41.91% 15.34/7.77% 13.83/7.01% 15.27/7.74% 64.57/32.73% 197.29 

2005 60.79/31.69% 17.09/8.91% 16.76/8.74% 11.19/5.83% 62.72/32.69% 23.29/12.14% 191.83 

2010 61.02/33.34% 13.15/7.19% 18.21/9.95% 14.67/8.01% 66.25/36.20% 9.71/5.31% 183.00 

2015 56.70/37.19% 12.10/7.94% 14.22/9.33% 13.55/8.89% 9.55/6.27% 46.30/30.37% 152.42 

2020 0.64/0.43% 10.42/7.01% 21.80/14.67% 17.63/11.86% 80.35/54.08% 17.80/11.98% 148.63 

2025 0.49/0.33% 10.36/6.96% 20.96/14.08% 18.51/12.43% 87.25/58.62% 11.30/7.59% 148.85 
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Figure 2: Satellite Images Showing Land use and Land Cover Change of Dorok District Between 2000-2025 

 

Association Between Sex and Per Capita Fuelwood 

Consumption  

Chi-square analysis (n = 150) examined the relationship 

between respondents' sex and daily per capita fuelwood 

consumption (Table 2). Females predominated in the higher 

consumption category (11-20 kg/day).  

 

Table 5: Test of Daily per Capital Fuelwood Consumption by Sex (kg/day, n = 150)  

Sex <10 kg/day (O/E) 11–20 kg/day (O/E) χ² Contribution 

Male 5 / 2.30 10 / 12.70 3.74 

Female 18 / 20.70 117 / 114.30 0.41 

Total χ² — — 4.15 

Result: χ² calculated (4.15) > χ² critical (3.84, df = 1, α = 0.05). Females consume significantly more fuelwood than males. 

 

Per Capita Fuelwood Consumption by Educational 

Qualification  

One-way ANOVA assessed differences in mean daily per 

capita fuelwood consumption across educational levels (Table 

3). Although mean consumption varied slightly among 

groups, the differences were not statistically significant F (5, 

144)= 0.92, p = 0.47), indicating that education does not 

influence household fuelwood use. 

 

Table 6: Mean Daily Per Capita Fuelwood Consumption by Educational Qualification (kg/day, n = 150) 

Educational Qualification N Mean Daily Consumption (Kg) Std. Dev. 

First School Leaving Certificate 52 15.8 2.1 

GCE/WAEC/NABTEB 52 16.2 2.3 

Diploma 31 15.1 1.9 

NCE 9 14.9 1.8 

HND 3 15.4 2.0 

B.Sc./B.A./Master’s 2 14.7 1.5 

Note: Values represent mean daily per capita fuelwood consumption. The total mean and standard deviation are overall sample 

statistics and not arithmetic sums of subgroup means. Standard deviation is not computed for categories with a single 

observation (n = 1). Result: No significant difference was observed (p > 0.05).  

 

Household Size and Fuelwood Consumption  

In Table 4, Spearman's rank correlation showed a strong 

positive association between household size and per capita 

fuelwood consumption (p = 1, P < 0.05). Larger households 

consumed more, with an average household size of 8, daily 

household consumption of 14.27 kg, and per capita 

consumption of 1.78 kg/day.  
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Table 7: Household Size Versus Daily Per Capita Fuelwood Consumption (kg/day, n = 150)  

Household Size Mean (kg/day) Rank (Size) Rank (Consumption) d² 

1–3 10.2 1 1 0 

4–6 13.8 2 2 0 

7–9 16.5 3 3 0 

10–12 18.1 4 4 0 

13–15 19.0 5 5 0 

20–22 20.0 6 6 0 

 

Household Fuelwood Use and Vegetation Dynamics  

Repeated-measures ANOVA of NDVI-derived vegetation 

cover (2000-2025) Table 5, considering household size and 

fuelwood consumption, showed no significant change (F (5, 

10) = 0.469, p = 0.792), indicating household fuelwood 

harvesting was not a dominant driver of vegetation change at 

the landscape scale.  

 

Table 8: Ndvi-derived Vegetation Cover (%) from 2000 to 2025  

Year Dense Sparse Shrubs/Grass Total 

2000 2.84 41.91 7.77 52.52 

2005 31.69 8.91 8.74 49.34 

2010 33.34 7.19 9.95 50.48 

2015 37.19 7.94 9.33 54.46 

2020 0.43 7.01 14.67 22.11 

2025 0.33 6.96 14.08 21.37 

 

Summary: Household fuelwood consumption is influenced by 

sex and household size but not education. NDVI trends 

suggest that land-use changes, rather than household 

fuelwood harvesting, are the main drivers of vegetation 

dynamics, consistent with regional and international studies.  

 

Accuracy Assessment of LULC Classification (2025) 

Percent- Ages  

Table 6 presents the land-use and land-cover (LULC) changes 

in the study area from 2000 to 2025, alongside a detailed 

classification accuracy assessment for 2025. The 2025 

classification was validated using a confusion (error) matrix 

constructed from reference ground truth data. The matrix 

allows calculation of class-specific accuracy metrics, 

including User’s Accuracy (UA), which indicates the 

reliability of the map in representing each land-cover class, 

and Producer’s Accuracy (PA), which reflects the extent to 

which reference pixels are correctly mapped. The overall 

reliability of the classification is summarized using Overall 

Accuracy (OA) and the Kappa Coefficient (κ), which 

accounts for agreement occurring by chance. The table shows 

the number of correctly classified pixels, total map pixels 

(row totals), and total reference pixels (column totals), 

providing a clear framework for assessing omission and 

commission errors for each LULC class. This combined 

presentation of LULC change and accuracy metrics ensures 

that subsequent spatial and ecological analyses are based on 

validated, reliable data. 

 

Table 9: LULC Changes (2000–2025) and 2025 Classification Accuracy 

LULC Class 
Correctly 

Classified Pixels 

Total Map Pixels 

(Row Total) 

Total Reference Pixels 

(Column Total) 

User’s 

Accuracy (%) 

Producer’s 

Accuracy (%) 

Dense Vegetation 33 43 42 76.7 78.6 

Sparse Vegetation 40 54 54 74.1 74.1 

Shrubs/Grassland 47 64 66 73.4 71.2 

Barren Land 38 50 49 76.0 77.6 

Built-up 61 67 67 91.0 91.0 

Water Body 46 46 46 100.0 100.0 

Overall Accuracy 

(OA) 

275 324 – 85.0 – 

Kappa Coefficient 

(κ) 

– – – 0.77 – 

Notes: 

i. User’s Accuracy (UA) = Correctly Classified Pixels ÷ Total Map Pixels × 100 

ii. Producer’s Accuracy (PA) = Correctly Classified Pixels ÷ Total Reference Pixels × 100 

iii. Overall Accuracy (OA) = Sum of Correctly Classified Pixels ÷ Total Samples × 100 

iv. Kappa (κ) = OA adjusted for chance agreement using the confusion matrix 

 

Discussion   

Household fuel wood consumption in Dorok District reflects 

long-established patterns in rural Nigeria, where traditional 

biomass remains the dominant household energy source due 

to affordability, accessibility, and limited availability of 

modern alternatives (Arnold et al., 2006; Karekezi & 

Kithyoma, 2003; Abubakar et al., 2024). The predominance 

of male, married household heads and farming households is 
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consistent with earlier studies demonstrating that household 

structure and livelihood type significantly influence domestic 

energy demand in rural settings (Bhattacharya et al., 2002; 

Igbe Akeh et al., 2023).  

Fuelwood consumption was significantly higher among 

female-headed households than male-headed households (χ²  

= 4.15,p < 0.05), reflecting the gendered division of labour in 

cooking and fuelwood collection. This finding aligns with 

long-standing evidence from sub-Saharan Africa that 

identifies women as the primary managers of household 

biomass energy (Bhattacharya et al., 2002; Arnold et al., 

2006). Household size exhibited a strong positive correlation 

with fuelwood consumption (p = 1, P < 0.05), confirming that 

larger households require greater quantities of biomass fuel to 

meet daily cooking needs, as observed in comparable rural 

African contexts (Arnold et al., 2006; Alem et al., 2023).  

Educational attainment did not significantly influence per-

capita fuelwood consumption (Fs, 1 4 4 = 0.92, P = 0.47), 

suggesting that education alone does not automatically lead to 

energy transition without supportive infrastructure, 

affordability, and policy interventions. This finding supports 

earlier arguments that structural constraints, rather than 

awareness alone, shape rural household energy choices 

(Karekezi & Kithyoma, 2003; Abubakar et al., 2024). Only 

27% of households reported using alternative energy sources, 

with high costs, limited access, and cultural preferences acting 

as major patterns widely documented in rural African energy 

studies (Karekezi & Kithyoma, 2003).  

NDVI-based land-use and land-cover (LULC) analysis 

revealed substantial landscape transformation between 2000 

and 2025, including significant declines in dense and sparse 

vegetation, expansion of built-up areas, and reduction in water 

bodies. These trends are consistent with foundational land-

change research identifying urban expansion and agricultural 

intensification as dominant drivers of vegetation loss in 

developing regions (Lambin et al., 2003; Song et al., 2018). 

Repeated-measures ANOV A further showed that household 

fuelwood consumption did not significantly influence 

landscape-scale NDVI change (FO,O 0 = 0.469, P = 0.792), 

reinforcing evidence that broader land-use conversion 

processes, rather than localized biomass harvesting, primarily 

control vegetation dynamics (Lambin et al., 2003; Song et al., 

2018).  

Community perceptions supported the quantitative fmdings, 

with most respondents reporting noticeable vegetation decline 

and expressing willingness to participate in tree-planting 

initiatives. This aligns with established literature emphasizing 

community participation as a critical factor for successful 

environmental restoration and sustainable land management 

(Pretty & Smith, 2004; Reed, 2008).  

The 2025 LULC classification shows that water bodies and 

built-up areas were mapped with the highest reliability, with 

User’s and Producer’s Accuracies of 100% and 91%, 

respectively. Dense and sparse vegetation and 

shrubs/grassland exhibited moderately high accuracies (UA 

73–77%, PA 71–79%), reflecting challenges in 

heterogeneous landscapes where spectral overlap and mixed 

pixels can cause misclassification (Adepoju & Salami, 2024; 

Lawal & Gulma, 2024). This suggests caution is needed when 

interpreting vegetation-dominated classes. 

Overall Accuracy (85%) and Kappa Coefficient (0.77) 

indicate strong agreement beyond chance, confirming the 

classification’s reliability for spatial and ecological analyses. 

Comparable accuracies have been reported in Nigeria and 

sub-Saharan Africa for Landsat- and Sentinel-based LULC 

classifications (Akinyemi & Sangodoyin, 2022; Ologunde, 

Kelani, Biru, Olayemi, & Nunes, 2025), and internationally in 

India and Southeast Asia (Lambin, Geist, & Lepers, 2003; 

Song, Hansen, Stehman, et al., 2018). These results 

underscore the importance of confusion matrices in validating 

LULC data and ensuring confidence in subsequent analyses. 

High UA and PA for water bodies reflect the ease of mapping 

spectrally distinct classes, while lower accuracies for 

vegetation classes reveal limitations of remote sensing in 

complex land covers. Nevertheless, the dataset is suitable for 

monitoring landscape change, analyzing vegetation 

dynamics, and guiding land management. Overall, the study 

highlights the need for careful validation of vegetation classes 

and demonstrates the value of rigorous accuracy assessment 

in remote sensing-based LULC research. 

 

CONCLUSION  

Household fuelwood consumption in Dorok District remains 

heavily dependent on traditional biomass due to affordability, 

accessibility, and limited availability of modern energy 

alternatives. Consumption patterns are influenced by 

household structure, livelihood, and gender roles, with 

women primarily responsible for cooking and fuel collection. 

Education alone is insufficient to drive adoption of alternative 

energy without supportive infrastructure and policy 

interventions. 

Land-use and land-cover (LULC) analysis from 2000 to 2025 

revealed significant vegetation loss and expansion of built-up 

areas, indicating that broader land-use conversion, rather than 

local fuelwood harvesting, is the dominant driver of landscape 

transformation. The 2025 LULC classification demonstrated 

high reliability for water bodies and built-up areas (UA 100%, 

PA 91%) and moderate accuracies for vegetation classes (UA 

73–77%, PA 71–79%), with an Overall Accuracy of 85% and 

Kappa Coefficient of 0.77. This confirms that the dataset is 

robust for spatial and ecological analyses while highlighting 

the need for careful validation of vegetation-dominated 

classes. 

Given these findings, it is recommended that interventions 

combine the promotion of accessible and affordable 

alternative energy sources with supportive policies and 

infrastructure. Local communities should be actively engaged 

in conservation and restoration efforts to ensure sustainable 

land management. Furthermore, continued monitoring and 

careful validation of vegetation classes using high-resolution 

remote sensing data are essential to inform evidence-based 

strategies for ecosystem management and landscape 

sustainability. 
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