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ABSTRACT

A study of magnetic field and nanoparticle transport on boundary layer flow of magnetohydrodynamic (MHD)
nanofluid over a stretching vertical surface has been analyses numerically. By introducing appropriate
similarity variables, the governing partial differential equations describing momentum, energy and
concentration were reduced to nonlinear coupled Ordinary Differential Equations (ODE). Utilizing the shooting
technique along exponentially fitted Simpson type block method is used to solve the Boundary value problems
using computational software MAPLE 16. Numerical results for velocity, temperature and concentration
profiles are presented and the effect of key parameters including magnetic field strength, Brownian motion,
thermophoresis, internal heat generation and thermal radiation was analyzed. The computed Nusselt number
and Sherwood number demonstrate excellent agreement with existing literature, confirming the stability and
accuracy of the method used. The results reveal that magnetic effects reduce fluid velocity while thickening
thermal and concentration boundary layers, whereas buoyancy forces, radiation and internal heat generation
enhance momentum and heat transport. Nanoparticle diffusion is significantly influenced by thermophoresis
and Brownian motion effects.

Keywords: Magnetohydrodynamics, Nanofluid, Heat and Mass Transfer, Exponentially Fitted Block Method,
Thermal Radiation, Nanoparticle Transport

INTRODUCTION

Heat and mass transfer are of considerable interest because
they occur in many geothermal, geophysical, technological
and engineering processes such as nuclear reactors
(Omokhuale and Uwanta, 2016), which can be successfully
modelled by partial differential equations (PDEs) before
being transformed into coupled nonlinear ordinary differential
equations (ODEs) through similarity variables or the method
of lines and then solved analytically or numerically. These
processes are guided by fundamental principles and described
by key governing equations including the continuity,
momentum, energy and concentration equations. Heat
transfer science deals with the rate of thermal energy transfer
(Cengel and Ghajar, 2015) and has applications ranging from
biological systems to household uses, building design,
industrial processes, electronic devices and food processing.
Heat is the form of energy transferred between systems due to
temperature differences whereas mass transfer describes the
transport of a chemical species from regions of higher
concentration to regions of lower concentration.
Magnetohydrodynamics (MHD) involves the behavior of
electrically conducting fluids in the presence of magnetic and
electric fields (Davidson, 2017). In magnetohydrodynamic
(MHD) flows, the application of a magnetic field plays a
crucial role in heat and mass transfer processes. By modifying
the motion of electrically conducting fluids, the magnetic
field directly affects the transport of thermal energy and
species concentration. This interplay is critical in various
applications, notably in renewable energy systems, as well as
in biomedical engineering for example, in controlling blood
flow and facilitating targeted drug delivery (Rashid, 2018).
Due to the significant effects of magnetic fields on boundary
layers, MHD flow heat transfer has been widely studied.
Nanofluids, first proposed by Choi in 1995, are suspensions
of nanoparticles in base fluids designed to enhance heat
transfer performance (Choi, 1995). Nanofluids, which are
engineered colloidal suspensions of nanoparticles in base
fluids, have been shown to enhance heat and mass transfer

performance. This enhancement arises primarily from the
increased thermal conductivity and diffusivity provided by
the nanoparticles, enabling more efficient heat exchange and
faster diffusion of substances. The behavior of nanofluid heat
and mass transfer depends on several factors, including
nanoparticle type, concentration and size, as well as
environmental conditions such as temperature, pressure and
the presence of a magnetic field (Khan et al., 2023).
Investigating the parameters that influence heat and mass
transfer in MHD nanofluid flows is crucial for optimizing
industrial and technological applications. Key parameters
such as the Prandtl number, chemical reaction rates and
nanoparticle properties effects have a significant impact on
flow dynamics, heat transfer rates and mass transfer
characteristics. Sadighi et al. (2023) conducted a comparative
study of temperature distributions under two different
boundary conditions and the same approach was extended to
the concentration profiles. They further investigated the
effects of the Hartmann number, suction/injection parameter,
and nanoparticle volume fraction on the local skin-friction
coefficient using the Box-Behnken design. Usman and
Sulaiman (2023) examined how Casson nanofluid flows
across a semi-infinite flat plate imbedded in a porous media
while being affected by heat radiation, Soret and pressure
terms. Abbas (2025) investigated the heat and mass transfer
characteristics of a chemically reactive hybrid nanofluid flow
over an exponentially stretching sheet. This study placed
particular emphasis on the influence of slip conditions and
Lorentz forces on the boundary layer, concluding that hybrid
nanoparticles significantly enhance thermal performance
compared to mono-nanofluids, even in the presence of strong
magnetic opposition. Uddin et al. (2017) examined
magnetohydrodynamic nanofluid flow over a radiative
surface, with particular emphasis on natural convection heat
transfer along a horizontal plate, a topic for which physically
realistic and practically relevant results remain scarce. Their
work analysed the combined influence of velocity slip and
zero mass flux boundary conditions on the boundary layer
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flow over an upward-facing, nonlinearly radiating horizontal
stretching sheet. Arshad et al. (2024) explored the mixed
convective flow of hybrid nanofluids (Ag-MgO/Water) over
a stretching surface, specifically focusing on the combined
effects of Joule heating and a non-uniform heat source. Their
findings revealed that temperature dependent viscosity and
slip conditions play a decisive role in determining the
thickness of the thermal boundary layer, which is essential for
optimizing electronic cooling systems.

Khan et al. (2023) addressed an existing research gap by
analysing the impact of slip boundary conditions on velocity,
temperature and concentration fields in nanofluid boundary
layer flow, while also accounting for viscous dissipation
effects. Pavithra et al. (2025) conducted a statistical and
numerical investigation into how nanoparticle shape factors
(spherical, cylindrical and platelet) influence heat transfer in
MHD nanofluid flow over a stretching sheet. Their study
incorporated an exponential heat source/sink and a first order
chemical reaction, demonstrating that the geometric
configuration of nanoparticles is a primary determinant of the
local Nusselt and Sherwood numbers. Kho et al. (2018)
explored the combined influence of thermal radiation and
magnetic  fields on the velocity, temperature and
concentration profiles of a Casson nanofluid flowing over a
stretching sheet with constant wall temperature. Kumar et al.
(2025) examined the magnetohydrodynamic (MHD) flow of
a non-Newtonian Casson nanofluid over a porous surface for
solar energy applications. Their work analysed the interplay
between Cattaneo-Christov heat flux and thermal radiation,
providing new insights into how high temperature
environments affect the entropy generation and thermal
stability of the boundary layer in solar collectors.

Inspired by the work of Noghrehabadi, Pourrajab and
Ghalambaz (2012), their investigation which focus on the
effect of slip factor, Prandtl number, lewis parameter,
Brownian motion and thermophersis parameter on the heat
transfer characteristic of stretching sheet, this study will be
extending their work by introducing other critical parameters
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previously unaddressed: magnetic field effects, local thermal
and solutal Grashof numbers, thermal radiation, and internal
heat generation. This expansion facilitates a more
comprehensive investigation into the Magnetohydrodynamic
(MHD) nanofluid flow over a stretching sheet. To analyse the
system, the governing partial differential equations (PDES)
representing the boundary layer problem are reduced to a
system of nonlinear ordinary differential equations (ODES)
using appropriate similarity transformations. The resulting
ODEs are solved using an exponentially fitted Simpson’s type
block method integrated with a shooting technique. While
block methods have demonstrated notable efficiency and
stability in solving single-fluid flow and boundary value
problems (Olabode et al., 2024; Kwari et al., 2021), and a few
studies such as those of Oyelakin et al. (2020), Phang and
Abdulmajid (2015) have extended their application to MHD
and nanofluid flow problems. The exponentially fitted block
method adopted in this study follows the approach of Faniyi
et al. (2023), incorporating exponential fitting to improve
accuracy in solving differential equations arising in MHD
nanofluid heat and mass transfer. This combination provides
a stable and computationally efficient alternative to
conventional numerical techniques.

MATERIALS AND METHODS

Governing Equation

Consider a steady, two dimensional, incompressible, viscous
flow of a nanofluid over a stretching surface. The surface
velocity varies linearly and it expresses as U,,(x)=cx, where
c is a constant and x is the coordinate along the stretching
surface. The nanofluid flow occurs at y=0, with y being the
coordinate perpendicular to the stretching surface. The wall
temperature 7,, and the nanoparticle volume fraction ¢,, are
constant at the stretching surface. As y—oo, the temperature 7'
and the nanoparticle ¢ volume fraction approaches the
constant ambient values 7y and ¢, repectively. (Extended
from Noghrehabadi et al. 2012)
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Figure 1: Boundary Layer Configuration
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Continuity Equation
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Momentum Equation
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Energy Equation
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Concentration Equation
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The boundary condition for the velocity components with
partial slip condition at the wall (i.e y=0) for nanoparticle
fraction and temperature are defined as
v=0,u=U, (x ;U T=T , p=p,, aty=0
v=u=0,T=T ,0=¢, at y=w

U&V

©)

(6)

Where u and v are the velocity components along the axis x
and y respectively, p is the fluid pressure, o is the thermal
diffusivity, v is the kinematic velocity, p, is the density of the
base fluid, ppiS the density of the particle, Dy is the
Brownian diffusion coefficient, D, is the thermophoresis
diffusion coefficient, p being the density, Cpthe specific heat
at constant pressure, B is the magnetics strength, B.. is the
thermal expansion coefficient, o is the electrical
conductivity, g is the acceleration due to gravity, Q is the

internal heat generation.

The radiative heat flux g, is described by Roseland
approximation such that
* 4
4o T
=%y %

Where ¢ and ¢ are the Stefan-Boltzmann constant and the
mean absorption coefficient respectively. We assume that
the temperature difference within the flow is sufficiently

4 . .
small so that the T can be expressed as a linear function

. . 4
after using Taylor series to expand T about the free stream
temperature T_ and neglecting higher order terms. This

result is the following approximation:

T'=ar’ 13T @®)
Using (7) and (8) in (3), we obtain
3,

aqr _ 160 T 1
oy 3 oy ©
We introduce a stream function y defined with by

v =
u= ' v=-— (10)

so that the continuity equation is satisfied identically.
we also introduce the dimensionless variable in equation
(11a) and (11b)

1/2 1/2
w=(cv) " xf(n), n=(c/v) "y (11a)
TT, -0,
0= Bl (11b)
Then substituting in equations (1) - (4), we obtain the
following ordinary differential equations

)10 ()1 ()M, ()61, 0(r)+Gc,(r)=0

(12)
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(5+Ra) 0 (1) *N0B ()6 (r YN (1)+1(1)6 (r)+00(n)=0 (13)

" Nt .
B () +5 0 (n)+Lef()p ()=0 (14)

The parameters of er, ch, MX, Pr, Nb, Nt, Le, Q, and 4 are
defined by

2
_ 9 _b, v v \
er——Z‘(TW-Tw), M=o Prel Leg, i
*_ 3
_D/it _ _160 T, 15
o= (0 >m—oT»%wWat (15)
w2 . Q, _%
= Np(cv) C/)Cp, ch—g((pw-q)w) )
Here ch, MX, Pr, Le, Nb, Nt, R, 4, Q and er, denote Local

solutal grashof number, Magnetic parameter, Prandtl
number, Lewis number, the Brownian motion parameter,
Thermophoresis parameter, Radiation parameter, slip factor,
Internal heat generation, and Local thermal grashof number
parameter respectively.

equations (12) — (14) are solved under to the following
condition

Aty=0: f=0, f=1, 6=1, p=1 (16)

Atg—w: =0, 0=0, A=0 an
Where prime denote differentiation with respect to .

Method of Solution

The coupled nonlinear ODEs governing the momentum,
energy and concentration fields given by equations (12-14)
together with the boundary conditions (16-17), constitute a
boundary value problem. Due to the strong nonlinearity and
coupling of the system, closed-form solution is not feasible
therefore a numerical approach is employed.

To facilitate numerical integration, the higher order
differential equations are first transformed into an equivalent
system of first order ODEs. The following substitutions are
introduced

=y, F=yo,f =y3,0=y,,6 =y5,B=y5.8 =y

Using these definitions, equation (12-14) are rewritten as a
system of seven first order equations

Nn=r¥z
2 =3
V3 =ty -Myys-Grys- Gy
Ya=Vs
(-Nby,ys-Nys®-y1.y5-Qya)
(5+7)

J’e =¥z

' Nt
7 == ye-Lleny,

subject to the transformed boundary conditions at 7=0 and
7]—)00_

The boundary conditions prescribed at infinity are
numerically handled by truncating the semi-infinite domain
(0,0) to a finite computational domain (0,7,,.,) after several
numerical experiments. It was observed that 7,,,=15 is
sufficient to ensure that the asymptotic boundary condition
F(Nma) =0, O ma)=0, B(7ma)=0 are satisfied with
acceptable accuracy, increasing 7,,., beyond this value
produced no significant change in the numerical results. At
n=0 the boundary conditions specify f{0)=0,
£(0)=1, 6(0)=1, B(0)=1 while the unknown initial
condition £'(0)=ry, 8(0)=r,,8(0)=r; must be determined
such that the far fluid boundary conditions are satisfied. These
unknown initial values are treated as shoot parameters. An
initial guess for (ry, ry, r3) is chosen and the resulting initial
value problem is intergtared numerically with exponentially

(18)

Ys
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fitted Simpson’s type block method. The guesses are
iteratively refined until the boundary conditions at 7=7,.,
are satisfied. The unknown initial slopes are iteratively
updated using a newton type correction scheme within the
shooting technique until the far field boundary condition are
satisfied with a tolerance of 107.

The exponentially fitted block method which will be used in
this study to solve the IVPs emanated from boundary layer
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problem of MHD nanofluid flow is the algorithm developed
by Faniyi et al. (2023). The block method has the expression
U=y, Tio Bash) £ (19)

where ay=1, Bis a function depending on wand h. (19) is
evaluated at point x,,, /=0(1)3, the 3 step exponentially
fitted backward difference method were obtained as followed.

Vo=Vt &(12-16 2" h w45 hw+d(-12+23h w)) £,4(-36+36-23h w21 huw+8 M hw) £, ., -

(e%Wh w+e™(36-21hw)-4(9+4h w)) frat (-12-5h w+eM"hw+ (12-8h w)) £ri3)

V2=Vt &((3+7 " hw+ M hue 2 (3+2hw)) £,+(-9-7hw+4 & hw+ € (9-15hw) ) £, 1+

(9-9€"+2h w+ 158" hw+e"hw) £, ,+(-3+3 " huw-hw-4 " "hw-e""hw) £,,3) Vs 3=Vt & (9 (-4+4M-3hw) £, -

9" hw) £, 1 +(9(4+9 " hw+ P (-4+3hw)) £, +3(-4+4€""-3hu-9 " hw) £, 5)
1

1
Where 4= 12m(w+1)3 7 o= 3m(W+1)3w
The order of accuracy is uniformly 5, while error constant is

/ 2 (OO ) h6+0(h)7\

288
1—: (wy® (-5 (1)) h+0(h)”

15710 (wy® (-5 (1)) h+0(n)” /

pH1=

RESULTS AND DISCUSSION

This section presents the performance of the numerical
method. The transformed system of nonlinear ODEs was
solved using the exponentially fitted block method combined
with shooting techniques. Table 1 compares the present
Nusselt and Sherwood numbers with the results of Khan &
Pop (2010) and Noghrehabadi et al. (2012). The close
agreement across all parameter values confirms the accuracy

(20)

and reliability of the method. Table 2 reports the computed
skin friction coefficient £'(0), local Nusselt number &(0)
and nanoparticle Sherwood number £ (0)for variations in M,
Gr, Gc, Qand Ra. Magnetic field strength, buoyancy effects,
heat generation and radiation significantly influence the flow,
heat and mass transfer characteristics.

Table 1: Comparison of Results for Nusselt Number and Sherwood Number when Le = 10, Pr=10

Nt Nb Nur Shr
Khan&pop Noghr et al. Presentwork Khan&pop Noghr et al. Present work
(2010) (2012) (2010) (2012)
01 01 0.9524 0.95237 0.95267 2.1294 2.12939 2.12910
02 01 0.6932 0.69317 0.69319 2.2740 2.27402 2.27397
03 01 05201 0.52007 0.52009 2.5286 2.52863 2.52862
04 01 0.4026 0.40258 0.40259 2.7952 2.79517 2.79516
05 01 03211 0.32105 0.32107 3.0351 3.03514 3.03513
01 0.2 0.5056 0.50558 0.50559 2.3819 2.38187 2.38186
01 03 0.2523 0.25215 0.25216 2.4100 2.41001 2.41001
01 04 01194 0.11940 0.11941 2.3997 2.39965 2.39965
0.1 05 0.0543 0.05425 0.54255 2.3836 2.38356 2.38356
Table 2: Computation Showing £'(0), 6(0) and £(0) when Le=10, Pr=10, A=0,Nb=0.1, Nt=0.1
M Gr Gc Q Ra -£'(0) -4(0) -4(0)
0.1 0.1 0.1 0.1 2 0.94207304 0.25287855 2.2736442
1.0 1.32257449 0.15998972 2.2090314
5.0 2.38603963 0.14508583 2.1124425
0.5 0.67752426 0.31926572 2.3253451
15 0.13004549 0.38806914 2.4212796
0.5 0.85007256 0.26055287 2.2858774
15 0.62477557 0.27739364 2.3150508
0.2 0.93135707 0.13244648 2.3248931
0.3 0.91237065 0.07347108 2.4044945
3 0.93219750 0.19012320 2.2934515
7 0.91671746 0.11219096 2.3175684

Effects of Variation of Parameters on the Velocity Profiles
Fig. 2 -6 shows the influence of parameters on the velocity
profile, in fig. 2 (Vb), It was observed that the velocity profile
escalates with a rise in values. This is because the intensified
random motion of nanoparticles enhances the kinetic energy

and thermal state of the fluid. In convective flows, this
temperature rise increases the thermal buoyancy force, which
in turn accelerates the fluid flow. An increase in
thermophoresis Nt infig. 3 values lead to an elevation in fluid
velocity. The thermophoretic force moves particles from the
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hot surface to the ambient cold fluid, thickening the thermal
boundary layer. This enhancement in the thermal state
strengthens the buoyancy effects, providing a slight push or
acceleration to the fluid. In fig. 4, the velocity profiles
corresponding to the magnetic parameter M show a consistent
reduction in fluid motion as the magnetic intensity becomes
stronger, cases associated with weaker magnetic influence
exhibit higher velocities while those subjected to stronger
magnetic fields experience noticeable damping. This behavior
is attributed to the Lorentz force, which resists fluid motion in
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Figure 2: Effect of Nb on Velocity Profile when Le =
10,Pr =10,Nt =0.1,Gc¢ =0.1,0 =0.1,Gr =0.1,M =
0.1,Ra =2
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Figure 4: Effect of M on Velocity Profile when
Le=10,Pr=10,Nt=0.1,Nb=0.1,Q=0.1,Gr=0.1,Gc=0.1,Ra=2
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electrically conducting flows. For the internal heat generation

parameter @ in fig. 5, velocity rises when internal heat

production becomes more significant. Additional thermal

energy promotes buoyancy, giving rise to an accelerated flow

near the plate. With the radiation parameter Ra in fig. 6,
velocity also increases as radiative effects grow stronger.
Radiative heating elevates the temperature of the fluid,

thereby strengthening buoyancy and enhancing the
momentum boundary layer thickness.
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Figure 3: Effect of Nt on Velocity Profile when
Le=10,Pr=10,Gr=0.1,,Nb=0.1,0=0.1,Gc=0.1,M=0.1,Ra=2
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Figure 5: Effect of Q on Velocity Profile when
Le=10,Pr=10,Nt=0.1,Nb=0.1,Gr=0.1,G¢c=0.1,M=0.1,Ra=2
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Figure. 6: Effect

of Ra on Velocity Profile When

Le=10,Pr=10,Nt=0.1,Nb=0.1,Q=0.1,Gr=0.1,Gc=0.1,M=0.1

Effects of Variation of Parameter on the Temperature
Profile

Fig. 7 - 11 shows the effect of parameters on the temperature
profile, for Brownian motion Nb in fig. 7, the temperature
profile escalates as rises describes the random, erratic
movement of nanoparticles within the base fluid. As this
parameter increases, the collisions between particles and fluid
molecules become more frequent and energetic. This process
generates additional heat, consequently boosting the thickness
of the thermal boundary layer. Increasing the values
thermophoresis Ntin fig. 8, results in an elevation of the fluid
temperature. Thermophoresis is the phenomenon where a
temperature gradient exerts a force on particles, propelling
them from the hot surface toward the cold region. This

1
0.8
061
L)
041
021
0 T T Y
0 5 10 15
n
we Nb = (.1 === Nb=0.2 === Nb=0.3
= Nb=0.4

Figure 7: Effect of Nb on Temperature Profile when
Le=10,Pr=10,Nt=0.1,Gc=0.1,Q=0.1,Gr=0.1,M=0.1,Ra=2

transport of hot particles into the cooler fluid layers
effectively raises the overall temperature distribution. In fig.
9 which is magnetic parameter M, the temperature
distributions indicate that stronger magnetic influence
produces a thicker thermal boundary layer. Magnetic damping
releases additional heat into the fluid, raising its temperature
throughout the boundary layer. The internal heat generation Q
parameter in fig. 10 has a direct heating effect. Stronger
internal heat production leads to a marked rise in the
temperature distribution and thickens the thermal boundary
layer. Radiation Rain fig. 11 also plays a significant role in
increasing the fluid temperature. Stronger radiative influence
contributes  additional thermal energy, causing the
temperature to rise throughout the boundary layer and
enlarging the thermal layer thickness.
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Figure 8: Effect of Nt on Temperature Profile when
Le=10,Pr=10,Gr=0.1,Nb=0.1,0=0.1,G¢c=0.1,M=0.1,Ra=2
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Figure 9: Effect of M on Temperature Profile when
Le=10,Pr=10,Nt=0.1,Nb=0.1,Q=0.1,Gr=0.1,G¢c=0.1,Ra=2
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Figure 10: Effect of Q on Temperature Profile when
Le=10,Pr=10,Nt=0.1,Nb=0.1,Gr=0.1,Gc=0.1,M=0.1,Ra=2
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Figure 11: Effect of Ra on Temperature Profile when
Le=10,Pr=10,Nt=0.1,Nb=0.1,Q=0.1,Gr=0.1,G¢=0.1,M=0.1

Effects of Variation of Parameters on Concentration
Profile

Fig. 12 - 16 shows the effect of parameters on the
concentration profile, fig. 12 shows the Brownian Motion Nb
effect, the concentration profile decreases with an increase in
values. While Brownian motion heats the fluid, it
simultaneously acts as a powerful dispersing mechanism.
Higher random motion helps spread the nanoparticles more
uniformly throughout the fluid and away from the boundary,
thereby reducing the nanoparticle concentration near the wall.
Conversely, an increase in thermophoresis Nt in fig. 13
elevates the nanoparticle concentration. Since the
thermophoretic force tends to propel nanoparticles from the
hot surface toward the colder ambient fluid, it leads to a build-
up of particles within the boundary layer. As a result, both the

thermal and solutal (concentration) boundary layer
thicknesses are elevated in the boundary layer regime. The
concentration profiles reveal that stronger magnetic effects M
in fig. 14 cause a buildup of nanoparticles near the plate. The
magnetic resistance slows the flow, reducing convective
transport and allowing more particles to remain close to the
boundary, resulting in a thicker concentration layer. In fig. 15
the internal heat generation @ parameter contributes to
thermal gradients that encourage thermophoretic movement
of nanoparticles away from the heated surface. As a
consequence, stronger heat generation reduces nanoparticle
concentration near the wall. Radiation Rain fig. 16 has a
similar influence. Enhanced radiative heating strengthens
thermophoretic forces, driving nanoparticles away from the
plate and producing a thinner concentration boundary layer.
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Figure 12: Effect of Nb on Concentration Profile when
Le=10,Pr=10,Nt=0.1,0=0.1,Gc=0.1,Gr=0.1,M=0.1,Ra=2
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Figure 14: Effect of M on Concentration Profile when
Le=10,Pr=10,Nt=0.1,Nb=0.1,Q=0.1,Gr=0.1,Gc=0.1,Ra=2

Figure 13: Effect of Nt on Concentration Profile when
Le=10,Pr=10,Gr=0.1,Nb=0.1,0=0.1,Gc=0.1,M=0.1,Ra=2
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Figure 15: Effect of Q on Concentration Profile when
Le=10,Pr=10,Nt=0.1,Nb=0.1,Gr=0.1,Gc=0.1,M=0.1,Ra=2
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CONCLUSION

An exponentially fitted block method coupled with a shooting
technique developed by Faniyi et al. (2023) was applied to the
analysis of MHD nanofluid boundary layer flow over a
stretching surface. The study extended the work of
Nogrehabadi et al., (2012) boundary layer models by
including the effects of magnetic fields, buoyancy forces,
thermal radiation and internal heat generation. Numerical
results indicate that magnetic fields suppress fluid velocity
and thicken thermal and nanoparticle concentration boundary
layers, whereas buoyancy forces, radiation and heat
generation enhance momentum, heat and mass transport.
Nanoparticle distributions are strongly influenced by
Brownian motion and thermophoresis effects. The method
used provides a reliable tool for investigating complex
coupled nonlinear interactions and offers valuable insights for
engineering applications, including energy systems, coating
processes and thermal management.
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