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ABSTRACT 

A study of magnetic field and nanoparticle transport on boundary layer flow of magnetohydrodynamic (MHD) 

nanofluid over a stretching vertical surface has been analyses numerically. By introducing appropriate 

similarity variables, the governing partial differential equations describing momentum, energy and 

concentration were reduced to nonlinear coupled Ordinary Differential Equations (ODE). Utilizing the shooting 

technique along exponentially fitted Simpson type block method is used to solve the Boundary value problems 

using computational software MAPLE 16. Numerical results for velocity, temperature and concentration 

profiles are presented and the effect of key parameters including magnetic field strength, Brownian motion, 

thermophoresis, internal heat generation and thermal radiation was analyzed. The computed Nusselt number 

and Sherwood number demonstrate excellent agreement with existing literature, confirming the stability and 

accuracy of the method used. The results reveal that magnetic effects reduce fluid velocity while thickening 

thermal and concentration boundary layers, whereas buoyancy forces, radiation and internal heat generation 

enhance momentum and heat transport. Nanoparticle diffusion is significantly influenced by thermophoresis 

and Brownian motion effects.  
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INTRODUCTION 

Heat and mass transfer are of considerable interest because 

they occur in many geothermal, geophysical, technological 

and engineering processes such as nuclear reactors 

(Omokhuale and Uwanta, 2016), which can be successfully 

modelled by partial differential equations (PDEs) before 

being transformed into coupled nonlinear ordinary differential 

equations (ODEs) through similarity variables or the method 

of lines and then solved analytically or numerically. These 

processes are guided by fundamental principles and described 

by key governing equations including the continuity, 

momentum, energy and concentration equations. Heat 

transfer science deals with the rate of thermal energy transfer 

(Çengel and Ghajar, 2015) and has applications ranging from 

biological systems to household uses, building design, 

industrial processes, electronic devices and food processing. 

Heat is the form of energy transferred between systems due to 

temperature differences whereas mass transfer describes the 

transport of a chemical species from regions of higher 

concentration to regions of lower concentration. 

Magnetohydrodynamics (MHD) involves the behavior of 

electrically conducting fluids in the presence of magnetic and 

electric fields (Davidson, 2017). In magnetohydrodynamic 

(MHD) flows, the application of a magnetic field plays a 

crucial role in heat and mass transfer processes. By modifying 

the motion of electrically conducting fluids, the magnetic 

field directly affects the transport of thermal energy and 

species concentration. This interplay is critical in various 

applications, notably in renewable energy systems, as well as 

in biomedical engineering for example, in controlling blood 

flow and facilitating targeted drug delivery (Rashid, 2018). 

Due to the significant effects of magnetic fields on boundary 

layers, MHD flow heat transfer has been widely studied. 

Nanofluids, first proposed by Choi in 1995, are suspensions 

of nanoparticles in base fluids designed to enhance heat 

transfer performance (Choi, 1995). Nanofluids, which are 

engineered colloidal suspensions of nanoparticles in base 

fluids, have been shown to enhance heat and mass transfer 

performance. This enhancement arises primarily from the 

increased thermal conductivity and diffusivity provided by 

the nanoparticles, enabling more efficient heat exchange and 

faster diffusion of substances. The behavior of nanofluid heat 

and mass transfer depends on several factors, including 

nanoparticle type, concentration and size, as well as 

environmental conditions such as temperature, pressure and 

the presence of a magnetic field (Khan et al., 2023). 

Investigating the parameters that influence heat and mass 

transfer in MHD nanofluid flows is crucial for optimizing 

industrial and technological applications. Key parameters 

such as the Prandtl number, chemical reaction rates and 

nanoparticle properties effects have a significant impact on 

flow dynamics, heat transfer rates and mass transfer 

characteristics. Sadighi et al. (2023) conducted a comparative 

study of temperature distributions under two different 

boundary conditions and the same approach was extended to 

the concentration profiles. They further investigated the 

effects of the Hartmann number, suction/injection parameter, 

and nanoparticle volume fraction on the local skin-friction 

coefficient using the Box–Behnken design. Usman and 

Sulaiman (2023) examined how Casson nanofluid flows 

across a semi-infinite flat plate imbedded in a porous media 

while being affected by heat radiation, Soret and pressure 

terms. Abbas (2025) investigated the heat and mass transfer 

characteristics of a chemically reactive hybrid nanofluid flow 

over an exponentially stretching sheet. This study placed 

particular emphasis on the influence of slip conditions and 

Lorentz forces on the boundary layer, concluding that hybrid 

nanoparticles significantly enhance thermal performance 

compared to mono-nanofluids, even in the presence of strong 

magnetic opposition. Uddin et al. (2017) examined 

magnetohydrodynamic nanofluid flow over a radiative 

surface, with particular emphasis on natural convection heat 

transfer along a horizontal plate, a topic for which physically 

realistic and practically relevant results remain scarce. Their 

work analysed the combined influence of velocity slip and 

zero mass flux boundary conditions on the boundary layer 
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flow over an upward-facing, nonlinearly radiating horizontal 

stretching sheet. Arshad et al. (2024) explored the mixed 

convective flow of hybrid nanofluids (Ag-MgO/Water) over 

a stretching surface, specifically focusing on the combined 

effects of Joule heating and a non-uniform heat source. Their 

findings revealed that temperature dependent viscosity and 

slip conditions play a decisive role in determining the 

thickness of the thermal boundary layer, which is essential for 

optimizing electronic cooling systems. 

Khan et al. (2023) addressed an existing research gap by 

analysing the impact of slip boundary conditions on velocity, 

temperature and concentration fields in nanofluid boundary 

layer flow, while also accounting for viscous dissipation 

effects. Pavithra et al. (2025) conducted a statistical and 

numerical investigation into how nanoparticle shape factors 

(spherical, cylindrical and platelet) influence heat transfer in 

MHD nanofluid flow over a stretching sheet. Their study 

incorporated an exponential heat source/sink and a first order 

chemical reaction, demonstrating that the geometric 

configuration of nanoparticles is a primary determinant of the 

local Nusselt and Sherwood numbers. Kho et al. (2018) 

explored the combined influence of thermal radiation and 

magnetic fields on the velocity, temperature and 

concentration profiles of a Casson nanofluid flowing over a 

stretching sheet with constant wall temperature. Kumar et al. 

(2025) examined the magnetohydrodynamic (MHD) flow of 

a non-Newtonian Casson nanofluid over a porous surface for 

solar energy applications. Their work analysed the interplay 

between Cattaneo-Christov heat flux and thermal radiation, 

providing new insights into how high temperature 

environments affect the entropy generation and thermal 

stability of the boundary layer in solar collectors. 

Inspired by the work of Noghrehabadi, Pourrajab and 

Ghalambaz (2012), their investigation which focus on the 

effect of slip factor, Prandtl number, lewis parameter, 

Brownian motion and thermophersis parameter on the heat 

transfer characteristic of stretching sheet, this study will be 

extending their work by introducing other critical parameters 

previously unaddressed: magnetic field effects, local thermal 

and solutal Grashof numbers, thermal radiation, and internal 

heat generation. This expansion facilitates a more 

comprehensive investigation into the Magnetohydrodynamic 

(MHD) nanofluid flow over a stretching sheet. To analyse the 

system, the governing partial differential equations (PDEs) 

representing the boundary layer problem are reduced to a 

system of nonlinear ordinary differential equations (ODEs) 

using appropriate similarity transformations. The resulting 

ODEs are solved using an exponentially fitted Simpson’s type 

block method integrated with a shooting technique. While 

block methods have demonstrated notable efficiency and 

stability in solving single-fluid flow and boundary value 

problems (Olabode et al., 2024; Kwari et al., 2021), and a few 

studies such as those of Oyelakin et al. (2020), Phang and 

Abdulmajid (2015) have extended their application to MHD 

and nanofluid flow problems. The exponentially fitted block 

method adopted in this study follows the approach of Faniyi 

et al. (2023), incorporating exponential fitting to improve 

accuracy in solving differential equations arising in MHD 

nanofluid heat and mass transfer. This combination provides 

a stable and computationally efficient alternative to 

conventional numerical techniques. 

 

MATERIALS AND METHODS 

Governing Equation 

Consider a steady, two dimensional, incompressible, viscous 

flow of a nanofluid over a stretching surface. The surface 

velocity varies linearly and it expresses as Uw(x)=cx, where 

c is a constant and x is the coordinate along the stretching 

surface. The nanofluid flow occurs at y=0, with y being the 

coordinate perpendicular to the stretching surface. The wall 

temperature Tw and the nanoparticle volume fraction φw are 

constant at the stretching surface. As y→∞, the temperature T 

and the nanoparticle φ  volume fraction approaches the 

constant ambient values TN  and φN  repectively. (Extended 

from Noghrehabadi et al. 2012) 

 

 
Figure 1: Boundary Layer Configuration 
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Concentration Equation 
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The boundary condition for the velocity components with 

partial slip condition at the wall (i.e y=0) for nanoparticle 

fraction and temperature are defined as 

v=0,u=U
w
(x)-U

s
,T=T

w
, φ=φ

w
  at y=0   (5) 

v=u=0,T=T
w

,φ=φ
w

   at  y=∞  (6) 

Where u and v are the velocity components along the axis x 

and y respectively, p is the fluid pressure, α is the thermal 

diffusivity, υ is the kinematic velocity, ρ
f
 is the density of the 

base fluid, ρ
p
is the density of the particle, D

B
 is the 

Brownian diffusion coefficient, D
T
 is the thermophoresis 

diffusion coefficient, ρ being the density, C
p
the specific heat 

at constant pressure, B
0
 is the magnetics strength, B

T
 is the 

thermal expansion coefficient, σ is the electrical 

conductivity, g is the acceleration due to gravity, Q is the 

internal heat generation. 

The radiative heat flux q
r
 is described by Roseland 

approximation such that 

q
r
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Where σ
*
 and δ are the Stefan-Boltzmann constant and the 

mean absorption coefficient respectively.  We assume that 

the temperature difference within the flow is sufficiently 

small so that the T
4
 can be expressed as a linear function 

after using Taylor series to expand T
4
 about the free stream 

temperature T
∞

 and neglecting higher order terms. This 

result is the following approximation:  
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Using (7) and (8) in (3), we obtain 
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We introduce a stream function ψ  defined with by 

u=
∂ψ

∂y
,     v=-

∂ψ

∂x
   (10) 

so that the continuity equation is satisfied identically.  

we also introduce the dimensionless variable in equation 

(11a) and (11b) 
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Then substituting in equations (1) - (4), we obtain the 

following ordinary differential equations 
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Here Gc
x
,  M

x
, Pr, Le, Nb, Nt, R, λ, Q and Gr

x
, denote Local 

solutal grashof number, Magnetic parameter, Prandtl 

number, Lewis number, the Brownian motion parameter, 

Thermophoresis parameter, Radiation parameter, slip factor, 

Internal heat generation, and Local thermal grashof number 

parameter respectively. 

equations (12) – (14) are solved under to the following 

condition 

At η=0:     f=0,    f
'
=1,     θ=1,     β=1  (16) 

At η→∞:      f
'
=0,      θ=0,     β=0 (17) 

Where prime denote differentiation with respect to η. 

 

Method of Solution 

The coupled nonlinear ODEs governing the momentum, 

energy and concentration fields given by equations (12-14) 

together with the boundary conditions (16–17), constitute a 

boundary value problem. Due to the strong nonlinearity and 

coupling of the system, closed-form solution is not feasible 

therefore a numerical approach is employed. 

To facilitate numerical integration, the higher order 

differential equations are first transformed into an equivalent 

system of first order ODEs. The following substitutions are 

introduced 

f=y1, f
'=y2,f

''=y3,θ=y4,θ
'=y5,β=y6,β

'=y7 

Using these definitions, equation (12-14) are rewritten as a 

system of seven first order equations 
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subject to the transformed boundary conditions at η=0 and 

η→∞. 

The boundary conditions prescribed at infinity are 

numerically handled by truncating the semi-infinite domain 
(0,∞) to a finite computational domain (0,ηmax) after several 

numerical experiments. It was observed that ηmax=15  is 

sufficient to ensure that the asymptotic boundary condition  

f '(ηmax)≃0,   θ(ηmax)≃0,   β(ηmax)≃0  are satisfied with 

acceptable accuracy, increasing ηmax  beyond this value 

produced no significant change in the numerical results. At 

η=0  the boundary conditions specify f(0)=0, 
f '(0)=1, θ(0)=1, β(0)=1  while the unknown initial 

condition f ''(0)=r1, θ
'(0)=r2,β

'(0)=r3  must be determined 

such that the far fluid boundary conditions are satisfied. These 

unknown initial values are treated as shoot parameters. An 

initial guess for (r1, r2, r3) is chosen and the resulting initial 

value problem is intergtared numerically with exponentially 
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fitted Simpson’s type block method. The guesses are 

iteratively refined until the boundary conditions at η=ηmax 
are satisfied. The unknown initial slopes are iteratively 

updated using a newton type correction scheme within the 

shooting technique until the far field boundary condition are 

satisfied with a tolerance of 10-6. 
The exponentially fitted block method which will be used in 

this study to solve the IVPs emanated from boundary layer 

problem of MHD nanofluid flow is the algorithm developed 

by Faniyi et al. (2023). The block method has the expression  

 u(x)=α0yn+∑ B(ω;h)3
i=0 fn+i,   (19) 

where α0=1, B is a function depending on ω and h. (19) is 

evaluated at point xn+i, i=0(1)3 , the 3 step exponentially 

fitted backward difference method were obtained as followed. 

yn+1=yn+ξ1((12-16e
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The order of accuracy is uniformly 5, while error constant is  
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RESULTS AND DISCUSSION 

This section presents the performance of the numerical 

method. The transformed system of nonlinear ODEs was 

solved using the exponentially fitted block method combined 

with shooting techniques. Table 1 compares the present 

Nusselt and Sherwood numbers with the results of Khan & 

Pop (2010) and Noghrehabadi et al. (2012). The close 

agreement across all parameter values confirms the accuracy 

and reliability of the method. Table 2 reports the computed 

skin friction coefficient f ''(0) , local Nusselt number θ'(0) 
and nanoparticle Sherwood number β'(0)for variations in M, 

Gr, Gc, Q and Ra. Magnetic field strength, buoyancy effects, 

heat generation and radiation significantly influence the flow, 

heat and mass transfer characteristics.  

 

Table 1: Comparison of Results for Nusselt Number and Sherwood Number when Le = 10, Pr= 10 

Nt Nb Nur Shr 

  Khan&pop 

(2010) 

Noghr et al. 

(2012) 

Present work Khan&pop 

(2010) 

Noghr et al. 

(2012) 

Present work 

0.1 0.1 0.9524 0.95237 0.95267 2.1294 2.12939 2.12910 

0.2 0.1 0.6932 0.69317 0.69319 2.2740 2.27402 2.27397 

0.3 0.1 0.5201 0.52007 0.52009 2.5286 2.52863 2.52862 

0.4 0.1 0.4026 0.40258 0.40259 2.7952 2.79517 2.79516 

0.5 0.1 0.3211 0.32105 0.32107 3.0351 3.03514 3.03513 

0.1 0.2 0.5056 0.50558 0.50559 2.3819 2.38187 2.38186 

0.1 0.3 0.2523 0.25215 0.25216 2.4100 2.41001 2.41001 

0.1 0.4 0.1194 0.11940 0.11941 2.3997 2.39965 2.39965 

0.1 0.5 0.0543 0.05425 0.54255 2.3836 2.38356 2.38356 

  

Table 2: Computation Showing f ''(0), θ'(0) and  β'(0) when Le=10, Pr=10, λ=0,Nb=0.1, Nt=0.1 

M Gr Gc Q Ra -f ''(0) -θ'(0) -β'(0) 
0.1 0.1 0.1 0.1 2 0.94207304 0.25287855 2.2736442 

1.0     1.32257449 0.15998972 2.2090314 

5.0     2.38603963 0.14508583 2.1124425 

 0.5    0.67752426 0.31926572 2.3253451 

 1.5    0.13004549 0.38806914 2.4212796 

  0.5   0.85007256 0.26055287 2.2858774 

  1.5   0.62477557 0.27739364 2.3150508 

   0.2  0.93135707 0.13244648 2.3248931 

   0.3  0.91237065 0.07347108 2.4044945 

    3 0.93219750 0.19012320 2.2934515 

    7 0.91671746 0.11219096 2.3175684 

 

Effects of Variation of Parameters on the Velocity Profiles 

Fig. 2 -6 shows the influence of parameters on the velocity 

profile, in fig. 2 (Nb), It was observed that the velocity profile 

escalates with a rise in values. This is because the intensified 

random motion of nanoparticles enhances the kinetic energy 

and thermal state of the fluid. In convective flows, this 

temperature rise increases the thermal buoyancy force, which 

in turn accelerates the fluid flow. An increase in 

thermophoresis Nt  in fig. 3 values lead to an elevation in fluid 

velocity. The thermophoretic force moves particles from the 
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hot surface to the ambient cold fluid, thickening the thermal 

boundary layer. This enhancement in the thermal state 

strengthens the buoyancy effects, providing a slight push or 

acceleration to the fluid. In fig. 4, the velocity profiles 

corresponding to the magnetic parameter M show a consistent 

reduction in fluid motion as the magnetic intensity becomes 

stronger, cases associated with weaker magnetic influence 

exhibit higher velocities while those subjected to stronger 

magnetic fields experience noticeable damping. This behavior 

is attributed to the Lorentz force, which resists fluid motion in 

electrically conducting flows. For the internal heat generation 

parameter Q  in fig. 5, velocity rises when internal heat 

production becomes more significant. Additional thermal 

energy promotes buoyancy, giving rise to an accelerated flow 

near the plate. With the radiation parameter Ra  in fig. 6, 

velocity also increases as radiative effects grow stronger. 

Radiative heating elevates the temperature of the fluid, 

thereby strengthening buoyancy and enhancing the 

momentum boundary layer thickness. 

 

 
Figure 2: Effect of 𝑁𝑏 on Velocity Profile when 𝐿𝑒 =

10, 𝑃𝑟 = 10,𝑁𝑡 = 0.1, 𝐺𝑐 = 0.1, 𝑄 = 0.1, 𝐺𝑟 = 0.1,𝑀 =
0.1, 𝑅𝑎 = 2 

 
Figure 3: Effect of Nt on Velocity Profile when 

Le=10,Pr=10,Gr=0.1,,Nb=0.1,Q=0.1,Gc=0.1,M=0.1,Ra=2 

 
Figure 4: Effect of M on Velocity Profile when 

Le=10,Pr=10,Nt=0.1,Nb=0.1,Q=0.1,Gr=0.1,Gc=0.1,Ra=2 

 

 
Figure 5: Effect of Q on Velocity Profile when 

Le=10,Pr=10,Nt=0.1,Nb=0.1,Gr=0.1,Gc=0.1,M=0.1,Ra=2 
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Figure. 6: Effect of Ra on Velocity Profile When 

Le=10,Pr=10,Nt=0.1,Nb=0.1,Q=0.1,Gr=0.1,Gc=0.1,M=0.1 

 

Effects of Variation of Parameter on the Temperature 

Profile 

Fig. 7 - 11 shows the effect of parameters on the temperature 

profile, for Brownian motion Nb in fig. 7, the temperature 

profile escalates as rises describes the random, erratic 

movement of nanoparticles within the base fluid. As this 

parameter increases, the collisions between particles and fluid 

molecules become more frequent and energetic. This process 

generates additional heat, consequently boosting the thickness 

of the thermal boundary layer. Increasing the values 

thermophoresis Nt in fig. 8, results in an elevation of the fluid 

temperature. Thermophoresis is the phenomenon where a 

temperature gradient exerts a force on particles, propelling 

them from the hot surface toward the cold region. This 

transport of hot particles into the cooler fluid layers 

effectively raises the overall temperature distribution. In fig. 

9 which is magnetic parameter M , the temperature 

distributions indicate that stronger magnetic influence 

produces a thicker thermal boundary layer. Magnetic damping 

releases additional heat into the fluid, raising its temperature 

throughout the boundary layer. The internal heat generation Q 

parameter in fig. 10 has a direct heating effect. Stronger 

internal heat production leads to a marked rise in the 

temperature distribution and thickens the thermal boundary 

layer. Radiation Ra in fig. 11 also plays a significant role in 

increasing the fluid temperature. Stronger radiative influence 

contributes additional thermal energy, causing the 

temperature to rise throughout the boundary layer and 

enlarging the thermal layer thickness. 

 

 
Figure 7: Effect of Nb on Temperature Profile when 

Le=10,Pr=10,Nt=0.1,Gc=0.1,Q=0.1,Gr=0.1,M=0.1,Ra=2 

 
Figure 8: Effect of Nt on Temperature Profile when 

Le=10,Pr=10,Gr=0.1,Nb=0.1,Q=0.1,Gc=0.1,M=0.1,Ra=2 
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Figure 9: Effect of M on Temperature Profile when 

Le=10,Pr=10,Nt=0.1,Nb=0.1,Q=0.1,Gr=0.1,Gc=0.1,Ra=2 

 
Figure 10: Effect of Q on Temperature Profile when 

Le=10,Pr=10,Nt=0.1,Nb=0.1,Gr=0.1,Gc=0.1,M=0.1,Ra=2 

 
Figure 11: Effect of Ra on Temperature Profile when 

Le=10,Pr=10,Nt=0.1,Nb=0.1,Q=0.1,Gr=0.1,Gc=0.1,M=0.1 

 

Effects of Variation of Parameters on Concentration 

Profile 

Fig. 12 - 16 shows the effect of parameters on the 

concentration profile, fig. 12 shows the Brownian Motion Nb 

effect, the concentration profile decreases with an increase in 

values. While Brownian motion heats the fluid, it 

simultaneously acts as a powerful dispersing mechanism. 

Higher random motion helps spread the nanoparticles more 

uniformly throughout the fluid and away from the boundary, 

thereby reducing the nanoparticle concentration near the wall. 

Conversely, an increase in thermophoresis Nt  in fig. 13 

elevates the nanoparticle concentration. Since the 

thermophoretic force tends to propel nanoparticles from the 

hot surface toward the colder ambient fluid, it leads to a build-

up of particles within the boundary layer. As a result, both the 

thermal and solutal (concentration) boundary layer 

thicknesses are elevated in the boundary layer regime. The 

concentration profiles reveal that stronger magnetic effects M 

in fig. 14 cause a buildup of nanoparticles near the plate. The 

magnetic resistance slows the flow, reducing convective 

transport and allowing more particles to remain close to the 

boundary, resulting in a thicker concentration layer. In fig. 15 

the internal heat generation Q  parameter contributes to 

thermal gradients that encourage thermophoretic movement 

of nanoparticles away from the heated surface. As a 

consequence, stronger heat generation reduces nanoparticle 

concentration near the wall. Radiation Ra in fig. 16 has a 

similar influence. Enhanced radiative heating strengthens 

thermophoretic forces, driving nanoparticles away from the 

plate and producing a thinner concentration boundary layer. 
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Figure 12: Effect of Nb on Concentration Profile when 

Le=10,Pr=10,Nt=0.1,Q=0.1,Gc=0.1,Gr=0.1,M=0.1,Ra=2 

 
Figure 13: Effect of Nt on Concentration Profile when 

Le=10,Pr=10,Gr=0.1,Nb=0.1,Q=0.1,Gc=0.1,M=0.1,Ra=2 

 
Figure 14: Effect of M on Concentration Profile when 

Le=10,Pr=10,Nt=0.1,Nb=0.1,Q=0.1,Gr=0.1,Gc=0.1,Ra=2 

 
Figure 15: Effect of Q on Concentration Profile when 

Le=10,Pr=10,Nt=0.1,Nb=0.1,Gr=0.1,Gc=0.1,M=0.1,Ra=2 

 
Figure 16: Effect of Ra on Concentration Profile when 

Le=10,Pr=10,Nt=0.1,Nb=0.1,Q=0.1,Gr=0.1,Gc=0.1,M

=0.1 
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CONCLUSION  

An exponentially fitted block method coupled with a shooting 

technique developed by Faniyi et al. (2023) was applied to the 

analysis of MHD nanofluid boundary layer flow over a 

stretching surface. The study extended the work of 

Nogrehabadi et al., (2012) boundary layer models by 

including the effects of magnetic fields, buoyancy forces, 

thermal radiation and internal heat generation. Numerical 

results indicate that magnetic fields suppress fluid velocity 

and thicken thermal and nanoparticle concentration boundary 

layers, whereas buoyancy forces, radiation and heat 

generation enhance momentum, heat and mass transport. 

Nanoparticle distributions are strongly influenced by 

Brownian motion and thermophoresis effects. The method 

used provides a reliable tool for investigating complex 

coupled nonlinear interactions and offers valuable insights for 

engineering applications, including energy systems, coating 

processes and thermal management.  
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