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ABSTRACT 

Bivariate lifetime models are crucial in reliability analysis and survival research, necessitating flexible marginal 

distributions and dependence structures to accurately depict real-world data. This paper introduces a family of 

five-parameter bivariate distributions derived from the Inverted Nadarajah–Haghighi distribution by the use of 

copula functions, motivated by the inadequacies of current bivariate models in representing varied dependence 

structures. The Farlie–Gumbel–Morgenstern (FGM) and Plackett copulas are utilized to model the dependent 

structure.The primary objective of this work is to develop these new bivariate models, investigate their 

statistical properties, and assess the efficiency of parameter estimation methods. Parameters are estimated using 

Maximum Likelihood Estimation (MLE) and the Inference Function for Margins (IFM) approach, and the 

efficiency of the two methods is compared. The results indicate that MLE provides more efficient estimation 

of the copula parameter for both the FGM and Plackett copulas.To illustrate the applicability of the proposed 

models, two real data sets are analyzed. The findings show that the Bivariate Inverted Nadarajah–Haghighi 

distribution based on the Plackett copula offers a better fit than the corresponding model based on the FGM 

copula. Further comparison with the Bivariate Generalized Exponential Distribution reveals that while the latter 

performs better under the FGM copula, the proposed model under the Plackett copula outperforms it, yielding 

lower AIC and BIC values. These results demonstrate the flexibility and practical relevance of the proposed 

models for analyzing dependent lifetime data. 

 

Keywords: Inverted Nadarajah-Haghighi Distribution, Bivariate Models, Copula Function, Inference Function 
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INTRODUCTION 

Copulas have been widely used to determine the joint 

distribution functions between two or more variables in 

various areas. Lately, areas such as flood, drought and storm 

event also emerged in applying copula to calculate the joint 

behaviour between variables (Ariff et al (2012), Kao and 

Govindaraju (2010), Renard and Lang (2007), Requena et al 

(2013)). Traditional standard bivariate model assume that the 

joint distribution should come from the same family of 

distribution. However, the model assumptions could cause 

defected result in the study due to the dependence structure of 

variables, while a copula model does not require these kinds 

of assumptions (Genest and Favre, 2007). 

According to Nelsen (1999), a copula is a function that 

connects a multivariate distribution function with its 

univariate marginal distribution function by making use of 

dependence measures among correlated random variables. 

Univariate marginal distribution can be defined 

independently from the joint behaviour of the variables in the 

copulas. Therefore, the dependence structure of the random 

variables in a copula can be modeled depending on the family 

of the marginal distributions. 

Many researchers have shown that existing statistical 

distributions are not the most appropriate model that 

adequately describes real life data such as those obtained from 

experimental investigations. As such, developing a new 

distribution that will, to some extent, address this problem is 

necessary. Researchers have generalized the exponential 

distribution in order to add flexibility to the distribution. For 

instance, Gupta and Kundu (1999) generalizes the exponential 

distribution to the exponentiated exponential distribution, 

Nadarajah and Haghighi (2006) to the Beta-exponential 

distribution, Nadarajah and Haghighi (2011) to the 

Nadarajah-Haghighi distribution which allows increasing, 

decreasing and constant hazard rate. But most of these 

distributions are not flexible enough to model real life data 

sets which exhibit decreasing and upside-down bathtub 

hazard rate shapes. As such, Tahir et al (2018) introduced the 

inverted Nadarajah-Haghighi distribution which is more 

flexible and capable of modeling real data sets that exhibit 

decreasing and upside-down bathtub hazard rate shapes, but 

this distribution still failed to address dependence between 

random variables and cannot model bivariate survival data. 

As a result, we intend to propose a new distribution called the 

Bivariate Inverted Nadarajah- Haghighi Distribution that 

could effectively modeled bivariate survival data in different 

situations including censored data where two lifetimes are 

observed for the same individual. 

The univariate Inverted Nadarajah Haghighi distribution has 

the distribution function, probability density function and the 

hazard rate function given by equation (1), (2) and (3) 

respectively: 

𝐹(𝑡; 𝛼, 𝛽) = 𝑒(1−(1+𝛼𝑡−1)𝛽)   (1) 

𝑓(𝑡; 𝛼, 𝛽) = 𝛼𝛽𝑡−2(1 + 𝛼𝑡−1)𝛽−1𝑒(1−(1+𝛼𝑡−1)𝛽) (2) 

ℎ(𝑡; 𝛼, 𝛽) = 𝛼𝛽𝑡−2(1 + 𝛼𝑡−1)𝛽−1[𝑒{−(1−(1+𝛼𝑡−1)𝛽)−1}] 
     (3) 

Where 𝛼 > 0 is a scale parameter and 𝛽 > 0 is a shape 

parameter and 𝑡 > 0 

A bivariate distribution function with uniform marginal 

distributions is known as a copula function. Sklar (1959) 

coined the term "copula," which derives from the Latin verb 

copulare, which means "to join together." 

 

Copula 

Let X and Y be continuous random variables with bivariate 

distribution functions 𝐻(𝑥, 𝑦)and respective marginal 

distribution functions 𝐹(𝑥) and 𝐺(𝑦). By performing the 

probability integral transformation on each variate [i.e., 𝑈 =
 𝐹(𝑋) and 𝑉 =  𝐺(𝑌)] we obtain a new pair of variates U and 
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V, each with a uniform distribution on the interval [0,1]and 

whose joint distribution function, 𝐶(𝑢, 𝑣), has its mass 

confined to the unit square [0,1]. Then 𝐶(𝑢, 𝑣) is a copula 

function. 

Copulas have been of interest to statisticians for two main 

reasons: firstly, as a way of studying scale-free measures of 

dependence; and secondly, as a starting point for constructing 

families of bivariate distributions, sometimes with a view to 

simulation.  

 

Sklar Theorem 

Let 𝐻 be a joint distribution function with margins 𝐹and 𝐺. 

Then there exists a copula 𝐶 such that for all 𝑥, in𝑅̄. 

𝐻(𝑥, 𝑦) = 𝐶[𝐹(𝑥), 𝐺(𝑦)]   (4) 

If 𝐹 and 𝐺 are continuous, then 𝐶 is unique; otherwise, 𝐶 is 

uniquely determined on 𝑅𝑎𝑛𝐹×𝑅𝑎𝑛𝐺. Conversely, if 𝐶 is a 

copula and 𝐹 and 𝐺 are distribution functions, then the 

function 𝐻 defined by (4) is a joint distribution function with 

margins 𝐹 and 𝐺 

 

Inverted Nadarajah Haghighi Distribution 

Tahir et al. (2018) introduce a new inverted model called the 

inverted Nadarajah–Haghighi distribution which exhibits 

decreasing and unimodal (right-skewed) density while the 

hazard rate shapes are decreasing and upside-down bathtub. 

The inverted (or inverse) distributions are sometimes very 

useful to explore additional properties which non-inverted 

distributions cannot (Tahir et al. (2018)).  

Let 𝑇 = 1/𝑍 be a random variable where Z follows 

Nadarajah-Haghighi Distribution, then T is said to follow 

Inverted Nadarajah-Haghighi Distribution denoted by 𝑇 ∼
𝐼𝑁𝐻(𝛼, 𝛽) if the Cumulative Distribution Function (CDF), 

Probability Density Function (PDF) and the Hazard Rate 

Function (HRF) of X are respectively given by equation (5), 

(6) and (7) 

𝐹(𝑡; 𝛼, 𝛽) = 𝑒(1−(1+𝛼𝑡−1)𝛽)   (5) 

𝑓(𝑡; 𝛼, 𝛽) = 𝛼𝛽𝑡−2(1 + 𝛼𝑡−1)𝛽−1𝑒(1−(1+𝛼𝑡−1)𝛽)  

     (6) 

ℎ(𝑡; 𝛼, 𝛽) = 𝛼𝛽𝑡−2(1 + 𝛼𝑡−1)𝛽−1[𝑒{−(1−(1+𝛼𝑡−1)𝛽)−1}] 
     (7) 

Where 𝛼 > 0 is a scale parameter and 𝛽 > 0 is a shape 

parameter 

 

Farlie Gumbel Mogernstern Copula 

The FGM family is one of the most popular parametric 

families of copulas discussed by Morgenstern in (1956), 

Gumbel in (1960) and Farlie in (1960). The expression of 

distribution function for FGM copula is: 

𝐶(𝑢, 𝑣) = 𝑢𝑣[1 + 𝜃(1 − 𝑢)(1 − 𝑣)]  (8) 

And the density function is given by: 

𝑐(𝑢, 𝑣) = 𝑓(𝑡1)𝑓(𝑡2)[1 + 𝜃(1 − 2𝑢)(1 − 2𝑣)] (9) 

Where 𝑢 and 𝑣 ∈ 𝐼, and 𝜃 ∈ [−1,1] is a dependence 

parameter. If the dependence parameter θ equals zero, then 

the FGM copula corresponds the independence.  

Although the FGM copula family is tractable mathematically, 

it does not model high dependences. The range of the 

dependence measures Kendall’s tau τ and Spearman’s rho ρ 

are 𝜏 ∈ [−0.222,0.222] and 𝜌 ∈ [−0.333,0.333] 
respectively. 

 

Plackett Copula 

It is proposed by Plackett (1965). Its distribution function is 

defined as: 

𝐶(𝑢, 𝑣) =
1+(𝜃−1)(𝑢+𝑣)−√[1+(𝜃−1)(𝑢+𝑣)]2−4𝑢𝑣𝜃(𝜃−1)

2(𝜃−1)
 

     (10) 

And the density function is defined as: 

𝑐(𝑢, 𝑣) =
𝜃[1+(𝑢−2𝑢𝑣+𝑣)(𝜃−1)]

√[1+(𝜃−1)(𝑢+𝑣)]2−4𝑢𝑣𝜃(𝜃−1)3   (11) 

Where 𝜃 ∈ (0,∞). The correlation measure Spearman's rho 

is𝜌 =
𝜃+1

𝜃−1
−

2𝜃 𝑙𝑜𝑔 𝜃

(𝜃−1)2
. There is no closed expression in 𝜃 for the 

correlation measure Kendall's tau.  

 

Bivariate Inverted Nadarajah Haghighi (BIN-H) 

Distribution based on Farlie Gumbel Mogernstern 

Copula 

Suppose the random variables 𝑇1 and 𝑇2 follow the Inverted 

Nadarajah Haghighi distribution each with distribution 

Function 𝐹1(𝑡1)and 𝐹2(𝑡2) respectively, then the joint 

distribution function 𝐹(𝑡1, 𝑡2)is defined as:  

𝐹(𝑡1, 𝑡2) = 𝐶[𝐹1(𝑡1), 𝐹2(𝑡2)]  
=𝐶(𝑢, 𝑣) 

= 𝑢𝑣[1 + 𝜃(1 − 𝑢)(1 − 𝑣)]   (12) 

 where; 𝑢 = 𝐹1(𝑡1) ,  𝑣 = 𝐹2(𝑡2) and the density function 

which is obtained by differentiating (12) partially with respect 

to  𝑡1and 𝑡2is given by: 

𝑓(𝑡1, 𝑡2) = 𝑓(𝑡1)𝑓(𝑡2)𝑐[𝐹1(𝑡1), 𝐹2(𝑡2)]  
=𝑓(𝑡1)𝑓(𝑡2)[1 + 𝜃(1 − 2𝑢)(1 − 2𝑣)]  (13) 

The marginal distribution functions of the univariate Inverted 

Nadarajah Haghighi are: 

𝑢 = 𝐹1(𝑡1) = 𝑒(1−(1+𝛼1𝑡1
−1)𝛽1)  (14) 

𝑣 = 𝐹2(𝑡2) = 𝑒(1−(1+𝛼2𝑡2
−1)𝛽2)  (15) 

The marginal density functions of the univariate Inverted 

Nadarajah Haghighi are: 

𝑓(𝑡1) = 𝛼1𝛽1𝑡1
−2(1 + 𝛼1𝑡1

−1)𝛽1−1𝑒(1−(1+𝛼1𝑡1
−1)𝛽1) 

     (16) 

𝑓(𝑡2) = 𝛼2𝛽2𝑡2
−2(1 + 𝛼2𝑡2

−1)𝛽2−1𝑒(1−(1+𝛼2𝑡2
−1)𝛽2)   

     (17) 

Therefore, the joint CDF of the Bivariate Inverted Nadarajah 

Haghighi (BIN-H) distribution using the Farlie Gumbel 

Mogernstern Copula distribution is obtained by substituting 

(14) and (15) in (12) as follows: 

𝐹(𝑡1, 𝑡2) = 𝑒(1−(1+𝛼1𝑡1
−1)𝛽1)

+(1−(1+𝛼2𝑡2
−1)𝛽2)

[1 + 𝜃(1 −

𝑒(1−(1+𝛼1𝑡1
−1)𝛽1))(1 − 𝑒(1−(1+𝛼2𝑡2

−1)𝛽2))] (18) 

While the joint density function is obtained by substituting 

(14) and (15) in (13) as: 

𝑓(𝑡1, 𝑡2) = 𝛼1𝛽1𝑡1
−2(1 +

𝛼1𝑡1
−1)𝛽1−1𝑒(1−(1+𝛼1𝑡1

−1)𝛽1). 𝛼2𝛽2𝑡2
−2(1 +

𝛼2𝑡2
−1)𝛽2−1𝑒(1−(1+𝛼2𝑡2

−1)𝛽2) × [1 + 𝜃(1 −

2𝑒(1−(1+𝛼1𝑡1
−1)𝛽1))(1 − 2𝑒(1−(1+𝛼2𝑡2

−1)𝛽2))] (19) 

 

𝑓(𝑡1, 𝑡2) = [𝛼1𝛽1𝑡1
−2(1 + 𝛼1𝑡1

−1)𝛽1−1. 𝛼2𝛽2𝑡2
−2(1 +

𝛼2𝑡2
−1)𝛽2−1]𝑒(1−(1+𝛼1𝑡1

−1)𝛽1)+(1−(1+𝛼2𝑡2
−1)𝛽2)

× [1 + 𝜃(1 −

2𝑒(1−(1+𝛼1𝑡1
−1)𝛽1))(1 − 2𝑒(1−(1+𝛼2𝑡2

−1)𝛽2))] (20) 

Re arranging (20) yields:  

𝑓(𝑡1, 𝑡2) = [𝛼1𝛽1𝑡1
−2(1 + 𝛼1𝑡1

−1)𝛽1−1. 𝛼2𝛽2𝑡2
−2(1 +

𝛼2𝑡2
−1)𝛽2−1]𝑒2−(1−(1+𝛼1𝑡1

−1)𝛽1)−(1−(1+𝛼2𝑡2
−1)𝛽2)

. ƛ(21) 

Where:  

ƛ = [1 + 𝜃(1 − 2𝑒(1−(1+𝛼1𝑡1
−1)𝛽1))(1 −

2𝑒(1−(1+𝛼2𝑡2
−1)𝛽2))]  

𝛼1, 𝛼2 > 0, 𝛽1, 𝛽2 > 0 are the scale and shape parameters 

respectively. −1 < 𝜃 < 1 is the dependence parameter. It is 

important to note that, when the dependence parameter takes 

value zero, the model in (21) reduces to: 

𝑓(𝑡1, 𝑡2) = [𝛼1𝛽1𝑡1
−2(1 + 𝛼1𝑡1

−1)𝛽1−1. 𝛼2𝛽2𝑡2
−2(1 +

𝛼2𝑡2
−1)𝛽2−1]𝑒2−(1−(1+𝛼1𝑡1

−1)𝛽1)−(1−(1+𝛼2𝑡2
−1)𝛽2)

 (22) 
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Bivariate Inverted Nadarajah Haghighi (BIN-H) Distribution based on Plackett Copula. 

The second copula function used in this work is the Plackett copula proposed by Plackett (1965). Its cumulative distribution 

function and probability density function were given in equations (10) and (11) respectively.  

Hence the cumulative distribution function of the BIN-H distribution based on Plackett Copula function is obtained by 

substituting (10) and (11) in (8) which yields: 

𝐹(𝑡1, 𝑡2) =

1+(𝜃−1)(𝑒(1−(1+𝛼1𝑡1
−1)𝛽1)+𝑒(1−(1+𝛼2𝑡2

−1)𝛽2))−√[1+(𝜃−1)(𝑒(1−(1+𝛼1𝑡1
−1)𝛽1)+𝑒(1−(1+𝛼2𝑡2

−1)𝛽2))]
2
−4𝑒(1−(1+𝛼1𝑡1

−1)𝛽1)𝑒(1−(1+𝛼2𝑡2
−1)𝛽2)𝜃(𝜃−1)

2(𝜃−1)

            (23) 

While the density function is obtained by substituting (10) and (11) in (9) which yields: 

𝑓(𝑡1, 𝑡2) =
𝜃[1+(𝑒(1−(1+𝛼1𝑡1

−1)𝛽1)−2𝑒(1−(1+𝛼1𝑡1
−1)𝛽1)𝑒(1−(1+𝛼2𝑡2

−1)𝛽2)+𝑒(1−(1+𝛼2𝑡2
−1)𝛽2))(𝜃−1)]

√([1+(𝜃−1)(𝑒(1−(1+𝛼1𝑡1
−1)𝛽1)+𝑒(1−(1+𝛼2𝑡2

−1)𝛽2))]
2
−4𝑒(1−(1+𝛼1𝑡1

−1)𝛽1)𝑒(1−(1+𝛼2𝑡2
−1)𝛽2)𝜃(𝜃−1))

3
   (24) 

Where 𝛼𝑖,𝛽𝑖 > 0 , 𝑖 = 1,2 are scale and shape parameters respectively and  𝜃 > 0 is the copula parameter. 

 

Parameter Estimation of the BIN-H Distribution 

There are a number of methods for finding the estimates of model parameters. In this work, two different estimation methods 

were used to estimate the parameters of the proposed bivariate distributions. The first method is the maximum likelihood 

estimation (MLE) procedure and the second one is the Inference Function for Margins estimation method. These two 

estimation procedures will be used to estimate the parameters of both the BIN-H distributions based on the FGM and Plackett 

Copula functions. 

 

Parameter Estimation of the Bivariate Inverted Nadarajah Haghighi (BIN-H) Distribution based on FGM Copula 

Here, the parameters of the Bivariate Inverted Nadarajah Haghighi (BIN-H) Distribution based on FGM Copula were estimated 

using the methods of Maximum Likelihood Estimation and Inference Function for Margins techniques. 

 Parameter Estimation based on Maximum Likelihood Estimation Method 

Let(𝑇11, 𝑇12), (𝑇12, 𝑇22) . . . (𝑇1𝑛, 𝑇2𝑛)  be a random sample from a bivariate distribution with vector of parameterΘ, then the 

likelihood function of the bivariate distribution is defined as: 

𝐿(Θ) = ∏ 𝑓(𝑡1𝑖 , 𝑡2𝑖)
𝑛
𝑖=1           (25) 

Taking the natural logarithm of (7) gives the log-likelihood function of the bivariate distribution as: 

𝑙(Θ) = ∑ 𝑙𝑜𝑔(𝑓(𝑡1𝑖 , 𝑡2𝑖))
𝑛
𝑖=1           (26) 

Hence for any copula function, the log likelihood function in (15) can be written as: 

𝑙(Θ) = 𝑙𝑛 𝐿 (Θ) = ∑ (𝑙𝑛 𝑓1 (𝑡1𝑗) + 𝑙𝑛 𝑓2 (𝑡2𝑗) + 𝑙𝑛 𝐶 (𝐹1(𝑡1𝑗), 𝐹2(𝑡1𝑗)))
𝑛
𝑗=1      (27) 

Where 𝑓1(𝑡1) and 𝑓2(𝑡2) are the marginal probability density functions associated with the lifetimes 𝑇1 and 𝑇2 respectively. 

𝐹1(𝑡1) and 𝐹2(𝑡2) are the marginal cumulative distribution functions associated with the life times 𝑇1 and 𝑇2 respectively. And  

𝐶(𝐹1(𝑡1𝑗), 𝐹2(𝑡1𝑗))  is a copula function. 

Based on this, the log likelihood function for the BIN-H distribution based on the Farlie Gumbel Mogernstern Copula is 

therefore obtained by substituting equation (16) to give: 

𝑙(Θ) = ∑ 𝑙𝑛 𝛼1 𝛽1𝑡1𝑗
−2(1 + 𝛼1𝑡1𝑗

−1)𝛽1−1𝑒(1−(1+𝛼1𝑡1𝑗
−1)𝛽1)𝑛

𝑗=1 + ∑ 𝑙𝑛 𝛼2 𝛽2𝑡2𝑗
−2(1 + 𝛼2𝑡2𝑗

−1)𝛽2−1𝑒(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)𝑛

𝑗=1 +

∑ 𝑙𝑛[ 1 + 𝜃(1 − 2𝑒(1−(1+𝛼1𝑡1𝑗
−1)𝛽1))(1 − 2𝑒(1−(1+𝛼2𝑡2𝑗

−1)𝛽2))]𝑛
𝑗=1       (28) 

To obtain the estimates of all the parameters, we differentiate (28) with respect to each parameter separately.   

Base on this, differentiating (28) with respect to 𝛼1 we have: 

∂ 𝑙𝑛 𝐿

∂𝛼1
= ∑

(

  
 

1

𝛼1
+

(𝛽1 − 1)𝑡1𝑗
−1

1 + 𝛼1𝑡1𝑗
−1 − 𝛽1𝑡1𝑗

−1(1 + 𝛼1𝑡1𝑗
−1)𝛽1−1 +

𝜃 [(1 − 2𝑒(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)) (2𝑒(1−(1+𝛼1𝑡1𝑗

−1)𝛽1). 𝛽1𝑡1𝑗
−1(1 + 𝛼1𝑡1𝑗

−1)𝛽1−1)]

[1 + 𝜃(1 − 2𝑒(1−(1+𝛼1𝑡1𝑗
−1)𝛽1))(1 − 2𝑒(1−(1+𝛼2𝑡2𝑗

−1)𝛽2))] )

  
 

𝑛

𝑗=1

= 0 

𝑛

𝛼1
+ (𝛽1 − 1)∑

𝑡1𝑗
−1

1+𝛼1𝑡1𝑗
−1

𝑛
𝑗=1 − 𝛽1 ∑ 𝑡1𝑗

−1(1 + 𝛼1𝑡1𝑗
−1)𝛽1−1𝑛

𝑗=1 +

𝜃 ∑ (
(1−2𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)(2𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
.𝛽1𝑡1𝑗

−1(1+𝛼1𝑡1𝑗
−1)𝛽1−1)

[1+𝜃(1−2𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
)(1−2𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)]
)𝑛

𝑗=1 = 0     (29) 

 also, differentiating equation (28) with respect to 𝛼2, we have: 

∂ 𝑙𝑛 𝐿

∂𝛼2
= ∑

(

  
 

1

𝛼2
+

(𝛽2 − 1)𝑡2𝑗
−1

1 + 𝛼2𝑡2𝑗
−1 − 𝛽2𝑡2𝑗

−1(1 + 𝛼2𝑡2𝑗
−1)𝛽2−1 +

𝜃 [(1 − 2𝑒(1−(1+𝛼1𝑡1𝑗
−1)𝛽1)) (2𝑒(1−(1+𝛼2𝑡2𝑗

−1)𝛽2). 𝛽2𝑡2𝑗
−1(1 + 𝛼2𝑡2𝑗

−1)𝛽2−1)]

[1 + 𝜃(1 − 2𝑒(1−(1+𝛼1𝑡1𝑗
−1)𝛽1))(1 − 2𝑒(1−(1+𝛼2𝑡2𝑗

−1)𝛽2))] )

  
 

𝑛

𝑗=1

= 0 

𝑛

𝛼2
+ (𝛽2 − 1)∑

𝑡1𝑗
−1

1+𝛼2𝑡2𝑗
−1

𝑛
𝑗=1 − 𝛽2 ∑ 𝑡2𝑗

−1(1 + 𝛼2𝑡2𝑗
−1)𝛽2−1𝑛

𝑗=1 +

𝜃 ∑ (
(1−2𝑒

(1−(1+𝛼1𝑡1𝑗
−1)𝛽1)

)(2𝑒
(1−(1+𝛼2𝑡2𝑗

−1)𝛽2)
.𝛽2𝑡2𝑗

−1(1+𝛼2𝑡2𝑗
−1)𝛽2−1)

[1+𝜃(1−2𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
)(1−2𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)]
)𝑛

𝑗=1 = 0     (30) 

 also differentiating equation (28) with respect to𝛽1: 
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∂ 𝑙𝑛 𝐿

∂𝛽1
= ∑

(

 
 

1

𝛽1
+ 𝑙𝑛( 1 + 𝛼1𝑡1𝑗

−1) − (1 + 𝛼1𝑡1𝑗
−1)𝛽1 𝑙𝑛( − (1 + 𝛼1𝑡1𝑗

−1)) +

𝜃 [(1 − 2𝑒(1−(1+𝛼2𝑡2𝑗
−1)𝛽2))(1 − (1 + 𝛼1𝑡1𝑗

−1)𝛽1)2𝑒(1−(1+𝛼1𝑡1𝑗
−1)𝛽1) 𝑙𝑛( 1 − (1 + 𝛼1𝑡1𝑗

−1))]

[1 + 𝜃(1 − 2𝑒(1−(1+𝛼1𝑡1𝑗
−1)𝛽1))(1 − 2𝑒(1−(1+𝛼2𝑡2𝑗

−1)𝛽2))] )

 
 

𝑛

𝑗=1

= 0 

So that, 

 
𝑛

𝛽1
+ ∑ 𝑙𝑛( 1 + 𝛼1𝑡1𝑗

−1)𝑛
𝑗=1 − ∑ (1 + 𝛼1𝑡1𝑗

−1)𝛽1 𝑙𝑛( − (1 + 𝛼1𝑡1𝑗
−1))𝑛

𝑗=1 +

𝜃 ∑ (
(1−2𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)(1−(1+𝛼1𝑡1𝑗
−1)𝛽1)2𝑒

(1−(1+𝛼1𝑡1𝑗
−1)𝛽1)

𝑙𝑛(1−(1+𝛼1𝑡1𝑗
−1))

1+𝜃(1−2𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
)(1−2𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)
)𝑛

𝑗=1 = 0    (31) 

Furthermore, differentiating equation (28) with respect to𝛽2: 

∂ 𝑙𝑛 𝐿

∂𝛽2
= ∑

(

 
 

1

𝛽2
+ 𝑙𝑛( 1 + 𝛼2𝑡2𝑗

−1) − (1 + 𝛼2𝑡2𝑗
−1)𝛽2 𝑙𝑛( − (1 + 𝛼2𝑡2𝑗

−1)) +

𝜃 [(1 − 2𝑒(1−(1+𝛼1𝑡1𝑗
−1)𝛽1))(1 − (1 + 𝛼2𝑡2𝑗

−1)𝛽2)2𝑒(1−(1+𝛼2𝑡2𝑗
−1)𝛽2) 𝑙𝑛( 1 − (1 + 𝛼2𝑡2𝑗

−1))]

[1 + 𝜃(1 − 2𝑒(1−(1+𝛼1𝑡1𝑗
−1)𝛽1))(1 − 2𝑒(1−(1+𝛼2𝑡2𝑗

−1)𝛽2))] )

 
 

𝑛

𝑗=1

= 0 

So that,  
𝑛

𝛽2
+ ∑ 𝑙𝑛( 1 + 𝛼2𝑡2𝑗

−1)𝑛
𝑗=1 − ∑ (1 + 𝛼2𝑡2𝑗

−1)𝛽2 𝑙𝑛( − (1 + 𝛼2𝑡2𝑗
−1))𝑛

𝑗=1 +

𝜃 ∑ (
(1−2𝑒

(1−(1+𝛼1𝑡1𝑗
−1)𝛽1)

)(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)2𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

𝑙𝑛(1−(1+𝛼2𝑡2𝑗
−1))

1+𝜃(1−2𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
)(1−2𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)
)𝑛

𝑗=1 = 0    (32) 

and finally, differentiating equation (28) with respect to the copula parameter gives: 

∂ 𝑙𝑛 𝐿

∂𝜃
=

(1−2𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
)(1−2𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)

[1+𝜃(1−2𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
)(1−2𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)]
= 0       (33) 

There exist no analytical solutions for the estimates of the parameters; as such they are handled numerically through statistical 

software. 

 

Parameter Estimation based on Inference Function for Margins 

This is a parametric method with two-step of estimation. We start by maximizing the log-likelihood function of each marginal 

density functions 𝑓1(𝑡1)and 𝑓2(𝑡2) to obtain the estimates of the marginal distribution functions 𝐹̂1(𝑡)and𝐹̂2(𝑡). 

The second step is estimating the copula parameter by maximizing the log-likelihood function of the copula density using the 

Maximum Likelihood estimates of the marginal 𝐹̂1(𝑡)and 𝐹̂2(𝑡)from first step. This is done as follows:  

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 𝑙𝑛 𝑐 (𝐹̃1(𝑡1𝑗), 𝐹̃2(𝑡2𝑗))
𝑛
𝑗=1   

Based on this method, consider the log likelihood of the marginal distributions of the BIN-H distribution as follows:  

𝑙𝑛 𝐿𝑇1
= ∑ 𝑙𝑛 𝑓1 (𝑡1𝑗)

𝑛
𝑗=1           (34) 

𝑙𝑛 𝐿𝑇2
= ∑ 𝑙𝑛 𝑓2 (𝑡2𝑗)

𝑛
𝑗=1           (35) 

For a BIN-H distribution based on FGM copula, the parameters of each marginal distribution will be estimated separately 

using MLE. Thus (29) and (30) becomes:  

𝑙𝑛 𝐿𝑇𝑖
(𝛼𝑖 , 𝛽𝑖) = ∑ 𝑙𝑛 𝑓𝑖 (𝑡𝑖𝑗)

𝑛
𝑗=1   𝑖 = 1,2       (36) 

Substituting for 𝑓𝑖(𝑡𝑖𝑗), we have: 

𝑙𝑛 𝐿𝑇𝑖
(𝛼𝑖 , 𝛽𝑖) = ∑ 𝑙𝑛 [𝛼𝑖𝛽𝑖𝑡𝑖𝑗

−2(1 + 𝛼𝑖𝑡𝑖𝑗
−1)𝛽𝑖−1𝑒(1−(1+𝛼𝑖𝑡𝑖𝑗

−1)𝛽𝑖)]𝑛
𝑗=1      (37) 

𝑙𝑛 𝐿𝑇𝑖
(𝛼𝑖 , 𝛽𝑖) = ∑ [𝑙𝑛 𝛼𝑖 𝛽𝑖 + 𝑙𝑛 𝑡𝑖𝑗

−2 + (𝛽𝑖 − 1) 𝑙𝑛( 1 + 𝛼𝑖𝑡𝑖𝑗
−1) + (1 − (1 + 𝛼𝑖𝑡𝑖𝑗

−1)𝛽𝑖)]𝑛
𝑗=1    (38) 

𝑙𝑛 𝐿𝑇𝑖
(𝛼𝑖 , 𝛽𝑖) = 𝑛 𝑙𝑛 𝛼𝑖 𝛽𝑖 + ∑ 𝑙𝑛 𝑡𝑖𝑗

−2 +𝑛
𝑗=1 (𝛽𝑖 − 1)∑ 𝑙𝑛( 1 + 𝛼𝑖𝑡𝑖𝑗

−1)𝑛
𝑗=1 + ∑ (1 − (1 + 𝛼𝑖𝑡𝑖𝑗

−1)𝛽𝑖)𝑛
𝑗=1   (39) 

Differentiating equation (39) with respect to 𝛼𝑖 we have: 
∂ 𝑙𝑛 𝐿𝑇𝑖

∂𝛼𝑖
=

𝑛

𝛼𝑖
+ (𝛽𝑖 − 1)∑

𝑡𝑖𝑗
−1

(1+𝛼𝑖𝑡𝑖𝑗
−1)

𝑛
𝑗=1 + 𝛽𝑖𝑡𝑖𝑗

−1 ∑ (1 + 𝛼𝑖𝑡𝑖𝑗
−1)(𝛽𝑖−1)𝑛

𝑗=1 = 0     (40) 

The fixed point solution of (40) will provide the MLE of 𝛼𝑖, say 𝛼̂𝑖. 

Also differentiating equation (39) with respect to 𝛽𝑖  we have: 
∂ 𝑙𝑛 𝐿𝑇𝑖

∂𝛽𝑖
=

𝑛

𝛽𝑖
+ ∑ 𝑙𝑛( 1 + 𝛼𝑖𝑡𝑖𝑗

−1)𝑛
𝑗=1 − ∑ (1 + 𝛼𝑖𝑡𝑖𝑗

−1)𝛽𝑖𝑛
𝑗=1 𝑙𝑛( 1 + 𝛼𝑖𝑡𝑖𝑗

−1) = 0    (41) 

The fixed point solution of (41) will provide the MLE of 𝛽𝑖 , say 𝛽̂𝑖. 

The second step is estimating the copula density using the marginal estimates 𝐹̂1(𝑡1)and 𝐹̂2(𝑡2)from the first step as follows: 

𝑙𝑛 𝐿𝑐 = ∑ 𝑙𝑛 𝑐 (𝐹̂1(𝑡1𝑗), 𝐹̂2(𝑡2𝑗))
𝑛
𝑗=1          (42) 

𝑙𝑛 𝐿𝜃 = ∑ 𝑙𝑛[1 + 𝜃(1 − 2𝐹̂1(𝑡1𝑗))(1 − 2𝐹̂2(𝑡2𝑗))]
𝑛
𝑗=1        (43) 

𝑙𝑛 𝐿𝜃 = ∑ 𝑙𝑛 [1 + 𝜃(1 − 2𝑒(1−(1+𝛼̂1𝑡1𝑗
−1)𝛽̂1))(1 − 2𝑒(1−(1+𝛼̂2𝑡2𝑗

−1)𝛽̂2))]𝑛
𝑗=1      (44) 

Therefore, taking the derivative of (39) partially with respect to the copula parameter, we have: 

∂ 𝑙𝑛 𝐿𝑐

∂𝜃
= ∑

(1−2𝑒
(1−(1+𝛼̂1𝑡1𝑗

−1)𝛽̂1)
)(1−2𝑒

(1−(1+𝛼̂2𝑡2𝑗
−1)𝛽̂2)

))

1+𝜃((1−2𝑒
(1−(1+𝛼̂1𝑡1𝑗

−1)𝛽̂1)
))(1−2𝑒

(1−(1+𝛼̂2𝑡2𝑗
−1)𝛽̂2)

))

𝑛
𝑗=1 = 0      (45) 

There exist no analytical solutions for the estimates of the parameters; as such they are handled numerically through statistical 

software. 
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Parameter Estimation of the Bivariate Inverted Nadarajah Haghighi (BINH) Distribution based on Plackett Copula 

Function 

Here, the parameters of the Bivariate Inverted Nadarajah Haghighi (BIN-H) Distribution based on Plackett Copula are also 

estimated using the Maximum Likelihood Estimation and Inference Function for Margins methods. 

 

Parameter Estimation based on Maximum Likelihood Estimation Method 

The log likelihood function of a BIN-H distribution based on the Plackett Copula is defined as: 

𝑙𝑛 𝐿 = ∑ (𝑙𝑛 𝑓1 (𝑡1𝑗) + 𝑙𝑛 𝑓2 (𝑡2𝑗) + 𝑙𝑛 𝐶 (𝐹1(𝑡1𝑗), 𝐹2(𝑡2𝑗)))
𝑛
𝑗=1       (46) 

𝑙𝑛 𝐿 = ∑ (𝑛
𝑗=1 𝑙𝑛 𝛼1 𝛽1𝑡1𝑗

−2(1 + 𝛼1𝑡1𝑗
−1)𝛽1−1𝑒(1−(1+𝛼1𝑡1𝑗

−1)𝛽1) + 𝑙𝑛 𝛼2 𝛽2𝑡2𝑗
−2(1 + 𝛼2𝑡2𝑗

−1)𝛽2−1𝑒(1−(1+𝛼2𝑡2𝑗
−1)𝛽2) +

𝑙𝑛

(

 
 𝜃[1+(𝑒

(1−(1+𝛼1𝑡1𝑗
−1)𝛽1)

−2𝑒
(2−(1+𝛼1𝑡1𝑗

−1)𝛽1)−(1+𝛼2𝑡2𝑗
−1)𝛽2)

+𝑒
(1−(1+𝛼2𝑡2𝑗

−1)𝛽2)
)(𝜃−1)]

([1+(𝜃−1)(𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
+𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)]
2

−4𝜃(𝜃−1)𝑒
(2−(1+𝛼1𝑡1𝑗

−1)𝛽1)−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)

3
2

)

 
 

)  

by further simplifying, we have: 

𝑙𝑛 𝐿 = ∑ (𝑛
𝑗=1 𝑙𝑛 𝛼1 𝛽1𝑡1𝑗

−2 + (𝛽1 − 1) 𝑙𝑛( 1 + 𝛼1𝑡1𝑗
−1) + (1 − (1 + 𝛼1𝑡1𝑗

−1)𝛽1) + 𝑙𝑛 𝛼2 𝛽2𝑡2𝑗
−2 + (𝛽2 − 1) 𝑙𝑛( 1 +

𝛼2𝑡2𝑗
−1) + (1 − (1 + 𝛼2𝑡2𝑗

−1)𝛽2) + 𝑙𝑛 𝜃 [1 + (𝑒(1−(1+𝛼1𝑡1𝑗
−1)𝛽1) − 2𝑒(2−(1+𝛼1𝑡1𝑗

−1)𝛽1)−(1+𝛼2𝑡2𝑗
−1)𝛽2) +

𝑒(1−(1+𝛼2𝑡2𝑗
−1)𝛽2))(𝜃 − 1)] −

3

2
𝑙𝑛 ([1 + (𝜃 − 1)(𝑒(1−(1+𝛼1𝑡1𝑗

−1)𝛽1) + 𝑒(1−(1+𝛼2𝑡2𝑗
−1)𝛽2))]

2
− 4𝜃(𝜃 −

1)𝑒(2−(1+𝛼1𝑡1𝑗
−1)𝛽1)−(1+𝛼2𝑡2𝑗

−1)𝛽2))          (47) 

Maximizing the log-likelihood function in (47) over𝛼1, we have: 
∂ 𝑙𝑛 𝐿

∂𝛼1
= ∑ (𝑛

𝑗=1
1

𝛼1
+

(𝛽1−1)𝑡1𝑗
−1

(1+𝛼1𝑡1𝑗
−1)

+ 𝛽1𝑡1𝑗
−1(1 + 𝛼1𝑡1𝑗

−1)(𝛽1−1) +

𝜃(𝜃−1)[−𝛽1𝑡1𝑗
−1(1+𝛼1𝑡1𝑗

−1)(𝛽1−1)𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
+2𝛽1𝑡1𝑗

−1(1+𝛼1𝑡1𝑗
−1)(𝛽1−1)𝑒

(2−(1+𝛼1𝑡1𝑗
−1)𝛽1−(1+𝛼2𝑡2𝑗

−1)𝛽2)
]

𝜃[1+(𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
−2𝑒

(2−(1+𝛼1𝑡1𝑗
−1)𝛽1)−(1+𝛼2𝑡2𝑗

−1)𝛽2)
+𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)(𝜃−1)]
−

3

2
[
2[1+(𝜃−1)(𝑒

(1−(1+𝛼1𝑡1𝑗
−1)𝛽1)

+𝑒
(1−(1+𝛼2𝑡2𝑗

−1)𝛽2)
)](1−𝜃)𝛽1𝑡1𝑗

−1(1+𝛼1𝑡1𝑗
−1)(𝛽1−1)𝑒

(1−(1+𝛼1𝑡1𝑗
−1)𝛽1)

+4𝜃(1−𝜃)𝛽1𝑡1𝑗
−1(1+𝛼1𝑡1𝑗

−1)(𝛽1−1)𝑒
(2−(1+𝛼1𝑡1𝑗

−1)𝛽1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

[1+(𝜃−1)(𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
+𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)]
2

−4𝜃(𝜃−1)𝑒
(2−(1+𝛼1𝑡1𝑗

−1)𝛽1)−(1+𝛼2𝑡2𝑗
−1)𝛽2)

] =

0            (48) 

Also, maximizing the log-likelihood function in (47) over𝛼2, we have: 
∂ 𝑙𝑛 𝐿

∂𝛼2
= ∑ (𝑛

𝑗=1
1

𝛼2
+

(𝛽2−1)𝑡2𝑗
−1

(1+𝛼2𝑡2𝑗
−1)

+ 𝛽2𝑡2𝑗
−1(1 + 𝛼2𝑡2𝑗

−1)(𝛽2−1) 

+
𝜃(𝜃−1)[−𝛽2𝑡2𝑗

−1(1+𝛼2𝑡2𝑗
−1)(𝛽2−1)𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

+2𝛽2𝑡2𝑗
−1(1+𝛼2𝑡2𝑗

−1)(𝛽2−1)𝑒
(2−(1+𝛼2𝑡2𝑗

−1)𝛽2−(1+𝛼1𝑡1𝑗
−1)𝛽1)

]

𝜃[1+(𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
−2𝑒

(2−(1+𝛼1𝑡1𝑗
−1)𝛽1)−(1+𝛼2𝑡2𝑗

−1)𝛽2)
+𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)(𝜃−1)]
 

−
3

2
[
2[1+(𝜃−1)(𝑒

(1−(1+𝛼1𝑡1𝑗
−1)𝛽1)

+𝑒
(1−(1+𝛼2𝑡2𝑗

−1)𝛽2)
)](1−𝜃)𝛽2𝑡2𝑗

−1(1+𝛼2𝑡2𝑗
−1)(𝛽2−1)𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

+4𝜃(1−𝜃)𝛽2𝑡2𝑗
−1(1+𝛼2𝑡2𝑗

−1)(𝛽2−1)𝑒
(2−(1+𝛼1𝑡1𝑗

−1)𝛽1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

[1+(𝜃−1)(𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
+𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)]
2

−4𝜃(𝜃−1)𝑒
(2−(1+𝛼1𝑡1𝑗

−1)𝛽1)−(1+𝛼2𝑡2𝑗
−1)𝛽2)

] =

0            (49) 

Furthermore maximizing the log-likelihood function in (47) over𝛽1, we have: 

∂ 𝑙𝑛 𝐿

∂𝛽1
= ∑[

1

𝛽1
+ 𝑙𝑛( 1 + 𝛼1𝑡1𝑗

−1) − (1 + 𝛼1𝑡1𝑗
−1)𝛽1 𝑙𝑛( − (1 + 𝛼1𝑡1𝑗

−1)

𝑛

𝑗=1

) 

+
𝜃 [−(1 + 𝛼1𝑡1𝑗

−1)𝛽1 𝑙𝑛( − (1 + 𝛼1𝑡1𝑗
−1))𝑒(1−(1+𝛼1𝑡1𝑗

−1)𝛽1) − 2(1 + 𝛼1𝑡1𝑗
−1)𝛽1 𝑙𝑛( − (1 + 𝛼1𝑡1𝑗

−1))𝑒(2−(1+𝛼1𝑡1𝑗
−1)𝛽1)−(1+𝛼2𝑡2𝑗

−1)𝛽2)] (𝜃 − 1)

𝜃[1 + (𝑒(1−(1+𝛼1𝑡1𝑗
−1)𝛽1) − 2𝑒(2−(1+𝛼1𝑡1𝑗

−1)𝛽1)−(1+𝛼2𝑡2𝑗
−1)𝛽2) + 𝑒(1−(1+𝛼2𝑡2𝑗

−1)𝛽2))(𝜃 − 1)]
 

−
3

2
[
2[1+(𝜃−1)(𝑒

(1−(1+𝛼1𝑡1𝑗
−1)𝛽1)

+𝑒
(1−(1+𝛼2𝑡2𝑗

−1)𝛽2)
)](𝜃−1)(−(1+𝛼1𝑡1𝑗

−1)𝛽1)𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
𝑙𝑛(−(1+𝛼1𝑡1𝑗

−1))−4𝜃(𝜃−1)(−(1+𝛼1𝑡1𝑗
−1)𝛽1) 𝑙𝑛(−(1+𝛼1𝑡1𝑗

−1))𝑒
(2−(1+𝛼1𝑡1𝑗

−1)𝛽1)−(1+𝛼2𝑡2𝑗
−1)𝛽2)

[1+(𝜃−1)(𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
+𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)]

2

−4𝜃(𝜃−1)𝑒
(2−(1+𝛼1𝑡1𝑗

−1)𝛽1)−(1+𝛼2𝑡2𝑗
−1)𝛽2)

] =

0            (50) 

Also maximizing the log-likelihood function in (47) over𝛽2, we have: 
∂ 𝑙𝑛 𝐿

∂𝛽2
= ∑ [

1

𝛽2
+ 𝑙𝑛( 1 + 𝛼2𝑡2𝑗

−1) − (1 + 𝛼2𝑡2𝑗
−1)𝛽2 𝑙𝑛( − (1 + 𝛼2𝑡2𝑗

−1)𝑛
𝑗=1 ) 

+
𝜃[−(1+𝛼2𝑡2𝑗

−1)𝛽2 𝑙𝑛(−(1+𝛼2𝑡2𝑗
−1))𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

−2(1+𝛼2𝑡2𝑗
−1)𝛽2 𝑙𝑛(−(1+𝛼2𝑡2𝑗

−1))𝑒
(2−(1+𝛼1𝑡1𝑗

−1)𝛽1)−(1+𝛼2𝑡2𝑗
−1)𝛽2)

](𝜃−1)

𝜃[1+(𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
−2𝑒

(2−(1+𝛼1𝑡1𝑗
−1)𝛽1)−(1+𝛼2𝑡2𝑗

−1)𝛽2)
+𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)(𝜃−1)]
 

−
3

2
[
2[1+(𝜃−1)(𝑒

(1−(1+𝛼1𝑡1𝑗
−1)𝛽1)

+𝑒
(1−(1+𝛼2𝑡2𝑗

−1)𝛽2)
)](𝜃−1)(−(1+𝛼2𝑡2𝑗

−1)𝛽2)𝑒
(1−(1+𝛼2𝑡2𝑗

−1)𝛽2)
𝑙𝑛(−(1+𝛼2𝑡2𝑗

−1))−4𝜃(𝜃−1)(−(1+𝛼2𝑡2𝑗
−1)𝛽2) 𝑙𝑛(−(1+𝛼2𝑡2𝑗

−1))𝑒
(2−(1+𝛼1𝑡1𝑗

−1)𝛽1)−(1+𝛼2𝑡2𝑗
−1)𝛽2)

[1+(𝜃−1)(𝑒
(1−(1+𝛼1𝑡1𝑗

−1)𝛽1)
+𝑒

(1−(1+𝛼2𝑡2𝑗
−1)𝛽2)

)]

2

−4𝜃(𝜃−1)𝑒
(2−(1+𝛼1𝑡1𝑗

−1)𝛽1)−(1+𝛼2𝑡2𝑗
−1)𝛽2)

] =

0            (51) 

Finally, maximizing the log-likelihood function in (47) over the copula parameter 𝜃we have: 

∂ 𝑙𝑛 𝐿

∂𝜃
=

[(1+𝐴(𝜃−1))+𝜃𝐴]

𝜃[1+𝐴(𝜃−1)]
−

3

2
[
[2𝐶(𝑒

(1−(1+𝛼1𝑡1𝑗
−1)𝛽1)

+𝑒
(1−(1+𝛼2𝑡2𝑗

−1)𝛽2)
)−4(2𝜃−1)𝑒

(2−(1+𝛼1𝑡1𝑗
−1)𝛽1)−(1+𝛼2𝑡2𝑗

−1)𝛽2)
]

𝐵
] = 0  (52) 

Where; 

𝐴 = (𝑒(1−(1+𝛼1𝑡1𝑗
−1)𝛽1) − 2𝑒(2−(1+𝛼1𝑡1𝑗

−1)𝛽1)−(1+𝛼2𝑡2𝑗
−1)𝛽2) + 𝑒(1−(1+𝛼2𝑡2𝑗

−1)𝛽2))  
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𝐵 = [1 + (𝜃 − 1)(𝑒(1−(1+𝛼1𝑡1𝑗
−1)𝛽1) + 𝑒(1−(1+𝛼2𝑡2𝑗

−1)𝛽2))]
2
− 4𝜃(𝜃 − 1)𝑒(2−(1+𝛼1𝑡1𝑗

−1)𝛽1)−(1+𝛼2𝑡2𝑗
−1)𝛽2)  

𝐶 = 1 + (𝜃 − 1)(𝑒(1−(1+𝛼1𝑡1𝑗
−1)𝛽1) + 𝑒(1−(1+𝛼2𝑡2𝑗

−1)𝛽2))  

There exist no analytical solutions for the estimates of the parameters; as such they are handled numerically through statistical 

software. 

 

Parameter Estimation based on Inference Function for Margins 

Following the same procedure as in the previous section and using the Maximum Likelihood estimates of the marginal 

distribution functions obtained in equations (34) and (35), the copula parameter is estimated as follows: 

𝑙𝑛 𝐿𝑐 = ∑ 𝑙𝑛 𝑐 (𝐹̂1(𝑡1𝑗), 𝐹̂2(𝑡2𝑗))
𝑛
𝑗=1   

 𝑙𝑛 𝐿𝜃 = ∑ 𝑙𝑛

[
 
 
 
 
 

𝜃[1+(𝑒(1−(1+𝛼̂1𝑡1
−1)𝛽̂1)−2𝑒(1−(1+𝛼̂1𝑡1

−1)𝛽̂1)𝑒(1−(1+𝛼̂2𝑡2
−1)𝛽̂2)+𝑒(1−(1+𝛼̂2𝑡2

−1)𝛽̂2))(𝜃−1)]

√([1+(𝜃−1)(𝑒(1−(1+𝛼̂1𝑡1
−1)𝛽̂1)+𝑒(1−(1+𝛼̂2𝑡2

−1)𝛽̂2))]
2

−4𝑒(1−(1+𝛼̂1𝑡1
−1)𝛽̂1)𝑒(1−(1+𝛼̂2𝑡2

−1)𝛽̂2)𝜃(𝜃−1))

3

]
 
 
 
 
 

𝑛
𝑗=1   (53) 

Simplifying further we have: 

𝑙𝑛 𝐿𝜃 = ∑[𝑙𝑛 𝜃 + 𝑙𝑛[ 1 + (𝑒(1−(1+𝛼̂1𝑡1
−1)𝛽̂1) − 2𝑒(1−(1+𝛼̂1𝑡1

−1)𝛽̂1)𝑒(1−(1+𝛼̂2𝑡2
−1)𝛽̂2) + 𝑒(1−(1+𝛼̂2𝑡2

−1)𝛽̂2)) (𝜃 − 1)]]

𝑛

𝑗=1

 

−
3

2
𝑙𝑛[ [1 + (𝜃 − 1) (𝑒(1−(1+𝛼̂1𝑡1

−1)𝛽̂1) + 𝑒(1−(1+𝛼̂2𝑡2
−1)𝛽̂2))]

2

− 4𝑒(1−(1+𝛼̂1𝑡1
−1)𝛽̂1)𝑒(1−(1+𝛼̂2𝑡2

−1)𝛽̂2)𝜃(𝜃 − 1)] (54) 

Differentiating the log likelihood function in equation (3.53) partially with respect to the copula parameter we obtained: 

∂ 𝑙𝑛 𝐿

∂𝜃
=

[(1+𝐴(𝜃−1))+𝜃𝐴]

𝜃[1+𝐴(𝜃−1)]
−

3

2
[
[2𝐶̂(𝑒(1−(1+𝛼̂1𝑡1

−1)𝛽̂1)+𝑒(1−(1+𝛼̂2𝑡2
−1)𝛽̂2))−4(2𝜃−1)𝑒(2−(1+𝛼̂1𝑡1

−1)𝛽̂1)−(1+𝛼̂2𝑡2
−1)𝛽̂2)]

𝐵̂
]   (55) 

Where; 

𝐴̂ = (𝑒(1−(1+𝛼̂1𝑡1𝑗
−1)𝛽̂1) − 2𝑒(2−(1+𝛼̂1𝑡1𝑗

−1)𝛽̂1)−(1+𝛼̂2𝑡2𝑗
−1)𝛽̂2) + 𝑒(1−(1+𝛼̂2𝑡2𝑗

−1)𝛽̂2)) 

𝐵̂ = [1 + (𝜃 − 1)(𝑒(1−(1+𝛼̂1𝑡1𝑗
−1)𝛽̂1) + 𝑒(1−(1+𝛼̂2𝑡2𝑗

−1)𝛽̂2))]
2

− 4𝜃(𝜃 − 1)𝑒(2−(1+𝛼̂1𝑡1𝑗
−1)𝛽̂1)−(1+𝛼̂2𝑡2𝑗

−1)𝛽̂2) 

𝐶̂ = 1 + (𝜃 − 1)(𝑒(1−(1+𝛼̂1𝑡1𝑗
−1)𝛽̂1) + 𝑒(1−(1+𝛼̂2𝑡2𝑗

−1)𝛽̂2)) 

 

RESULTS AND DISCUSSION 

Two real data sets were analyzed in order to demonstrate the applicability of the proposed models. The first data set is the 

infections in kidney patients’ data and the second data is the soccer data. Details about each of the data set were given in the 

next sections. 

 

Infections in kidney patients 

The first data set is the infections in kidney patients’ data from McGilchrist and Aisbett (1991) which was previously analyzed 

by Achcar et al. (2015), Mirhosseini et al. (2015), Elaal and Jarwan (2017), Usman and Aliyu (2022) and Aliyu and Usman 

(2023). The recurrence times to infection at point of insertion of catheter using portable dialysis equipment for thirty-eight 

(38) kidney patients were recorded. For each patient, two such recurrence times were given with each row of the table 

corresponding to one patient as shown in table 1. 

 

Table 1: Infections in Kidney 

Patients  𝑻𝟏 𝑻𝟐 

1 8 16 

2 23 13 

3 22 28 

4 447 318 

5 30 12 

6 24 245 

7 7 9 

8 511 30 

9 53 196 

10 15 154 

11 7 333 

12 141 8 

13 96 38 

14 149 70 

15 536 25 

16 17 4 

17 185 117 

18 292 114 

19 22 159 
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Patients  𝑻𝟏 𝑻𝟐 

20 15 108 

21 152 362 

22 402 24 

23 13 66 

24 39 46 

25 12 40 

26 113 201 

27 132 156 

28 34 30 

29 2 25 

30 130 26 

31 27 58 

32 5 43 

33 152 30 

34 190 5 

35 119 8 

36 54 16 

37 6 78 

38 63 8 

 

Table 2: Copula goodness-of-fit test, AIC, BIC and HQIC results for the proposed models - Kidney data 

Copula p-value Dependence parameter AIC BIC HQIC 

FGM Copula 0.8950 -0.0412 864.4672 8262.3661 867.3804 

Plackett Copula 0.0055 0.9876 852.8942 834.9953 855.8074 

 

The resulting p-values of copula goodness-of-fit test were 

0.8950 and 0.0055 for FGM and Plackett copula respectively, 

which confirms that only the FGM copula, having a p-value 

greater than 0.05, is suitable for the data set. while the 

resulting p-value of the Plackett copula shows that the 

Plackett copula, having a p-value less than 0.05, is not suitable 

for the data set. The estimated dependence parameter was -

0.0412 for FGM copula and 0.9876 for Plackett copula. The 

results of AIC were 864.4672 for FGM and 852.8942 for 

Plackett. The results of BIC were 8262.3661 for FGM copula 

and 834.9953 for Plackett copula. The results of HQIC were 

867.3804 for FGM copula and 855.8074 for Plackett copula. 

From the goodness of fit test, the AIC, BIC and HQIC results, 

it shows that the Plackett copula is fitting better than the FGM 

copula. 

 

Table 3: The Estimates and the Corresponding Standard Errors (in Brackets) of Parameters of BIN-H Distribution 

Based on FGM and Plackett Copulas for the Kidney Data 

 Estimates of Parameters 

Copula Estimation Methods 𝜶𝟏 𝜶𝟐 𝜷𝟏 𝜷𝟐 𝜽 

FGM MLE 23.41273  

(6.67406)    

12.64290 

(6.11100)     

0.82368 

(0.13919)     

1.31959  

(0.41741)    

-0.02562 

(0.40877) 

IFM 0.83268  

(0.09083) 

 0.74833  

(0.09289) 

22.68826 

(2.91337) 

35.52005  

(5.48186) 

-0.04121  

(0.31342) 

Plackett MLE 8.51825  

(2.58807) 

1.65996  

(0.87012) 

1.17124  

(0.27751) 

0.65294  

(0.30901) 

0.80094  

(0.02789) 

IFM 1.0089 

(0.1426) 

1.0948 

(0.1475) 

15.4209 

(3.5637) 

16.9538 

(3.2701) 

0.9876 

(0.3557) 

 

From the result in table 3, the parameter with the least 

standard error is considered the best. Therefore, the efficient 

estimators of marginal parameters of the two models differ 

according to the parameters. It is also observed that the IFM 

estimates of scale parameters 𝛼1 and 𝛼2 of the two models 

under the FGM and Plackett copula functions are better than 

the corresponding ML estimates. Whereas, for the shape 

parameters 𝛽1and𝛽2, it is observed that the ML estimates are 

better than the corresponding IFM estimates in each of the two 

models. For copula parameter𝜃, the ML estimation method 

provided more efficient estimates compared to the IFM 

estimation method for the Plackett copula function. Whereas, 

for the FGM copula function, the IFM estimation provided an 

efficient estimate of the copula parameter than the ML 

estimation method.  

 

Soccer Data  

The second data set is the football (soccer) data from 

Meintanis (2007). Consider matches where (i) there was at 

least one goal scored by the home team and (ii) also at least 

one goal scored directly from a kick (foul kick, penalty kick 

or other kick) by any team. Let 𝑇1 be the time (in minutes) of 

the first kick goal scored by any team, and 𝑇2 be the time (in 

minutes) of the first goal of any type scored by the home team. 

Apparently, with this kind of nonnegative continuous data, all 

possibilities are open: for each match we may have𝑇1 <
𝑇2,𝑇1 > 𝑇2, and even 𝑇1 = 𝑇2. Table 4.4 presents such data 

for the group stage of the UEFA Champion’s League for the 

years 2004–05 and 2005–2006. 
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Table 4: Soccer Data 

2005-2006 𝑿𝟏  𝑿𝟐 2004-2005 𝑿𝟏  𝑿𝟐 

Lyon-Real Madrid 3-0 26 20 Internazionale–Bremen 2–0 34 34 

Milan-Fernerbahce 3-1 63 18 Real Madrid–Roma 4–2 53 39 

Chelsea–Anderlecht 1–0 19 19 Man. United–Fenerbahce 6–2 54 7 

Club Brugge–Juventus 1–2 66 85 Bayern–Ajax 4–0 51 28 

Fenerbahce–PSV 3–0 40 40 Moscow–PSG 2–0 76 64 

Internazionale–Rangers 1–0 49 49 Barcelona–Shakhtar 3–0 64 15 

Panathinaikos–Bremen 2–1 8 8 Leverkusen–Roma 3–1 26 48 

Ajax–Arsenal 1–2 69 71 Arsenal–Panathinaikos 1–1 16 16 

Man. United–Benfica 2–1 39 39 Dynamo Kyiv–Real Madrid 2–2 44 13 

Real Madrid–Rosenborg 4–1 82 48 Man. United–Sparta 4–1 25 14 

Villarreal–Benfica 1–1 72 72 Bayern–M. Tel–Aviv 5–1 55 11 

Juventus–Bayern 2–1 66 62 Bremen–Internazionale 1–1 49 49 

Club Brugge–Rapid 3–2 25 9 Anderlecht–Valencia 1–2 24 24 

Olympiacos–Lyon 1–4 41 3 Panathinaikos–PSV 4–1 44 30 

Internazionale–Porto 2–1 16 75 Arsenal–Rosenborg 5–1 42 3 

Schalke–PSV 3–0 18 18 Liverpool–Olympiacos 3–1 27 47 

Barcelona–Bremen 3–1 22 14 M. Tel–Aviv–Juventus 1–1 28 28 

Milan–Schalke 3–2 42 42    

Bremen–Panathinaikos 5–1 2 2    

Rapid–Juventus 1–3 36 52    

 

Table 5: Copula Goodness-Of-Fit Test, AIC, BIC and HQIC Results for The Proposed Models-Soccer Data 

Copula p-value Dependence parameter AIC BIC HQIC 

FGM Copula 0.0002 0.2375 720.2906 717.5124 723.1302 

Plackett Copula 0.0000 2.1191 269.2890 277.3436 272.1286 

 

The resulting p-values of copula goodness-of-fit test were 

0.0002 and 0.0000 for FGM and Plackett copula respectively, 

which confirms that both the FGM and Plackett copula 

functions are not suitable for the data set. The estimated 

dependence parameter was 0.2375 for FGM copula and 

2.1191 for Plackett copula. The results of AIC were 720.2906 

for FGM, 269.2890 for Plackett. The results of BIC were 

717.5124 for FGM copula and 277.3436 for Plackett copula. 

The results of HQIC were 723.1302 for FGM copula and 

272.1286 for Plackett copula. From the goodness of fit test, 

the AIC, BIC and HQIC results, it shows that the Plackett 

copula is fitting better than the FGM copula. 

 

Table 6: The Estimates and the Corresponding Standard Errors (in Brackets) Of Parameters of BIN-H Distribution 

Based on FGM and Plackett Copulas for the Soccer Data Set 

 Estimates of Parameters 

Copula Estimation Methods 𝛼1 𝛼2 𝛽1 𝛽2 𝜃 

FGM MLE 16.3028 

(2.6310) 

11.7353 

(4.9963) 

1.0608 

(0.1394) 

0.9462 

(0.2573) 

0.2375 

(0.6286) 

IFM 0.9222 

(0.1139) 

 0.8847 

(0.1100) 

22.9934 

(4.8103) 

16.0332 

(2.8657) 

0.1355 

(0.4414) 

Plackett MLE 26.9284 

(6.3369) 

0.4753 

(0.1851) 

1.3725 

(0.1502) 

2.0200 

(0.7524) 

2.1191 

(0.2003) 

IFM 0.9719 

(0.1129) 

0.8399 

(0.1502) 

20.9531 

(3.9978) 

18.2647 

(5.8415) 

9.245 (3.425) 

 

It is observed that the efficient estimators of marginal 

parameters of two models differ according to the parameters. 

It is also observed that the IFM estimates of scale parameters 

𝛼1 and 𝛼2 of the two models under the FGM and Plackett 

copula functions, having the lower standard error; are better 

than the corresponding ML estimates. Whereas, for the shape 

parameters 𝛽1and𝛽2, it is observed that the ML estimates, 

having the lower standard error; are better than the 

corresponding IFM estimates in each of the two models. For 

copula parameter𝜃, the ML estimation method provided more 

efficient estimates compared to the IFM estimation method 

for the Plackett copula function. Whereas, for the FGM 

copula function, the IFM estimation provided an efficient 

estimate of the copula parameter than the ML estimation 

method.  

 

Comparison between the performance of BIN-H and 

BGED 

Here, the performance of the BIN-H distribution and that of 

the BGED is compared using both the kidney and soccer data 

set. 
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Table 7: Comparison Between the Performance of BIN-H and BGED Using the Kidney Data Set 

Copula functions Distributions P-value AIC BIC 

FGM BIN-H 0.8950 864.4672 8262.3661 

BGED 0.7338 689.0881 696.0940 

Plackett BINH 0.0055 852.8942 834.9953 

BGED 0.7877 689.0495 696.0555 

 

From Table 7, it can be seen that, based on the AIC and BIC values obtained, the BGED performed better than the BINH 

distribution in both the FGM and Plackett copula functions. 

 

Table 8: Comparison Between the Performance of BINH and BGED Using the Soccer Data Set 

Copula functions Distributions P-value AIC BIC 

FGM BIN-H 0.0002 720.2906 728.3452 

BGED 0.456 672.1324 680.1870 

Plackett BIN-H 0.0000 269.2890 277.3436 

BGED 0.0000 545.426 553.4806 

 

From Table 8, under the Farlie Gumbel Morgernstern Copula, 

the BGED outperform the BIN-H distribution based on the 

AIC and BIC values. Whereas, for the Plackett copula 

function, the BIN-H distribution outperform the BGED 

having the lower AIC and BIC values. 

 

CONCLUSION 

This study was motivated by the need for flexible bivariate 

lifetime distribution capable of accommodating diverse 

dependence structures and marginal behaviors. Accordingly, 

a class of Bivariate Inverted Nadarajah–Haghighi (BIN-H) 

distributions was developed using the Farlie–Gumbel–

Morgenstern and Plackett copula functions. The primary 

objective was to construct these models, estimate their 

parameters efficiently, and assess their performance using real 

data applications. Two parameter estimation methods, namely 

Maximum Likelihood Estimation (MLE) and Inference 

Functions for Margins (IFM), were employed and compared. 

The results indicate that the efficiency of the estimation 

methods for both marginal and copula parameters depends on 

the nature of the data and the underlying parameter values. 

However, based on the real data analyses considered in this 

study, MLE consistently provided more efficient estimates for 

the copula parameters under both the FGM and Plackett 

copulas. Furthermore, empirical results demonstrated that the 

BIN-H distribution based on the Plackett copula achieved a 

superior fit compared to its FGM-based counterpart. These 

models can be valuable in reliability analysis, survival studies, 

and related applied fields. Despite these contributions, the 

study is limited by the use of only two copula families and a 

restricted number of real data sets. Future research may 

extend this work by considering alternative copula functions, 

incorporating censoring mechanisms, exploring Bayesian 

estimation approaches, and applying the proposed models to 

a wider range of real-world data. 
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