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ABSTRACT

Bivariate lifetime models are crucial in reliability analysis and survival research, necessitating flexible marginal
distributions and dependence structures to accurately depict real-world data. This paper introduces a family of
five-parameter bivariate distributions derived from the Inverted Nadarajah—Haghighi distribution by the use of
copula functions, motivated by the inadequacies of current bivariate models in representing varied dependence
structures. The Farlie-Gumbel-Morgenstern (FGM) and Plackett copulas are utilized to model the dependent
structure.The primary objective of this work is to develop these new bivariate models, investigate their
statistical properties, and assess the efficiency of parameter estimation methods. Parameters are estimated using
Maximum Likelihood Estimation (MLE) and the Inference Function for Margins (IFM) approach, and the
efficiency of the two methods is compared. The results indicate that MLE provides more efficient estimation
of the copula parameter for both the FGM and Plackett copulas.To illustrate the applicability of the proposed
models, two real data sets are analyzed. The findings show that the Bivariate Inverted Nadarajah—Haghighi
distribution based on the Plackett copula offers a better fit than the corresponding model based on the FGM
copula. Further comparison with the Bivariate Generalized Exponential Distribution reveals that while the latter
performs better under the FGM copula, the proposed model under the Plackett copula outperforms it, yielding
lower AIC and BIC values. These results demonstrate the flexibility and practical relevance of the proposed
models for analyzing dependent lifetime data.
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INTRODUCTION

Copulas have been widely used to determine the joint
distribution functions between two or more variables in
various areas. Lately, areas such as flood, drought and storm
event also emerged in applying copula to calculate the joint
behaviour between variables (Ariff et a/ (2012), Kao and
Govindaraju (2010), Renard and Lang (2007), Requena et al
(2013)). Traditional standard bivariate model assume that the
joint distribution should come from the same family of
distribution. However, the model assumptions could cause
defected result in the study due to the dependence structure of
variables, while a copula model does not require these kinds
of assumptions (Genest and Favre, 2007).

According to Nelsen (1999), a copula is a function that
connects a multivariate distribution function with its
univariate marginal distribution function by making use of
dependence measures among correlated random variables.
Univariate marginal distribution can be defined
independently from the joint behaviour of the variables in the
copulas. Therefore, the dependence structure of the random
variables in a copula can be modeled depending on the family
of the marginal distributions.

Many researchers have shown that existing statistical
distributions are not the most appropriate model that
adequately describes real life data such as those obtained from
experimental investigations. As such, developing a new
distribution that will, to some extent, address this problem is
necessary. Researchers have generalized the exponential
distribution in order to add flexibility to the distribution. For
instance, Gupta and Kundu (1999) generalizes the exponential
distribution to the exponentiated exponential distribution,
Nadarajah and Haghighi (2006) to the Beta-exponential
distribution, Nadarajah and Haghighi (2011) to the
Nadarajah-Haghighi distribution which allows increasing,
decreasing and constant hazard rate. But most of these

distributions are not flexible enough to model real life data
sets which exhibit decreasing and upside-down bathtub
hazard rate shapes. As such, Tahir et a/ (2018) introduced the
inverted Nadarajah-Haghighi distribution which is more
flexible and capable of modeling real data sets that exhibit
decreasing and upside-down bathtub hazard rate shapes, but
this distribution still failed to address dependence between
random variables and cannot model bivariate survival data.
As a result, we intend to propose a new distribution called the
Bivariate Inverted Nadarajah- Haghighi Distribution that
could effectively modeled bivariate survival data in different
situations including censored data where two lifetimes are
observed for the same individual.
The univariate Inverted Nadarajah Haghighi distribution has
the distribution function, probability density function and the
hazard rate function given by equation (1), (2) and (3)
respectively:
F(t;a,p) = e0-rat™") (M
f(t; @ B) = aBt™2(1 + at~1)F~1e-(+at™F ()
h(t;a, B) = aft2(1 + at~1)B-1[e{-(1-(+at™)F)-1}

3
Where a > 0 is a scale parameter and f > 0 is a shape
parameter and t > 0
A bivariate distribution function with uniform marginal
distributions is known as a copula function. Sklar (1959)
coined the term "copula," which derives from the Latin verb
copulare, which means "to join together."

Copula

Let X and Y be continuous random variables with bivariate
distribution functions H(x,y)and respective marginal
distribution functions F(x) and G(y). By performing the
probability integral transformation on each variate [i.e., U =
F(X)andV = G(Y)] we obtain a new pair of variates U and
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V, each with a uniform distribution on the interval [0,1]and
whose joint distribution function, C(u,v), has its mass
confined to the unit square [0,1]. Then C(u,v) is a copula
function.

Copulas have been of interest to statisticians for two main
reasons: firstly, as a way of studying scale-free measures of
dependence; and secondly, as a starting point for constructing
families of bivariate distributions, sometimes with a view to
simulation.

Sklar Theorem

Let H be a joint distribution function with margins Fand G.
Then there exists a copula C such that for all x, inR.

H(x,y) = C[F(x),G(y)] 4)

If F and G are continuous, then C is unique; otherwise, C is
uniquely determined on RanFxRanG. Conversely, if C is a
copula and F and G are distribution functions, then the
function H defined by (4) is a joint distribution function with
margins F and G

Inverted Nadarajah Haghighi Distribution

Tahir et al. (2018) introduce a new inverted model called the
inverted Nadarajah—Haghighi distribution which exhibits
decreasing and unimodal (right-skewed) density while the
hazard rate shapes are decreasing and upside-down bathtub.
The inverted (or inverse) distributions are sometimes very
useful to explore additional properties which non-inverted
distributions cannot (Tahir et al. (2018)).

Let T=1/Z be a random variable where Z follows
Nadarajah-Haghighi Distribution, then T is said to follow
Inverted Nadarajah-Haghighi Distribution denoted by T ~
INH(a, ) if the Cumulative Distribution Function (CDF),
Probability Density Function (PDF) and the Hazard Rate
Function (HRF) of X are respectively given by equation (5),
(6) and (7)

F(t,‘ a, B) — e(l—(1+at_1)ﬁ) (5)
f(& @ B) = apt (1 + at™1)F-Te1-C+at™")
(6)
h(t; @, B) = aft~2(1 + at~1)F~1[el-(1-(+at™)-1j)
0

Where a > 0 is a scale parameter and f > 0 is a shape
parameter

Farlie Gumbel Mogernstern Copula

The FGM family is one of the most popular parametric
families of copulas discussed by Morgenstern in (1956),
Gumbel in (1960) and Farlie in (1960). The expression of
distribution function for FGM copula is:
Cw,v)=uv[l+6(1 —-u)(1-v)] ®)

And the density function is given by:

c(u,v) = f(t)f(t)[1 +6(1 = 2u)(1 - 2v)] (9)

Where u and v € I, and 6 € [-1,1] is a dependence
parameter. If the dependence parameter 6 equals zero, then
the FGM copula corresponds the independence.

Although the FGM copula family is tractable mathematically,
it does not model high dependences. The range of the
dependence measures Kendall’s tau t and Spearman’s rho p
are T €[-0.222,0.222] and  p € [-0.333,0.333]
respectively.

Plackett Copula
It is proposed by Plackett (1965). Its distribution function is
defined as:

C(u,v) =

1+(0-1) (u+v)—/[1+(0-1) u+v)]2—4uvb (6 -1)

2(0-1)
(10)
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And the density function is defined as:
O[1+(u—2uv+v)(6-1)] (1 1)

31+(6-1) (u+v)2—4uvh (6-1)

Where 6 € (0, ). The correlation measure Spearman's tho

. _ 0+1 201log 6
P =91 e

c(u,v) =

=) . There is no closed expression in 0 for the

correlation measure Kendall's tau.

Bivariate Inverted Nadarajah Haghighi (BIN-H)
Distribution based on Farlie Gumbel Mogernstern
Copula
Suppose the random variables T; and T, follow the Inverted
Nadarajah Haghighi distribution each with distribution
Function F;(ty)and F,(t,) respectively, then the joint
distribution function F (t4, t,)is defined as:
F(ty,t2) = C[F1(t1), F2(t2)]
=C(u,v)
=uwv[1+6(1 —u)(1-v)] (12)
where; u = F;(t;), v = F,(t;) and the density function
which is obtained by differentiating (12) partially with respect
to tiand t,is given by:
[t tz) = fF(&)f (E2)c[Fi(te), Fa(t2)]
=f(t)f )[1 +6(1 - 2w)(1 - 2v)] (13)
The marginal distribution functions of the univariate Inverted
Nadarajah Haghighi are:
u = Fy(t;) = e-@rats™)) (14)
v=F,(t,) = e(1-(L+azt;™HF2) (15)
The marginal density functions of the univariate Inverted
Nadarajah Haghighi are:
F(t) = anfrty (1 + gty PteG-(ran ™M)

16)
f(t2) = @aBaty (1 + apty™1)Fe 1 Ormt )

(17)
Therefore, the joint CDF of the Bivariate Inverted Nadarajah
Haghighi (BIN-H) distribution using the Farlie Gumbel
Mogernstern Copula distribution is obtained by substituting
(14) and (15) in (12) as follows:

— -8
F(ty,t) = e(l—(1+a1t1-1)31)+(1 (1+azt;™) 2)[1 +o(1—

e(l—(1+a1t1_1)31))(1 _ e(l—(1+azt2-1)32))] (18)

While the joint density function is obtained by substituting
(14) and (15) in (13) as:

fty, ) = @ity 2 (1 +
0~’1t1_1)ﬁ1_1e(1_(1+a1t1_1)51)- axBat, (1 +
ayt, HYPete(-(taxt™F2) 11 4 g(1 —
2e(1—(1+a1t1-1)31))(1 _ 2e(1—(1+a2t2'1)52))] (19)
ftrt2) = [ar ity (1 + gty P ayBot, 2 (1 +
aztz—1)'82_1]e(1_(1+“1tl_l)ﬁl)+(1_(1+a2t2_1)ﬁ2) X [1+6(1—
2e(1—(1+a1t1-1)31))(1 _ 2e(1—(1+a2t2‘1)ﬁ2))] (20)

Re arranging (20) yields:

f(tut) = [aBiti (1 + arty )P L apBot, 2 (1 +
0(2tz_l)‘gz_l]e2_(1_(1+a1t1_1)31)_(1_(1+u2tz_l)ﬁz)_1(21)
Where:

J=[140(1—2e@-(rats™Fyq
2e(1-(+azt;HF2)y)

ay, a, >0, 1,8, > 0 are the scale and shape parameters
respectively. —1 < 8 < 1 is the dependence parameter. It is

important to note that, when the dependence parameter takes
value zero, the model in (21) reduces to:

f(t1tn) = [ Bty (1 + agty DALy Bot, 72 (1 +
aztz—1)ﬁ2—1]e2—(1—(1+a1tl-l)ﬁl)_(l—(uaztz‘l)ﬁZ) 22)
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Bivariate Inverted Nadarajah Haghighi (BIN-H) Distribution based on Plackett Copula.

The second copula function used in this work is the Plackett copula proposed by Plackett (1965). Its cumulative distribution
function and probability density function were given in equations (10) and (11) respectively.

Hence the cumulative distribution function of the BIN-H distribution based on Plackett Copula function is obtained by
substituting (10) and (11) in (8) which yields:

F (tlf tZ) =

1+(g_1)(e(1—(1+u1r1‘1)ﬁl>+e(1—(1+azrz‘1)32))_J[1+(9_1)(e(1—<1+a1t1‘1>51>+e(1—<1+azrz‘1)52))]2_4e(1—<1+a1r1‘1)51)e(1—(1+aztz‘1)ﬁ2)9(9_1)

2(6-1)
(23)
While the density function is obtained by substituting (10) and (11) in (9) which yields:
9[1+(e(1—(1+a1cl‘l)ﬁl)_23(1—<1+a1tl‘l)ﬁl)e(1—<1+aztz‘1)32)+e(1—<1+azrz‘1)52))(9_1)]
(24)

f(ti,tz) =J

3
2
([1+(9_1)(e(1—(1+a1t1‘1)/31)+e(1—<1+aztz‘1)ﬁ2))] _4e(1—<1+a1t1‘1)51)e(1—<1+aztz‘1)52)9(9_1))

Where a; 5; > 0, i = 1,2 are scale and shape parameters respectively and 8 > 0 is the copula parameter.

Parameter Estimation of the BIN-H Distribution

There are a number of methods for finding the estimates of model parameters. In this work, two different estimation methods
were used to estimate the parameters of the proposed bivariate distributions. The first method is the maximum likelihood
estimation (MLE) procedure and the second one is the Inference Function for Margins estimation method. These two
estimation procedures will be used to estimate the parameters of both the BIN-H distributions based on the FGM and Plackett
Copula functions.

Parameter Estimation of the Bivariate Inverted Nadarajah Haghighi (BIN-H) Distribution based on FGM Copula

Here, the parameters of the Bivariate Inverted Nadarajah Haghighi (BIN-H) Distribution based on FGM Copula were estimated
using the methods of Maximum Likelihood Estimation and Inference Function for Margins techniques.

Parameter Estimation based on Maximum Likelihood Estimation Method

Let(T11, T12), (T12,T22) ... (T1n, T2n) be a random sample from a bivariate distribution with vector of parameter®, then the
likelihood function of the bivariate distribution is defined as:

L(O) = [T f (t1i, t20) (25)
Taking the natural logarithm of (7) gives the log-likelihood function of the bivariate distribution as:

1(0) = Xiy log(f (ti t20) (26)
Hence for any copula function, the log likelihood function in (15) can be written as:

(@) =InL(O) = Z?=1(lnf1 (t1j) + Inf; (t2) + InC (Fi(t1)), Fz(f1j))) (27)

Where f;(t;) and f5(t,) are the marginal probability density functions associated with the lifetimes T; and T, respectively.
F,(t1) and F,(t,) are the marginal cumulative distribution functions associated with the life times T; and T, respectively. And
C(F1 (t1j) F, (tlj)) is a copula function.
Based on this, the log likelihood function for the BIN-H distribution based on the Farlie Gumbel Mogernstern Copula is
therefore obtained by substituting equation (16) to give:
1(0) = Ty Inay Byty; 2(1 + ayty )P 1eO-Crats ™) 4 51 gy Bty =2 (1 + apty; 1P 1ot ™) 4

Ty In| 1 +0(1 — 20ty 7))y (1 _ 9o (-(tazty )2y (28)
To obtain the estimates of all the parameters, we differentiate (28) with respect to each parameter separately.
Base on this, differentiating (28) With respect to a; we have:

1, By

t;;7t ty; " Hp-t
dinL i o 1+(x1t1] = Bity; T (A + agty;7H) +

— . - O
60{1 & 0 [(1 _ Ze(l—(1+a2tzj 1)52)) (26(1—(1+a1t1j 1)61).,81131]'_1(1 + altlj—l)[fl—l)]
[1 +0(1 — 20~ a7y 1 _ 9o (1-(hazty;THF2)y)
_+ B -1 1m Br Xfertyy T+ agty; At 4
gyn (2 (Mztz’_l)ﬁz))(29“’(”"‘““' R T AN 0 29
Zle [1+9(1_28(1—(1+a1Elj_l)Bl))(l_Ze(1—(1+a2E2]-_1)BZ))] - (29)
also, differentiating equation (28) with respect to a,, we have:
Dyt
M ,82t2] 1(1 + ayty; 1)/?2—1 +
dlnlL Z 0(2 1+ aztzj
= _ _ =0
da, 0 [(1 — 2e(t-(Faity; I)Bl)) (26(1_(1+“2t2i 1)Bz)-/?zlfzj_l(l + aztzj_l)ﬁz_l)]
[+eqa- 2e(1-(taity TPy (] _ pp(1-(tastzi™)F2)y)
_+ B -1} 1m Ba X1tz (1 + ayty; et 4
gyn (1_26(1 (1“"1'511_1)51))(29(1—(1+a2t2j R )-.thzj_l(1+aztzj_1)32_1) =0 30
2=t [14+6(1-2e00F@t DDy o, (=(iraaty~HF2)y) - G0

also differentiating equation (28) with respect tof;:
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1
—+In(1+arty;7 ) — L+ agty; DA In(— L+ ayty;7H) +
dinL 1
B Z 0 [(1 — 2e(-0%et ™) (1 — (1 4 “1tlj_1)31)29(1_(”“1“1_1)61) In(1-(1+ a1t1]'_1))]
=

[1+ 6(1 — 2e(A-raaty ™))y _ gp(-(+asts; )2y

So that,
1 + Y (1 +aity; ™) = 3 (1 + aty; DA In(— (1 + agty; 7)) +

oy (1 Ze“ a2tz Dy (1 1y, 112 O D 10 (14t ) —0 31
j=1 146(1-2e(-0+ats” 1)/31))(1 200 <1+azrz,‘1)/32)) G
Furthermore, differentiating equation (28) with respect tof,:
1
Sl <& /ﬁ_ +In(1+ ayty; ™) — (1 + azty; D2 In(— (1 + agty; 1)) + \
n 2
B, Z 0](1 = 260~y ™M) (1 (14 @yt 71)2)2 -0+ In(1 = (1 + @yt )] | = °
j=1
[1+6(1 — 2e(1-(+aty; D)y 1 _ 2o (1-(4aztz; HF2)y)
So that,
+ 30 (1 + apty;™) = X0 (1 + apty; " DP2 In(— (1 + apty; ™) +
o [(a-ze0arerty TPy (1+a2t21_1)ﬁ2)29(1 arezte; ™ 1 (- (14 ayty )
o3, - — =0 (32)
146(1-2e1-Ararty TPy j(-GraztyTHF2))
and finally, differentiating equation (28) with respect to the copula parameter gives:
ainL (1200704017 (g gpU-Uireaty™HP))
90 [149(1-200-CFmty TPy _p,(-(raatyTHF2y T =

There exist no analytical solutions for the estimates of the parameters; as such they are handled numerically through statistical
software.

Parameter Estimation based on Inference Function for Margins

This is a parametric method with two-step of estimation. We start by maximizing the log-likelihood function of each marginal
density functions f; (t;)and f,(t,) to obtain the estimates of the marginal distribution functions F; (t)andF,(t).

The second step is estimating the copula parameter by maximizing the log-likelihood function of the copula density using the
Maximum Likelihood estimates of the marginal F; (t)and F,(t)from first step. This is done as follows:

0 = argmax i lnc (Fi(t)), F>(t2)))

Based on this method, consider the log likelihood of the marginal distributions of the BIN-H distribution as follows:

InLy, =X¥0_1Infi (ti)) (34)
InLy, = X0 inf; (t2)) (35)
For a BIN-H distribution based on FGM copula, the parameters of each marginal distribution will be estimated separately
using MLE. Thus (29) and (30) becomes:

Ly (ay, B) = Xj=q Infi (t)) i=12 (36)
Substituting for f;(t;;), we have:
In Ly, (@ Br) = By In|@ifity (1 + agty =i tetm(trait ™) (37)
InLy, (@, B) = Xjoa[lna B + Inty; ™2 + (B — 1) In(1 + ity ™) + (1 — (1 + agty; =P (38)
InLy, (a;, B) = nlna; B + Xy Inty; ™2 + (B — D oy In(1 + ity ™) + Xy (1 = (1 + aity;HP) (39)
Differentiating equation (39) with respect to a; we have:
dinL i tij _ -

aaT =_+(ﬁl 1 X7- 1m+ﬁltu LY (1 + apty B = 0 (40)

The fixed point solution of (40) will provide the MLE of «;, say &;.
Also differentiating equation (39) with respect to §; we have:
dlnlLy, -1 -1\B, -1

o, =—+Z S (14 et ™) — XP (U + ety D)Piln(1+ et;71) =0 (41)
The ﬁxed pomt solution of (41) will provide the MLE of f3;, say f3;.
The second step is estimating the copula density using the marginal estimates F; (t;)and F, (t,)from the first step as follows:

InL.=X7_,Inc (ﬁ1(t1j): ﬁz(tzj)) (42)
InLg = ¥j_s In[1+60(1 = 2F(t:)) (1 = 2F5(t)))] A (43)
InLg=3%",1In [1 +0(1 — 200+t Ty (1 2e(1—<1+ﬁztzf‘1>‘32>)] (44)

Therefore, taking the derivative of (39) partially with respect to the copula parameter, we have:

=3, (-2 )y ozt ™y 45)
1+9<(1_2€<1—(1+a1r1,-‘1)51)))(1_26(1—(1+azt2;‘1)32))>

There exist no analytical solutions for the estimates of the parameters; as such they are handled numerically through statistical

software.

aanC
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Parameter Estimation of the Bivariate Inverted Nadarajah Haghighi (BINH) Distribution based on Plackett Copula
Function

Here, the parameters of the Bivariate Inverted Nadarajah Haghighi (BIN-H) Distribution based on Plackett Copula are also
estimated using the Maximum Likelihood Estimation and Inference Function for Margins methods.

Parameter Estimation based on Maximum Likelihood Estimation Method
The log likelihood function of a BIN-H distribution based on the Plackett Copula is defined as:

InL= ?:1(l7lf1 (t1)) + Inf, (t2)) + In C (Fy(ts)), F2(t2)))) (46)
InL =37 (Inay fyty;*(1 + ayty Pt ™ iy oty 21+ atyy PGt )

/ 9[1+(e(1_(1+a1c1]-_1)ﬁ1)_26(2—(1+u1t1j_1)ﬁl)—(1+aztzj_1)62)+e(1—(1+0¢2t2j_1)ﬁ2))(9_1)] \
In 3
- - 2 - - 2
<[1+(9—1)(e“‘(1+“1fu‘ DD plarartz 7O gg(g1)earmts D -rarty 1)&))2

by further simplifying, we have:

InL = 27:1(171 aq ﬁltlj_z + (Bl - 1) ln( 1+ altll‘_l) + (1 - (1 + altlj_l)ﬁl) + In a, ﬁztzj_z + (ﬂz - 1) ln(l +
by ™) + (1= (L + @aty; F2) + 61+ (Gt ™M) — gpC(raty ™=ty ™) 4

e(1-(+asts ™)y g 1)] _ ;ln <[1 + (8 — 1)(e(-Craaty™H) 4 e(l—(1+aztzj‘1)32))]2 —46(0 —
1)6(2—(1+a1tlj‘l)ﬂl)—(1+aztzfl)52)) A7)

Maximizing the log-likelihood function in (47) overa,, we have:
alnlL 1, (B1-Dty;t _ _ _
= ?:1(Z+171]+ﬁ1t1j A+t DAY+

day (1+agty;™)
60-1|-Brt1; 7 (1+artyHF1 e

“‘(““ﬁu‘_l)‘?l)+2B1tl/'l(1+a1tu'1)(51‘1)6(2'(“““”_1)Bl_(1+u2t2j_1)B2)]

9[1+(e(1_(“““11_1)61)—Ze(z_“+"‘1tli_l)ﬁl)‘(““ztzf_l)ﬁz)+e(1_(1+“2t2f_1)62))(9_1)]

- 1 - 1 - 1 — —1 - 1
. 2[1+(9_1)(e<1 (tart;7HAY | (-(azty; )’*2))](1_9)51t1]_-1(1+a1tlj-1)(;;1_1)e(1 (+asty) )’*1>+49(1_9)p1Elj-l(lmltlj-l)(,sl_l)e(z (aytyTHI-(tart,7HP2)

’ [1+(9—1)(6(1_(“'11:11'_1)51)+e(1_(1+a2t2f_1)62))]2—49(9—1)e(2_(1+‘11t11'_1)61)_(”"’ztzj_l)ﬁz)
0 (48)
Also, maximizing the log-likelihood function in (47) overa,, we have:

dlnL _ wn 1, (Ba=Dity; ™" -1 -1 -1
a, Zj:l(ll_z—}_m-l—ﬁztzj 1 +a2t2]- )([;2 )

_ —1 _ —1 _ —1
9(9_1)[‘Bztzj'l(1+aztzj‘1)<52‘1>e“ 262 0P o ot (g by 1) oD aztz) Pty )Bl)]

61 eats DI _ppamtrantyTHI- ety O orazty T g

- LB - ~1)B: . —1)B - ~1)B1_, —1)B;
3 2[1+(3—1)(e(1 (ayty ;7P | (-(tazty; =) 2))](1—9)[?2&,'_1(1+a2tzj_1)(62_1)e(1 (tazty; ) 2)+49(1—9)ﬁztzj_l(1+‘12fzj_1)(52_1)3(2 (+agty j~HPI-(1+aztyj~)P2)

a-Qtaity~HFY) | (-(tazty;mHF2) @-Qtart; T H-(+azt,THF2)

[1+(9—1)(e )]2—49(9—1)5
0 (49)
Furthermore maximizing the log-likelihood function in (47) overf3;, we have:

dlnl o 1 . iy .
a—ﬁlzz:[—1+ln(1+a1t1j )= (1+ agty; ™ In( = (1 + ayty; ™)
=

2] [_(1 + altlj—l)ﬁl ln( _ (1 + altlj—l))e(1—(1+a1t1]-—1)l?1) _ 2(1 + altlj_l)ﬁl ln( _ (1 + altll_—1))e(2—(1+a1:1]-—1)131)—(1+a2tzl-—l)Bz)] (9 _ 1)
B[1 + (e(-(+amtsi ) _ o @-rarty DI-(rasts HF2) | o(1-(itasts D)y (g _ 1))

+

3 2[1+<9—1)<e(1“”“1f1f1’” 1)+e<1‘“*“thi_l)ﬁz))]<e-1)<—<1+a1t1j‘1)ﬁl>e<1‘<1+“1fl/'lJ” Y (-t ) 400D (-1 arty TP In(-(Lrayty e Bt Tzt TP

2

2
[1+(971)(e(1*(1+a131j_1)31)+e(1*(1+a232j_1)ﬁz))] —46(0-1)e @ FartyTHPD-(raztyTHE2)

0 (50)
Also maximizing the log-likelihood function in (47) overf3,, we have:

dinL 1 _ _ _
a;: = Xjaaly + (1 + agty; ™) = (14 asty B2 In( = (1 + ayty; 1)

— —1 _ —1 _ —1
9[—(1+a2t2,-1)52zn(—(1+a2t2,-1))e(1 @227 o (1 4ty 1)B2 In(- (14ayt,~))e @@ty D-Grazty) )ﬁz)](e—n

+

0 1+(e(1—(1+0(1tlj_l)ﬁl)_ze(2—(1+a1t1j_1)ﬂl)—(1+azEzj_l)ﬁz)+e(1—(1+012fzj_l)ﬁz))(g_l)]
1 1 -1 -1 -1
2[1+<971><e“"”"’“1i P masantyy )BZ))](9*1)(*(1+u2f2j_1)ﬁz)e(17(1+12[2" P2 - ap ) 400 -1+ azty; P2 In(-(tragty et eats TP -taztz TP
2
)| —46(6-1)e

3

a-(+agtyTHPY) | a-(ragtyHP2) (2-(+arty THP)-(+azt,;7HA2)

[1+(9—1)(e
0 (51
Finally, maximizing the log-likelihood function in (47) over the copula parameter 8we have:
dlnl _ [(1+A(6-1))+64] 3 [ZC(e(1_(“'“1tl]'_l)Bl)+e(1—(1“‘0(2[2]'_1)62))_4(29_1)e(2—(1+a1tlj_l)ﬁl)—(1+a2tzj_l)/”Z)]
20 e[1i+A6-1] 2 B -
Where;
A = (e(-(rarty ™)) _ 9o@-(tarty ™)) -(tarty ™)F2) § o(1-(+arty;™)F2)y

0 (52)
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B = [1 + (0 _ 1)(6(1_(1+“1f1j_1)ﬁ1) + e(l_(l‘*‘“ztz]‘_l)ﬁz))]z _ 49(9 — 1)e(2_(1+“1t1j_1)61)_(1+“2tzj_i)ﬁz)
- _ (A-(+ayty 79 | (1-(1+aty)F2)
C=1+(0—-1)(e +e )

There exist no analytical solutions for the estimates of the parameters; as such they are handled numerically through statistical
software.

Parameter Estimation based on Inference Function for Margins
Following the same procedure as in the previous section and using the Maximum Likelihood estimates of the marginal
distribution functions obtained in equations (34) and (35), the copula parameter is estimated as follows:

InLe = Y} Inc (Fi(ty)), F>(t2))
]

9[1+(g(1—(1+a1f1_1)31)_26(1—(1+a1fl_l)Bl)e(l—(Hazfz_l)Bz).Hg(1—(1+a2f2_1)32))(9_1)]

InLg=3"n (53)
3
lj([1+(9_1)(e(1—(1+561t1_1)[?1)+(.3(1—(1+azfz_l)Bz))]z_4(,3(1—(1+a1t1‘1)/?1)(_;,(1—(1+a2t2—1)l§2)g(9_1)>
Simplifying further we have:
n
InLy = Z [ln 0+in[1+ (e(l—(1+a1t1‘1)31) — 2e(-(1+ayt,"HP1) (114t HP2) | e(l—(1+azrz'1)5’2)) = 1)]]
=
~ - B ~ - B 2 ~ - B ~ - B
—%ln[ [1 + (0 — 1) (e(l_(1+a1t1 I)Bl) + e(l_(1+a2tz 1)B2))] — 49(1—(1+Q1E1 1)Bl)e(l—(1+azt2 1)82)0(9 _ 1)] (54)
Differentiating the log likelihood function in equation (3.53) partially with respect to the copula parameter we obtained:
dinL _ [(1+A(6-1))+64] 3 [Zé(e“‘(“alt1_1)31)+e(1‘(1"&2fz_1>32))—4(29—1)e(2-(1+&1tl‘l)ﬁl)—(uaztz‘l)@)] 5
20 8[+A@e-1] 2 B (55)

Where;
A = (e(-(+auty ™)) _ 9o @-(+aity O -1+t T2 | (1=t 7)P2)y

B = [1 + (0 — 1)(e(-0+aat ™ e(l—(1+a2tz,--1>f?2>)]2 — 40(0 — 1)e@ (st H)-(1+a,t P2
C=1+ (CE 1)(6(1—(1‘*@1%]_1)31) + e(l—(1+aztzj_1)32))

RESULTS AND DISCUSSION

Two real data sets were analyzed in order to demonstrate the applicability of the proposed models. The first data set is the
infections in kidney patients’ data and the second data is the soccer data. Details about each of the data set were given in the
next sections.

Infections in kidney patients

The first data set is the infections in kidney patients’ data from McGilchrist and Aisbett (1991) which was previously analyzed
by Achcar et al. (2015), Mirhosseini et al. (2015), Elaal and Jarwan (2017), Usman and Aliyu (2022) and Aliyu and Usman
(2023). The recurrence times to infection at point of insertion of catheter using portable dialysis equipment for thirty-eight
(38) kidney patients were recorded. For each patient, two such recurrence times were given with each row of the table
corresponding to one patient as shown in table 1.

Table 1: Infections in Kidney

Patients T, T,
1 8 16
2 23 13
3 22 28
4 447 318
5 30 12
6 24 245
7 7 9

8 511 30
9 53 196
10 15 154
11 7 333
12 141 8
13 96 38
14 149 70
15 536 25
16 17 4
17 185 117
18 292 114
19 22 159
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Patients T4 T,
20 15 108
21 152 362
22 402 24
23 13 66
24 39 46
25 12 40
26 113 201
27 132 156
28 34 30
29 2 25
30 130 26
31 27 58
32 5 43
33 152 30
34 190 5
35 119 8
36 54 16
37 6 78
38 63 8

Table 2: Copula goodness-of-fit test, AIC, BIC and HQIC

results for the proposed models - Kidney data

Copula p-value Dependence parameter AIC BIC HQIC
FGM Copula 0.8950 -0.0412 864.4672 8262.3661 867.3804
Plackett Copula 0.0055 0.9876 852.8942 834.9953 855.8074

The resulting p-values of copula goodness-of-fit test were
0.8950 and 0.0055 for FGM and Plackett copula respectively,
which confirms that only the FGM copula, having a p-value
greater than 0.05, is suitable for the data set. while the
resulting p-value of the Plackett copula shows that the
Plackett copula, having a p-value less than 0.05, is not suitable
for the data set. The estimated dependence parameter was -
0.0412 for FGM copula and 0.9876 for Plackett copula. The

results of AIC were 864.4672 for FGM and 852.8942 for
Plackett. The results of BIC were 8262.3661 for FGM copula
and 834.9953 for Plackett copula. The results of HQIC were
867.3804 for FGM copula and 855.8074 for Plackett copula.
From the goodness of fit test, the AIC, BIC and HQIC results,
it shows that the Plackett copula is fitting better than the FGM
copula.

Table 3: The Estimates and the Corresponding Standard Errors (in Brackets) of Parameters of BIN-H Distribution

Based on FGM and Plackett Copulas for the Kidney Data

Estimates of Parameters

Copula Estimation Methods aq a, B1 B2 2]
FGM MLE 23.41273 12.64290 0.82368 1.31959 -0.02562
(6.67406) (6.11100) (0.13919) (0.41741) (0.40877)
IFM 0.83268 0.74833 22.68826 35.52005 -0.04121
(0.09083) (0.09289) (2.91337) (5.48186) (0.31342)
Plackett MLE 8.51825 1.65996 1.17124 0.65294 0.80094
(2.58807) (0.87012) (0.27751) (0.30901) (0.02789)
IFM 1.0089 1.0948 15.4209 16.9538 0.9876
(0.1426) (0.1475) (3.5637) (3.2701) (0.3557)

From the result in table 3, the parameter with the least
standard error is considered the best. Therefore, the efficient
estimators of marginal parameters of the two models differ
according to the parameters. It is also observed that the I[FM
estimates of scale parameters a; and a, of the two models
under the FGM and Plackett copula functions are better than
the corresponding ML estimates. Whereas, for the shape
parameters f;andf3,, it is observed that the ML estimates are
better than the corresponding IFM estimates in each of the two
models. For copula parameterf, the ML estimation method
provided more efficient estimates compared to the IFM
estimation method for the Plackett copula function. Whereas,
for the FGM copula function, the IFM estimation provided an
efficient estimate of the copula parameter than the ML
estimation method.

Soccer Data

The second data set is the football (soccer) data from
Meintanis (2007). Consider matches where (i) there was at
least one goal scored by the home team and (ii) also at least
one goal scored directly from a kick (foul kick, penalty kick
or other kick) by any team. Let T; be the time (in minutes) of
the first kick goal scored by any team, and T, be the time (in
minutes) of the first goal of any type scored by the home team.
Apparently, with this kind of nonnegative continuous data, all
possibilities are open: for each match we may haveT; <
T,,T; > T,, and even T; = T,. Table 4.4 presents such data
for the group stage of the UEFA Champion’s League for the
years 2004-05 and 2005-2006.
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Table 4: Soccer Data
2005-2006 X, X,  2004-2005 X, X,
Lyon-Real Madrid 3-0 26 20 Internazionale—Bremen 2—0 34 34
Milan-Fernerbahce 3-1 63 18 Real Madrid—Roma 4-2 53 39
Chelsea—Anderlecht 1-0 19 19 Man. United—Fenerbahce 6-2 54 7
Club Brugge—Juventus 1-2 66 85 Bayern—Ajax 4-0 51 28
Fenerbahce-PSV 3-0 40 40 Moscow—PSG 2-0 76 64
Internazionale-Rangers 1-0 49 49 Barcelona—Shakhtar 3—-0 64 15
Panathinaikos—Bremen 2-1 8 8 Leverkusen—Roma 3—1 26 48

Ajax—Arsenal 1-2 69 71 Arsenal-Panathinaikos 1-1 16 16
Man. United—Benfica 2—1 39 39 Dynamo Kyiv—Real Madrid 2-2 44 13
Real Madrid—Rosenborg 4-1 82 48 Man. United—Sparta 4-1 25 14
Villarreal-Benfica 1-1 72 72 Bayern—M. Tel-Aviv 5-1 55 11
Juventus—Bayern 2—1 66 62 Bremen—Internazionale 1-1 49 49
Club Brugge—Rapid 3-2 25 9 Anderlecht—Valencia 1-2 24 24
Olympiacos—Lyon 1-4 41 3 Panathinaikos—PSV 4-1 44 30
Internazionale—Porto 2—1 16 75 Arsenal-Rosenborg 5—1 42 3
Schalke-PSV 3-0 18 18 Liverpool-Olympiacos 3—1 27 47
Barcelona—Bremen 3—1 22 14 M. Tel-Aviv—Juventus 1-1 28 28
Milan—Schalke 3-2 42 42
Bremen—Panathinaikos 5—1 2 2
Rapid—Juventus 1-3 36 52

Table 5: Copula Goodness-Of-Fit Test, AIC, BIC and HQIC Results for The Proposed Models-Soccer Data
Copula p-value Dependence parameter AIC BIC HQIC
FGM Copula 0.0002 0.2375 720.2906 717.5124 723.1302
Plackett Copula 0.0000 2.1191 269.2890 277.3436 272.1286

The resulting p-values of copula goodness-of-fit test were
0.0002 and 0.0000 for FGM and Plackett copula respectively,
which confirms that both the FGM and Plackett copula
functions are not suitable for the data set. The estimated
dependence parameter was 0.2375 for FGM copula and
2.1191 for Plackett copula. The results of AIC were 720.2906

for FGM, 269.2890 for Plackett. The results of BIC were
717.5124 for FGM copula and 277.3436 for Plackett copula.
The results of HQIC were 723.1302 for FGM copula and
272.1286 for Plackett copula. From the goodness of fit test,
the AIC, BIC and HQIC results, it shows that the Plackett
copula is fitting better than the FGM copula.

Table 6: The Estimates and the Corresponding Standard Errors (in Brackets) Of Parameters of BIN-H Distribution
Based on FGM and Plackett Copulas for the Soccer Data Set

Estimates of Parameters

Copula Estimation Methods aq a, By B 7]
FGM MLE 16.3028 11.7353 1.0608 0.9462 0.2375
(2.6310) (4.9963) (0.1394) (0.2573) (0.6286)
IFM 0.9222 0.8847 22.9934 16.0332 0.1355
(0.1139) (0.1100) (4.8103) (2.8657) (0.4414)
Plackett MLE 26.9284 0.4753 1.3725 2.0200 2.1191
(6.3369) (0.1851) (0.1502) (0.7524) (0.2003)
IFM 0.9719 0.8399 20.9531 18.2647 9.245 (3.425)
(0.1129) (0.1502) (3.9978) (5.8415)

It is observed that the efficient estimators of marginal
parameters of two models differ according to the parameters.
It is also observed that the IFM estimates of scale parameters
aq, and a, of the two models under the FGM and Plackett
copula functions, having the lower standard error; are better
than the corresponding ML estimates. Whereas, for the shape
parameters [;andf,, it is observed that the ML estimates,
having the lower standard error; are better than the
corresponding IFM estimates in each of the two models. For
copula parameter6, the ML estimation method provided more
efficient estimates compared to the IFM estimation method

for the Plackett copula function. Whereas, for the FGM
copula function, the IFM estimation provided an efficient
estimate of the copula parameter than the ML estimation
method.

Comparison between the performance of BIN-H and
BGED

Here, the performance of the BIN-H distribution and that of
the BGED is compared using both the kidney and soccer data
set.
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Table 7: Comparison Between the Performance of BIN-H and BGED Using the Kidney Data Set

Copula functions Distributions P-value AIC BIC

FGM BIN-H 0.8950 864.4672 8262.3661
BGED 0.7338 689.0881 696.0940

Plackett BINH 0.0055 852.8942 834.9953
BGED 0.7877 689.0495 696.0555

From Table 7, it can be seen that, based on the AIC and BIC values obtained, the BGED performed better than the BINH

distribution in both the FGM and Plackett copula functions.

Table 8: Comparison Between the Performance of BINH and BGED Using the Soccer Data Set

Copula functions Distributions P-value AIC BIC

FGM BIN-H 0.0002 720.2906 728.3452
BGED 0.456 672.1324 680.1870

Plackett BIN-H 0.0000 269.2890 277.3436
BGED 0.0000 545.426 553.4806

From Table 8, under the Farlie Gumbel Morgernstern Copula,
the BGED outperform the BIN-H distribution based on the
AIC and BIC values. Whereas, for the Plackett copula
function, the BIN-H distribution outperform the BGED
having the lower AIC and BIC values.

CONCLUSION

This study was motivated by the need for flexible bivariate
lifetime distribution capable of accommodating diverse
dependence structures and marginal behaviors. Accordingly,
a class of Bivariate Inverted Nadarajah—Haghighi (BIN-H)
distributions was developed using the Farlie—-Gumbel—
Morgenstern and Plackett copula functions. The primary
objective was to construct these models, estimate their
parameters efficiently, and assess their performance using real
data applications. Two parameter estimation methods, namely
Maximum Likelihood Estimation (MLE) and Inference
Functions for Margins (IFM), were employed and compared.
The results indicate that the efficiency of the estimation
methods for both marginal and copula parameters depends on
the nature of the data and the underlying parameter values.
However, based on the real data analyses considered in this
study, MLE consistently provided more efficient estimates for
the copula parameters under both the FGM and Plackett
copulas. Furthermore, empirical results demonstrated that the
BIN-H distribution based on the Plackett copula achieved a
superior fit compared to its FGM-based counterpart. These
models can be valuable in reliability analysis, survival studies,
and related applied fields. Despite these contributions, the
study is limited by the use of only two copula families and a
restricted number of real data sets. Future research may
extend this work by considering alternative copula functions,
incorporating censoring mechanisms, exploring Bayesian
estimation approaches, and applying the proposed models to
a wider range of real-world data.
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