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ABSTRACT 

The paper focused on the construction of Balanced Incomplete Block Designs (BIBDs) using Galois Fields 

with prime factors𝑝 = 3,5, based on multiplicative binary operations. For each prime, multiplication tables 

modulo𝑝were created and used to construct designs from irreducible functions over𝐺(𝑝). In𝐺(2), 𝐺(3) 

and𝐺(5), the minimal functions were computed, and the corresponding elements of each field were generated 

and employed to construct Mutually Orthogonal Latin Squares (MOLS), and consequently, BIBDs. The 

resulting constructions were verified against the BIBD parameters(𝑣, 𝑏, 𝑣, 𝑘, 𝜆), and the findings revealed that 

the prime factors3, and5do not satisfy the necessary conditions for BIBD existence. Therefore, BIBDs cannot 

be constructed using multiplicative binary operations with any of these prime factors. 
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INTRODUCTION 

Balanced Incomplete Block Designs (BIBDs) constitute a 

fundamental class of combinatorial designs that balance 

experimental comparisons while reducing the number of 

experimental units required for treatments that cannot all be 

observed together in a single block (Bose, 1939). A BIBD 

with parameters(𝑣, 𝑏, 𝑟, 𝑘, 𝜆) consists of𝑣  treatments 

arranged in𝑏blocks of size𝑘, each treatment occurring 

in𝑟blocks, and every unordered pair of distinct treatments 

occurring together in exactly𝜆blocks; these parameters satisfy 

the standard relations𝑣𝑟 = 𝑏𝑘and 𝜆(𝑣 − 1) = 𝑟(𝑘 − 1) 
(Cochran & Cox, 1957). The balanced concurrence property 

of BIBDs ensures that pairwise comparisons of treatments 

enjoy uniform precision, making BIBDs attractive in 

agricultural trials, industrial experiments, sensory studies, and 

survey sampling where full randomization or complete-block 

layouts are impractical (Federer, 1955; John & Williams, 

1995). The algebraic and combinatorial theory underpinning 

BIBDs has matured over decades, linking design existence 

and construction to finite geometries, difference sets, group 

actions, and algebraic structures such as finite fields (Galois 

fields) and cyclotomic classes (Beth et al., 1999; Dinitz & 

Stinson, 2024; Colbourn & Dinitz, 2007; Street, 1987). 

Classical constructions — including those derived from 

symmetric designs, affine and projective planes, and 

difference sets provide families of BIBDs with rich structural 

properties and wide applicability (Hedayat et al., 1999; 

Shrikhande & Raghavarao, 1994; Bailey, 2008).  

More recent work emphasizes algorithmic generation, 

classification up to isomorphism, and the exploitation of 

algebraic automorphisms to obtain large classes of 

nonisomorphic designs with prescribed parameters (Ionin & 

Shrikhande, 2006; Street, 2010; Kang & Jungnickel, 2021). 

Constructed balanced incomplete block design using Galois 

field (Janardan, 2018). Examined algebraic structures in 

BIBDs and exploration of optimal BIBDs through various 

constructions (Akra et al., 2023, 2024). Further, Akra et al., 

(2025) investigated isomorphisms and automorphisms of 

BIBDs, highlighting their structural symmetries. Constructed 

balanced incomplete block design (BIBD) using finite 

Euclidean and projective geometry approach (Akra et al., 

2021, 2025). 

From a statistical perspective, BIBDs yield desirable 

inferential properties: when the design is connected, treatment 

contrasts are estimable and the information matrix has a 

simple form determined entirely by the parameter(𝑣, 𝑟, 𝜆), 

enabling closed-form expressions for variances of elementary 

contrasts and facilitating comparisons of efficiency against 

completely randomized and randomized block designs 

(Pearce, 1984). Advances in computational linear algebra and 

simulation methods have also allowed practitioners to assess 

robustness to missing observations, heteroscedastic errors, 

and departures from model assumptions, thereby expanding 

the practical utility of BIBDs in modern applications 

(Kageyama & Kubota, 2016; Mukerjee & Das, 2017; Li & 

Wang, 2023). 

Despite their theoretical strengths, several practical and 

theoretical challenges remain. Existence results for BIBDs are 

incomplete for many parameter sets, and constructions that 

rely on algebraic operations (e.g., multiplicative subgroups of 

finite fields) require careful verification of balance and 

intersection properties for each parameter regime (Araujo & 

Pardo, 2022; Isaac et al., 2025). Moreover, modern 

applications increasingly demand flexible designs that 

tolerate missing plots and adapt to complex nuisance 

structures; new procedure for constructing N-point D-optimal 

symmetric and asymmetric designs; bridging combinatorial 

existence with statistical robustness and algorithmic 

scalability continues to be an active area of research (Onyeka 

& Akra, 2024; Isaac et al., 2025). In this work we investigate 

the viability of a multiplication-based construction in Galois 

fields for producing BIBDs, and we assess the resulting 

designs’ combinatorial properties and statistical performance. 

 

MATERIALS AND METHODS 

Galois Field Design 

An algebraic structure satisfying all the axioms of the field but 

with F being a finite set of elements is known as a Galois field 

and it is denoted by𝐺𝐹(𝑞) or GF(pn), where p is a prime 

number and n is a positive. These fields have well-defined 

operations of addition and multiplication with properties that 
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are useful for constructing designs. The concept of a 

polynomial in ordinary algebra can be extended to any field. 

If 𝑎1, 𝑎2. . . . . , 𝑏0, 𝑏1, 𝑏2, . . .. are elements of any field F, then 

the elements of the form; 

 𝒇(𝒙) = 𝒂𝟎 + 𝒂𝟏𝒙𝟏 + 𝒂𝟐𝒙
𝟐+. . . ..  (1) 

Constitute the sets of polynomials belonging to what may be 

called the commutative ring𝐹[𝑥], under addition and 

multiplication defined in an ordinary way.(𝑎0 + 𝑎1𝑥1 +
𝑎2𝑥

2+. . . ) + (𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥
2+. . . ) =⥂ (𝑎0 + 𝑏0) +

(𝑎1 + 𝑏1)𝑥+. .. and(𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥
2+. . . ) = 𝑎0𝑏0 +

(𝑎1𝑏0 + 𝑎0𝑏1)𝑥+. . . +(𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥
2+. . . ) (2) 

This field exist for every finite number of elements which is 

the power of a prime. It is clear that every number of elements 

contained by a Galois field (a field with a finite number of 

elements) must be of the form𝑝𝑛, where p is a prime integer 

and n any positive integer. Thus every element of 𝐺𝐹(𝑝𝑚) 
can be expressed in the standard form; 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥
2+. . . . . +𝑎𝑝−1𝑥

𝑛−1 (3) 

Where 𝑎0, 𝑎1, 𝑎2. .. are integers ranging from 0 to𝑝 − 1.  

 

Definition: Irreducible Polynomial 

In the field of rational polynomials𝑄[𝑥] (i.e. polynomials𝑓(𝑥) 

with rational coefficients), 𝑓(𝑥) is said to be irreducible if 

there do not exist two none constant polynomials𝑔(𝑥) 

andℎ(𝑥) in x with rational coefficients such that;  

𝑓(𝑥) =𝑔(𝑥)ℎ(𝑥).    (4) 

 

Definition: Primitive Root  

In𝐺𝐹(𝑝𝑚), a nonzero element is said to be primitive if the 

order of𝑥is𝑝 − 1.  

The powers of a primitive element generate all the nonzero 

elements of𝐺𝐹(𝑝𝑚),𝑥is the primitive root of𝐺𝐹(𝑝𝑚) if 

𝑥satisfies the equation; 

 𝑥𝑝𝑚−1 + (𝑝 − 1) = 0   (5) 

 

Definition: Minimum function 

If the function𝑓(𝑥) can be factorized with the help of𝐺𝐹(𝑝𝑚) 
then the function𝑓(𝑥) is called the minimum function 

of𝐺𝐹(𝑝𝑚). The function𝑝(𝑥) is said to be a minimum 

function for generating the elements of𝐺𝐹(𝑝𝑚), the non-zero 

elements may be represented either as polynomials degree at 

most(𝑚 − 1) as we know the power of primitive root x such 

that𝑥𝑝𝑚−1 + (𝑝 − 1) = 0. To obtain the minimum function 

we divide𝑥𝑝𝑚−1 + (𝑝 − 1) by the least common multiple of 

all factors lies𝑥𝑑 + 1, where 𝑑 is a divisor of𝑝𝑚 − 1. The 

order of the equation will be𝜓𝑘(𝑝𝑚 − 1), where (𝜓𝑘) denotes 

the number of positive integers less than k and relatively 

prime to it. In this equation, by replacing each coefficient by 

its least non-zero residue to modulus𝑝, we get the cyclotomic 

polynomial of order𝜓𝑘(𝑝𝑚 − 1). 

 

Definition: Latin square and Orthogonal and Mutual 

Orthogonal Latin Square  

Latin square is an n × n array filled with n different symbols, 

each occurring exactly once in each row and exactly once in 

each column. Note that a Latin Square is an incomplete 

design, which means that it does not include observations for 

all possible combinations of i, j and k. Once we know the row 

and column of the design, then the treatment is specified.  

When two Latin squares of same order are superimposed on 

one another, in the resultant array if every ordered pair of 

symbols occurs exactly once, then the two Latin squares are 

said to be orthogonal.  

 

 

 

Balanced Incomplete Block Design 

The construction of balanced incomplete block design 

depends on the total arrangement of the treatments into 

blocks. Balanced incomplete block design (BIBD) are 

satisfied by the following relations. The relations (i) – (iii) are 

some necessary but not sufficient conditions for the existence 

of BIBDs.  

The parameters𝑣, 𝑏,⥂ 𝑘, 𝑟and𝜆 of a BIBD on 𝑋 =
{𝑥𝑖}𝑖=1

𝑡 satisfies the following conditions: 

(i) 𝑏 ⥂ 𝑘 = 𝑣𝑟   (6) 

(ii) 𝜆(𝑣 − 1) = 𝑟(𝑘 − 1)  (7) 

(iii) 𝑏 ≥ 𝑣    (8) 

 

Construction of Galois Field  

The element of Galois field 𝐺𝐹(𝑝𝑚) is defined as;  

𝐺𝐹(𝑝𝑚) =(0,1,2, . . . , 𝑝 − 1) ∪ (𝑝, 𝑝 + 1, 𝑝 + 2, . . . , 𝑝 + 𝑝 −
1) ∪ (𝑝2, 𝑝2 + 1, 𝑝2 + 2, . . . , 𝑝2 + 𝑝 − 1) ∪ (𝑝𝑚, 𝑝𝑚−1 +
1, 𝑝𝑚−1 + 2, . . . , 𝑝𝑚−1 + 𝑝 − 1) (9) 

The order of the field is given by 𝑚 ∈ 𝑍+while 𝑚 ∈ 𝑍+ is 

called the characteristics of the field.  

The function p(x) is said to be a minimum function for 

generating the elements of GF (p m). The non-zero elements 

may be represented either as polynomials degree at most 

(m−1) as we know the power of primitive root x such that  

xpm-1 + (p−1) = 0. To obtain a cyclotomic equation we divide 

x 
pm −1

+(p−1) by the least common multiple of all factors lies xd 

+1, where d is a divisor of pm-1.  If the cyclotomic equation is 

factorized, minimum function(s) is or are obtained which is 

also the factor(s) or the reducible and the irreducible 

polynomial of a lower degree   

Let p(x) be an irreducible factor of this polynomial, then p(x) 

is a minimum function which is in general not unique. 

Construction of Galois field of 𝑝𝑚elements from𝑝𝑡ℎorder 

field𝐺𝐹(𝑝). The𝑝𝑡ℎelements of𝐺𝐹(𝑝) are 0, 1, … , (𝑝 − 1) 

and a new symbol. 

 

Construct BIBD using Galois field 

Construct BIBD using Galois field of the form GF (q) 

involved the following steps: 

(i) Chose a prime factor(s) and check whether the prime 

factors satisfy the axioms of a field.  

(ii) Construct Galois field, by obtaining cyclotomic equation 

and primitive root,  

(iii) Factorize the cyclotomic equation to obtain a minimum 

function which is the factor(s) or polynomial of a lower 

degree 

(iv) Use the minimum function and the elements of the Galois 

field GF (p) to obtain the multiplicative binary operation 

(v) Substitute the primitive roots to obtain a Latin square. 

(vi) Superimpose the different Latin squares to obtain mutual 

orthogonal Latin square and then have a set of design that will 

form a BIBD. 

(vii) After the construction of BIBD, use the parameters v, b, 

k, r and 𝜆 of a BIBD to check if it satisfies the following 

conditions, then draw a generalized conclusion to further 

ascertain the result obtained.  

 

RESULTS AND DISCUSSION 

Construction of BIBD GF (3) Using Multiplicative 

Operation 

The elements of Galois field GF (3) are 0, 1 and𝛼with 

minimum function2𝑥 + 1 

Then GF (3) is used to obtain the following Latin squares as 

follows:  



















=

2

1

0

101

0000

10







L

⇒


















1202

2101

0000

10 

at 𝛼 = 2  
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implies [
× 1 2
1 1 2
2 2 1

]Latin square 

Blocks for the first Latin square design is given as; 

Column blocks Row blocks 

[
1
2
]

𝐵1

, [
2
1
]

𝐵2

  𝐵1 :[ 12] 𝐵2 :[ 21] 

Multiplying the vertical column of L1 by α to get the 2nd Latin 

Square 

















 

=

322

22

0

0

0000

10







L

⇒


















2102

1201

0000

10 

at  

𝛼 = 2implies[
× 1 2
1 2 1
2 1 2

]Latin square 

Blocks for the second Latin square design is given as; 

Column blocks Row blocks 

[
2
1
]

𝐵1

, [
1
2
]

𝐵2

  𝐵1 :[ 21] 𝐵2 :[ 12] 

 

=Multiplying the vertical column of L1 by α2 to get the 3rd 

Latin Square 

















 

=

433

3223

0

0

0000

10







L

⇒ 


















1202

2101

0000

10 

at 𝛼 = 2 implies [
× 1 2
1 1 2
2 2 1

]Latin 

square 

Blocks for the third Latin square design is given as; 

Column blocks  Row blocks 

[
1
2
]

𝐵1

, [
2
1
]

𝐵2

   𝐵1 :[ 12] 

𝐵2 :[ 21] 
 

Multiplying the vertical column of L1 by α3 to get the 4th Latin 

Square 

















 

=

544

4334

0

0

0000

10







L

⇒ 


















2102

1201

0000

10 

at 𝛼 = 2 implies [
× 1 2
1 2 1
2 1 2

]Latin 

square 

Blocks for the fourth Latin square design is given as; 

Column blocks Row blocks 

[
2
1
]

𝐵1

, [
1
2
]

𝐵2

  𝐵1 :[ 21] 𝐵2 :[ 12] 

 

Superimpose the four Latin squares to obtain mutually 

orthogonal Latin square (MOLS) design, thus; 

𝐿𝑝 = [
× 1 2
1 1212 2121
2 2121 1212

] 

Neglecting the first row and column of𝐿𝑝 the MOLS with the 

defining parameters: r = 8, v = 3 b = 4, k = 4, and λ = 12 

Now using the parameters v, b, k, r and λ to check the three 

conditions of a BIBD. That is; 

(1) bk = vr ⇒ (4 × 4) ≠ 3(8) (Not satisfy) 

(2) 𝜆(𝑣 − 1) = 𝑟(𝑘 − 1) ⇒ 12(2) = 8(3) (Satisfy) 

(3) 𝑏 ≥ 𝑣 ⇒ 2 < 3 (Not satisfy) 

Since the two parametric relations of BIBD are not satisfied, then 

the design is a not a BIBD under multiplicative binary operation. 

 

Construction of BIBD GF (5) Using Multiplicative 

Operation 

The elements of Galois field GF (5) are 0, 1, α, α2   and α3 with 

minimum function2𝑥 + 1 

Then GF (5) is used to obtain the following Latin squares as 

follows: 

𝐿1 =

[
 
 
 
 
 
× 0 1 𝛼 𝛼2 𝛼3

0 0 0 0 0 0
1 0 1 𝛼 𝛼2 𝛼3

𝛼 0 𝛼 𝛼2 𝛼3 𝛼4

𝛼2 0 𝛼2 𝛼3 𝛼4 𝛼5

𝛼3 0 𝛼3 𝛼4 𝛼5 𝛼6]
 
 
 
 
 



(

 
 

× 1 2 4 3
1 1 2 4 3
2 2 4 3 1
4 4 3 1 2
3 3 1 2 4)

 
 

at𝛼 =

2is a Latin square (first) 

Blocks for the first Latin square design is shown as; 

Column blocks (b)  Row blocks 
4321

4

2

1

3

,

2

1

3

4

,

1

3

4

2

,

3

4

2

1
BBBB









































































𝐵1 :[ 1234] 𝐵2 :[ 2431] 𝐵3 :[ 4312] 𝐵4 :[ 3124] 
Multiplying the vertical column of L1 by α to get the 2nd Latin 

Square  

𝐿2 =

[
 
 
 
 
 
× 0 1 𝛼 𝛼2 𝛼3

0 0 0 0 0 0
𝛼 0 𝛼 𝛼2 𝛼3 𝛼4

𝛼2 0 𝛼2 𝛼3 𝛼4 𝛼5

𝛼3 0 𝛼3 𝛼4 𝛼5 𝛼6

𝛼4 0 𝛼4 𝛼5 𝛼6 𝛼7]
 
 
 
 
 



(

 
 

× 1 2 4 3
2 2 4 3 1
4 4 3 1 2
3 3 1 2 4
1 1 2 4 3)

 
 

 

at 𝛼 = 2is a Latin square 

The blocks for the second Latin square design is shown as;  

Column blocks (b) Row blocks 
4321

3

4

2

1

,

4

2

1

3

,

2

1

3

4

,

1

3

4

2
BBBB









































































𝐵1 :[ 2431] 𝐵2 :[ 4312] 𝐵3 :[ 3124] 𝐵4 :[ 1243] 
Multiplying the vertical column of L1 by α2 to get the 3rd Latin 

Square  

𝐿3 =

[
 
 
 
 
 
× 0 1 𝛼 𝛼2 𝛼3

0 0 0 0 0 0
𝛼2 0 𝛼2 𝛼3 𝛼4 𝛼5

𝛼3 0 𝛼3 𝛼4 𝛼5 𝛼6

𝛼4 0 𝛼4 𝛼5 𝛼6 𝛼7

𝛼5 0 𝛼5 𝛼6 𝛼7 𝛼8]
 
 
 
 
 



(

 
 

× 1 2 4 3
4 4 3 1 2
3 3 1 2 4
1 1 2 4 3
2 2 4 3 1)

 
 

 at 𝛼 =

2is a Latin square 

Blocks for the third Latin square design is shown as;  

Column blocks (b) Row blocks 
4321

1

3

4

2

,

3

4

2

1

,

4

2

1

3

,

2

1

3

4
BBBB









































































𝐵1 :[ 4312] 𝐵2 :[ 3124] 𝐵3 :[ 1243] 𝐵4 :[ 2431] 
Multiplying the vertical column of L1 by α3 to get the 4th Latin 

Square.  

𝐿4 =

[
 
 
 
 
 
× 0 1 𝛼 𝛼2 𝛼3

0 0 0 0 0 0
𝛼3 0 𝛼3 𝛼4 𝛼5 𝛼6

𝛼4 0 𝛼4 𝛼5 𝛼6 𝛼7

𝛼5 0 𝛼5 𝛼6 𝛼7 𝛼8

𝛼6 0 𝛼6 𝛼7 𝛼8 𝛼9]
 
 
 
 
 



(

 
 

× 1 2 4 3
3 3 1 2 4
1 1 2 4 3
2 2 4 3 1
4 4 3 1 2)

 
 

 at 𝛼 =

2is a Latin square 

The blocks for the fourth Latin square design is shown as;  

Column blocks (b) Row blocks 
4321

2

1

3

4

,

1

3

4

2

,

3

4

2

1

,

4

2

1

3
BBBB









































































𝐵1 :[ 3124] 𝐵2 :[ 1243] 𝐵3 :[ 2431] 𝐵4 :[ 4312] 
Superimpose the four Latin squares to obtain mutually 

orthogonal Latin square as;  

𝐿𝑝 =

(

 
 

× 1111 2222 4444 3333
1243 1243 2431 3124 4312
2431 2431 4312 1243 3124
4312 4312 3124 2431 1243
3124 3124 1243 4312 2431)
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Neglecting the first row and column of𝐿𝑝gives the MOLS design 

with the defining parameters: v = 5, b = 16, : r = 16, k = 4, and λ 

= 12.  

Now using the parameters v, b, k, r and λ to check the three 

conditions of a BIBD. That is; 

(1) bk = vr ⇒ (16 × 4) ≠ 5(16) (Not satisfy) 

(2) 𝜆(𝑣 − 1) = 𝑟(𝑘 − 1) ⇒ 12(4) = 16(3) (Satisfy) 

(3) 𝑏 ≥ 𝑣 ⇒ 16 > 5 (Satisfy) 

Since the one of the parametric relations of BIBD is not satisfied, 

then the design is a not a BIBD under multiplicative binary 

operation. 

 

CONCLUSION 

The results presented demonstrate the feasibility of constructing 

BIBDs using GF (p) with prime factors 3 and 5. On the contrary, 

construction of BIBDs under multiplicative binary operation does 

not give a precise result because some of the parametric relations 

of BIBD are not satisfied. Hence, balanced incomplete block 

design cannot be constructed under multiplicative binary 

operation using Galois field approach and recommended that 

additive binary operation should be considered to construct 

balanced incomplete block design. 
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