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ABSTRACT

The paper focused on the construction of Balanced Incomplete Block Designs (BIBDs) using Galois Fields
with prime factorsp = 3,5, based on multiplicative binary operations. For each prime, multiplication tables
modulopwere created and used to construct designs from irreducible functions overG(p). InG(2),G(3)
andG (5), the minimal functions were computed, and the corresponding elements of each field were generated
and employed to construct Mutually Orthogonal Latin Squares (MOLS), and consequently, BIBDs. The
resulting constructions were verified against the BIBD parameters(v, b, v, k, 1), and the findings revealed that
the prime factors3, and5do not satisfy the necessary conditions for BIBD existence. Therefore, BIBDs cannot
be constructed using multiplicative binary operations with any of these prime factors.
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INTRODUCTION

Balanced Incomplete Block Designs (BIBDs) constitute a
fundamental class of combinatorial designs that balance
experimental comparisons while reducing the number of
experimental units required for treatments that cannot all be
observed together in a single block (Bose, 1939). A BIBD
with parameters(v, b,r,k,1) consists ofv treatments
arranged inbblocks of sizek, each treatment occurring
inrblocks, and every unordered pair of distinct treatments
occurring together in exactlyAblocks; these parameters satisfy
the standard relationsvr = bkand A(v—1) =r(k—1)
(Cochran & Cox, 1957). The balanced concurrence property
of BIBDs ensures that pairwise comparisons of treatments
enjoy uniform precision, making BIBDs attractive in
agricultural trials, industrial experiments, sensory studies, and
survey sampling where full randomization or complete-block
layouts are impractical (Federer, 1955; John & Williams,
1995). The algebraic and combinatorial theory underpinning
BIBDs has matured over decades, linking design existence
and construction to finite geometries, difference sets, group
actions, and algebraic structures such as finite fields (Galois
fields) and cyclotomic classes (Beth et al., 1999; Dinitz &
Stinson, 2024; Colbourn & Dinitz, 2007; Street, 1987).
Classical constructions — including those derived from
symmetric designs, affine and projective planes, and
difference sets provide families of BIBDs with rich structural
properties and wide applicability (Hedayat et al., 1999;
Shrikhande & Raghavarao, 1994; Bailey, 2008).

More recent work emphasizes algorithmic generation,
classification up to isomorphism, and the exploitation of
algebraic automorphisms to obtain large classes of
nonisomorphic designs with prescribed parameters (lonin &
Shrikhande, 2006; Street, 2010; Kang & Jungnickel, 2021).
Constructed balanced incomplete block design using Galois
field (Janardan, 2018). Examined algebraic structures in
BIBDs and exploration of optimal BIBDs through various
constructions (Akra et al., 2023, 2024). Further, Akra et al.,
(2025) investigated isomorphisms and automorphisms of
BIBDs, highlighting their structural symmetries. Constructed
balanced incomplete block design (BIBD) using finite

Euclidean and projective geometry approach (Akra et al.,
2021, 2025).

From a statistical perspective, BIBDs vyield desirable
inferential properties: when the design is connected, treatment
contrasts are estimable and the information matrix has a
simple form determined entirely by the parameter(v,r, 1),
enabling closed-form expressions for variances of elementary
contrasts and facilitating comparisons of efficiency against
completely randomized and randomized block designs
(Pearce, 1984). Advances in computational linear algebra and
simulation methods have also allowed practitioners to assess
robustness to missing observations, heteroscedastic errors,
and departures from model assumptions, thereby expanding
the practical utility of BIBDs in modern applications
(Kageyama & Kubota, 2016; Mukerjee & Das, 2017; Li &
Wang, 2023).

Despite their theoretical strengths, several practical and
theoretical challenges remain. Existence results for BIBDs are
incomplete for many parameter sets, and constructions that
rely on algebraic operations (e.g., multiplicative subgroups of
finite fields) require careful verification of balance and
intersection properties for each parameter regime (Araujo &
Pardo, 2022; lsaac et al., 2025). Moreover, modern
applications increasingly demand flexible designs that
tolerate missing plots and adapt to complex nuisance
structures; new procedure for constructing N-point D-optimal
symmetric and asymmetric designs; bridging combinatorial
existence with statistical robustness and algorithmic
scalability continues to be an active area of research (Onyeka
& Akra, 2024; Isaac et al., 2025). In this work we investigate
the viability of a multiplication-based construction in Galois
fields for producing BIBDs, and we assess the resulting
designs’ combinatorial properties and statistical performance.

MATERIALS AND METHODS

Galois Field Design

An algebraic structure satisfying all the axioms of the field but
with F being a finite set of elements is known as a Galois field
and it is denoted byGF(q) or GF(p"), where p is a prime
number and n is a positive. These fields have well-defined
operations of addition and multiplication with properties that
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are useful for constructing designs. The concept of a
polynomial in ordinary algebra can be extended to any field.
If a;, a,..... , by, by, by, .... are elements of any field F, then
the elements of the form;

f(x) = ag + ajx; + azx®+..... (1)
Constitute the sets of polynomials belonging to what may be
called the commutative ringF[x], under addition and
multiplication defined in an ordinary way.(aq + ayx; +
ayx%+...) + (bg + byxy + bx?+...) =2 (ag + by) +

(ay + by)x+.. and(by + byxq + byx2+...) = aghy +
(ar1bg + aghy)x+...+(ag + a;x; + azx?+...) (2)

This field exist for every finite number of elements which is
the power of a prime. It is clear that every number of elements
contained by a Galois field (a field with a finite number of
elements) must be of the formp™, where p is a prime integer
and n any positive integer. Thus every element of GF (p™)
can be expressed in the standard form;

fx) = ag+ ayx; + apx®+.....4a,_x" 1 (3)

Where ay, a4, a,. .. are integers ranging from 0 top — 1.

Definition: Irreducible Polynomial

In the field of rational polynomialsQ[x] (i.e. polynomialsf (x)
with rational coefficients), f(x) is said to be irreducible if
there do not exist two none constant polynomialsg(x)
andi(x) in x with rational coefficients such that;

f(x) =g()h(x). 4

Definition: Primitive Root

INGF (p™), a nonzero element is said to be primitive if the
order ofxisp — 1.

The powers of a primitive element generate all the nonzero
elements ofGF(p™),xis the primitive root ofGF(p™) if
xsatisfies the equation;

"1+ (p-1)=0 (5)

Definition: Minimum function

If the functionf (x) can be factorized with the help of GF (p™)
then the functionf(x) is called the minimum function
of GF (p™). The functionp(x) is said to be a minimum
function for generating the elements of GF (p™), the non-zero
elements may be represented either as polynomials degree at
most(m — 1) as we know the power of primitive root x such
thatx?"~1 4+ (p — 1) = 0. To obtain the minimum function
we dividex?™ 1 + (p — 1) by the least common multiple of
all factors liesx? + 1, where d is a divisor ofp™ — 1. The
order of the equation will bey, (p™ — 1), where (y;,) denotes
the number of positive integers less than k and relatively
prime to it. In this equation, by replacing each coefficient by
its least non-zero residue to modulusp, we get the cyclotomic
polynomial of ordery, (p™ — 1).

Definition: Latin square and Orthogonal and Mutual
Orthogonal Latin Square

Latin square is an n x n array filled with n different symbols,
each occurring exactly once in each row and exactly once in
each column. Note that a Latin Square is an incomplete
design, which means that it does not include observations for
all possible combinations of i, j and k. Once we know the row
and column of the design, then the treatment is specified.
When two Latin squares of same order are superimposed on
one another, in the resultant array if every ordered pair of
symbols occurs exactly once, then the two Latin squares are
said to be orthogonal.

Muffat et al.,
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Balanced Incomplete Block Design

The construction of balanced incomplete block design
depends on the total arrangement of the treatments into
blocks. Balanced incomplete block design (BIBD) are
satisfied by the following relations. The relations (i) — (iii) are
some necessary but not sufficient conditions for the existence
of BIBDs.

The parametersv, b, e k,randA of a BIBD on X =
{x;}t_, satisfies the following conditions:

(i) bek=vr (6)
i)y Aw-1)=rk-1) )
(iiiy bzv (C)]

Construction of Galois Field

The element of Galois field GF (p™) is defined as;

GF(™) =(012,....p—-DU@p+1Lp+2,....p+p—
DU @Lp2+1,p2+2,...,p2+p—-DU(P™p™ 1+
L,p™14+2,...,p™m+p-1) 9)

The order of the field is given by m € Z*while m € Z* is
called the characteristics of the field.

The function p(*) is said to be a minimum function for
generating the elements of GF (p ™. The non-zero elements
may be represented either as polynomials degree at most
(m—1) as we know the power of primitive root x such that
xP™1 4+ (p—1) = 0. To obtain a cyclotomic equation we divide
«PML(p—1) by the least common multiple of all factors lies x4
+1, where d is a divisor of pm-1. If the cyclotomic equation is
factorized, minimum function(s) is or are obtained which is
also the factor(s) or the reducible and the irreducible
polynomial of a lower degree

Let p(*) be an irreducible factor of this polynomial, then p(*)
is @ minimum function which is in general not unique.
Construction of Galois field of p™elements fromptorder
fieldGF (p). Thept"elements ofGF(p) are 0, 1, ... , (p — 1)
and a new symbol.

Construct BIBD using Galois field

Construct BIBD using Galois field of the form GF (q)
involved the following steps:

(i) Chose a prime factor(s) and check whether the prime
factors satisfy the axioms of a field.

(ii) Construct Galois field, by obtaining cyclotomic equation
and primitive root,

(iii) Factorize the cyclotomic equation to obtain a minimum
function which is the factor(s) or polynomial of a lower
degree

(iv) Use the minimum function and the elements of the Galois
field GF (p) to obtain the multiplicative binary operation

(v) Substitute the primitive roots to obtain a Latin square.
(vi) Superimpose the different Latin squares to obtain mutual
orthogonal Latin square and then have a set of design that will
form a BIBD.

(vii) After the construction of BIBD, use the parameters v, b,
k, r and A of a BIBD to check if it satisfies the following
conditions, then draw a generalized conclusion to further
ascertain the result obtained.

RESULTS AND DISCUSSION

Construction of BIBD GF (3) Using Multiplicative
Operation

The elements of Galois field GF (3) are 0, 1 andawith
minimum function2x + 1

Then GF (3) is used to obtain the following Latin squares as

follows:
< 0 1 «a ~ O 1 e
L _|o oo o o o o o
1711 0 1 « 1 o 1 =2
a 0 o &’|z|2 o 2 1lgtg=2
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X 1 2
implies |1 1 2|Latin square
2 2 1

Blocks for the first Latin square design is given as;

Column blocks Row blocks
B1 B2

B]{i] B1:[12] B2:[21]
Multiplying the vertical column of L1 by a to get the 2nd Latin
Square

X

01 a x 0 1 «
0 0 0 O 0O 0 0O O
L= 2
a 0 a «a 1 0 2 1
@ 0 a® P52 0 1 2]g
x 1 2
a = 2implies|1 2 1|Latin square
2

1 2
Blocks for the second Latin square design is given as;

Column blocks Row blocks
B2

B1
211
i)
=Multiplying the vertical column of L1 by o? to get the 3rd
Latin Square

B1:[21]B2:[12]

[x01a
10000

01 «a

X
L3:0 00

0
0 lto12 x 1 2
@0 s 2021t g =2 implies [1 1 Z]Latin
2 21
square

Blocks for the third Latin square design is given as;

Column blocks Row blocks
B1 B2
17 12 _
[2],[1] B1:[12]
B2:[21]
Multiplying the vertical column of L1 by o to get the 4th Latin
Square
x 01 af x01a
000 0] 0000
M0 o o 1021 x 1 2
@t 0t @l 201 2at g =2 implies [1 2 1]Latin
2 1 2
square

Blocks for the fourth Latin square design is given as;
Column blocks Row blocks

B1 B2
21 11
i3]
Superimpose the four Latin squares to obtain mutually
orthogonal Latin square (MOLS) design, thus;

B1:[21] B2:[12]

X 1 2
L,= [1 1212 2121]
2 2121 1212
Neglecting the first row and column ofL, the MOLS with the
defining parameters:r=8,v=3b=4,k=4,and A= 12
Now using the parameters v, b, k, r and A to check the three
conditions of a BIBD. That is;
(1) bk = vr = (4 x 4) # 3(8) (Not satisfy)
2)A(v —1) =r(k — 1) = 12(2) = 8(3) (Satisfy)
(3) b = v = 2 < 3 (Not satisfy)
Since the two parametric relations of BIBD are not satisfied, then
the design is a not a BIBD under multiplicative binary operation.

Construction of BIBD GF (5) Using Multiplicative
Operation

The elements of Galois field GF (5) are 0, 1, o, a® and o®with
minimum function2x + 1

Muffat et al.,
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Then GF (5) is used to obtain the following Latin squares as

follows:
x 0 1 a a® «a
[0 o0 o o of [*1 5 4 g
1 0 1 a a* o 11 4
L= e 0 a o & a4:> 2 2 4 3 1|ata=
> 0 a? o o o \4 4312
la3 0 a® a* af an 3 3124

2is a Latin square (first)
Blocks for the first Latin square design is shown as;

Column blocks (b) Row blocks

?l B22 23 B34

2((4]]3] |1

4f13/'l1|'|2

3Jl1]l2] [4]B1:[1234] B2:[2431] B3:[4312] B4:[3124]

Multiplying the vertical column of L1 by a to get the 2nd Latin
Square

[x 0 1 «a a? a3] 1 2 4
00 0 0 0 0 > 7 4 i
a 0 a o o ot 3
L, = =14 4 3 1 2
27la?2 0 a? a® at a°
a3 0 a® a* a° af \3 312 4/
la4 0 a* a5 «af a7J 11243

at a = 2is a Latin square
The blocks for the second Latin square design is shown as;
Column blocks (b) Row blocks

1 B2 B3 B4

4

3
N

2 B1:[2431] B2:[4312] B3:[3124] B4:[1243]
Multiplying the vertical column of L1 by o? to get the 3rd Latin
Square

1
2
4
3

B
2
4
3 )

3
1
2
4

1

N

3

X 0 1 a a° «a
000 0 0 0 h 1 ; i 3
_la? 0 a? a® ot o°|= _
L=|% o % % %o 331 2 4|lata=
a* 0 a* a® a® o’ 11243
a> 0 a® a® o’ af 22431

2is a Latin square
Blocks for the third Latin square design is shown as;
Column blocks (b) Row blocks

B2 B3 B4
1] |2

2| |4
‘4]'|3
113 11]B1:[4312] B2:[3124] B3:[ 1243] B4:[ 2431]
Multiplying the vertical column of L1 by o to get the 4th Latin

oW

Bl
4
3
1

N

2

IS

Square.
(X 0 1 a a* af
X 1 2 4
0O 0 0 0O 0 O 3 3 1 2 i
3 0 a3 a‘l— a5 a6
L,=1% =112 4 3|ata=
at 0 a* a® a® a’
5 5 6 7 s 2 2 4 3 1
a 0 > a® a «a 4 4 3 1 2
la® 0 a® a’ af o

2is a Latin square
The blocks for the fourth Latin square design is shown as;
Column blocks (b) Row blocks

B1 B2 B3 B4
371 2 4
12| |4 3
20 4'|3]" |1
4]13] |2 2

B1:[3124] B2:[1243] B3:[2431] B4:[4312]
Superimpose the four Latin squares to obtain mutually
orthogonal Latin square as;

3333

4312w

X 1111 2222
1243
L, =1 2431 3124

1243 2431
\4312 1243/
3124 2431

4444
3124
1243
2431
4312

2431 4312
4312 3124
3124 1243
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Neglecting the first row and column ofL,gives the MOLS design
with the defining parameters: v=5,b=16,:r=16,k=4,and A
=12.

Now using the parameters v, b, k, r and A to check the three
conditions of a BIBD. That is;

(1) bk = vr = (16 x 4) # 5(16) (Not satisfy)

) A(v — 1) =r(k — 1) = 12(4) = 16(3) (Satisfy)

(3) b = v = 16 > 5 (Satisfy)

Since the one of the parametric relations of BIBD is not satisfied,
then the design is a not a BIBD under multiplicative binary
operation.

CONCLUSION

The results presented demonstrate the feasibility of constructing
BIBDs using GF (p) with prime factors 3 and 5. On the contrary,
construction of BIBDs under multiplicative binary operation does
not give a precise result because some of the parametric relations
of BIBD are not satisfied. Hence, balanced incomplete block
design cannot be constructed under multiplicative binary
operation using Galois field approach and recommended that
additive binary operation should be considered to construct
balanced incomplete block design.
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