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ABSTRACT

We investigate the scale parameter of the Weibull power function distribution (WPFD) via both Bayesian and
traditional statistical methodologies. Diverse estimations for the scale parameter were derived from the
Bayesian framework, employing three distinct loss functions. The findings revealed that quadratic loss
functions, utilising Jeffrey's and Gamma priors, consistently yielded better results than precautionary and
squared error loss functions, irrespective of sample size. As the sample size increased, the estimation errors
diminished, and the calculated values converged towards the true scale parameter. In conclusion, the Bayesian
estimates for the scale parameter, particularly those utilising Jeffrey's and Gamma priors with a quadratic loss
function, demonstrated superior performance compared to other estimation techniques.

Keywords: Weibull exponential distribution, Maximum likelihood estimation, Bayesian estimation, Gamma

prior, Jeffrey prior

INTRODUCTION

Within the realm of probability and statistics, the Weibull
power function distribution (WPFD) represents an advanced
form of the exponential distribution. The necessity for
extending the exponential distribution arises primarily from
its inherent characteristic of a constant failure rate, which
limits its applicability in modelling certain real-world
phenomena. The WPFD offers enhanced flexibility and is
thus more suitable for describing a wider array of practical
situations. Tahir et al. (2016) conducted an in-depth
examination of the WPFD, exploring its properties and
potential applications. From a Bayesian perspective, the
estimation process necessitates the choice of a prior
distribution for the parameters under consideration.
Conversely, classical statistical methods do not require any
prior information about these parameters. There is no
universally accepted method within Bayesian statistics to
definitively determine which prior is superior. The choice of
prior often reflects the analyst's preference. However, if
existing in sequence concerning the parameter(s) is available,
utilising an informative prior is generally recommended; or
else, a non-informative prior may be considered. This
research aims to investigate the application of Gamma and
Jeffrey's priors for parameter estimation in this circumstance.
The ongoing efforts to develop novel distributions capable of
modelling dynamic data evolution are critically important.
Consequently, numerous distributions have emerged,
including the Weibull power function distribution (Tahir et
al., 2016), Type I half Logistic Topp-Leone exponential
distribution (Adepoju et al., 2023), and others such as the
Type I half Logistic Topp-Leone Inverse Lomax model
(Adepoju et al., 2024a) and Cosine Marshall Olkin Weibull
distribution (Adepoju ef al., 2024b). The classical approach to
parameter estimation, unlike its Bayesian counterpart, does
not rely on pre-existing information about the parameter. This
is evident in the works of ZeinEldin et al. (2019), Yilmaz et
al. (2021), and others. In contrast, the Bayesian methodology
mandates a suitable selection of prior information for the
parameters. Parameter estimation for the exponential
distribution and its variations has been extensively explored.

Oguntunde et al. (2015) estimated Weibull-exponential
model parameters using Maximum Likelihood. Aliyu and
Yahaya (2016) investigated the scale parameter of the
Generalised Rayleigh distribution with non-informative
priors under various loss functions. leren and Oguntunde
(2018) estimated the scale parameter of the Weibull
exponential distribution using Jeffrey and uniform priors.
Danrimi, along with Abubakar (2023), proposed a Bayesian
method for the two-parameter Weibull distribution, finding
Bayesian estimates superior to Maximum Likelihood. Liu et
al. (2021) compared classical and Bayesian methods for
power function distribution, concluding that Bayesian
estimates were more efficient. Adepoju et al. (2021a, 2021b)
also favoured Bayesian methods, particularly with quadratic
loss functions. Monte Carlo simulations by Eraikhuemen et
al. (2020a, 2020b), leren et al. (2020), Preda et al. (2010), and
Dey (2010) similarly supported Bayesian approaches over
Maximum Likelihood Estimates (MLEs). Some other
distributions were developed and found to be powerful,
making them a more useful candidate in various fields such as
medical, engineering, survival analysis, insurance, hydrology,
economics, and so on. Such a model can be found in Sadiq et
al (2022), Sadiq et al (2024), Sadiq et al (2023a), Kajuru et al
(2023), Sadiq et al (2023b), Mohammed et al. (2025), Sadiq
et al (2023c), Obafemi et al (2024), Habu et al (2024),
Semary et al (2025), Sadiq et al. (2025a) and Abd Elgawad et
al. (2025), Sadiq et al. (2025b), Mohammed et al. (2025) to
mention but few.

Although the Weibull Power Function Distribution (WPFD)
has been recognised for its flexibility in modelling reliability
and lifetime data, existing research has largely concentrated
on its structural properties, general estimation strategies, and
simultaneous estimation of multiple parameters. However,
there is a noticeable lack of studies that specifically examine
and compare classical and Bayesian estimation techniques for
the scale parameter of the WPFD. While Bayesian methods
have been successfully applied to related Weibull-type
distributions, the role of different prior distributions and loss
functions in improving the estimation accuracy of the WPFD
scale parameter has not been systematically investigated. In
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particular, empirical evidence comparing the performance of
Jeffreys and Gamma priors with classical maximum
likelihood estimation, especially under small and moderate
sample sizes, is currently absent from the literature. This gap
calls attention to the need for a focused study on scale-
parameter estimation within the WPFD framework.

The primary aim of this study is to conduct a comparative
evaluation of classical and Bayesian estimation methods for
the scale parameter of the Weibull Power Function
Distribution. Specifically, the study investigates how Jeffreys
and Gamma priors perform under three different loss
functions within the Bayesian framework. Additionally, the
study seeks to assess and compare the efficiency, bias, and
overall accuracy of these estimators through an extensive
simulation analysis across varying sample sizes.

MATERIALS AND METHODS

The Weibull-Power function distribution's probability density
function (pdf) and cumulative distribution function (cdf) are
given by formulas (1) and (2), as established by Tahir et al.
(2016). The parameters o and B be identified as scale
parameters of the WPFD.

B
aBcPpiPE-1 —al 2
fwerp(K) = =55y e [z55] ()
]
Fyprp(k) =1 —e "lcP-kP 2

Estimation Method
We detail the estimation of the Weibull-power function
distribution's scale parameter via Maximum Likelihood and
Bayesian approaches.

Maximum Likelihood Estimation
For a sample from population K with a specified PDF, the
chance function H(K|C, D, B, A) quantifies the combined
density of its random variables. Equation (3) provides this
function for the WPFD.
H(K|C,D,B,A)
B

3

)e el

The chance function for A is given by;
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Where 7 = (8 B)k;"**(af — k") i a constant
independent of the scale parameterA.

The log-likelihood function,p = log H (K|A), is therefore
given as:

n kP
p=nlogA—AY", [m]
Differentiating p partially with respect toA, and solving for 4,
yields the MLE for the scale parameter, as shown in equation

“)

~ n kP B\t
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In deriving the likelihood function and the closed-form
maximum likelihood estimator (MLE) for the scale parameter
A, we explicitly assume that the shape parameters «, f and B
are known. This assumption is necessary because the closed-
form expression for the MLE of A (Equation 4) is valid only
under known nuisance parameters. When « is unknown, the
likelihood no longer separates cleanly with respect to 4, and
a closed-form estimator cannot be obtained; numerical
optimisation would be required instead. Therefore, the
classical estimator presented in this study is derived under the
condition that a is known.

B
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“For the purpose of deriving a closed-form MLE, we assume
that the parameter « is known. Under this assumption, the
log-likelihood simplifies accordingly and leads to the analytic
estimator presented in Equation (4).”

Bayesian Estimation Method

Posterior Distributions

In statistical inference, the likelihood function is defined as
the joint probability mass otherwise density function of the
observed data, where the parameters are treated as variables
and the data as fixed. For independent observationsk =
(kq, ks, ..., k3), the likelihood function can be expressed as:
H(k|C,D,B,A) = P(ky,ky,....,kn|C,D,B,A) =

i=1

I1 P(k|C,D,B,A)

Bayes' Theorem is employed to derive the posterior
modelP(A|k) , which quantifies the updated probability
model of the parameter A given the observed data.

A)L(k|A
P(Alk) = HEEED )

Here, g(k) is defined as the marginal distribution of K.

g(k) = [ p(DH(k|A)

Here, p(A)denotes the prior model, and H (k|B)represents the
likelihood function.

Posterior Distribution of the Scale Parameter under the
Assumption of Jeffrey’s Prior

The non-informative Jeffrey's prior designed for the scale
parameter A of the WPFD is given by:

p(A)ocA%;o<A<oo (©6)
Utilising Jeffrey's prior, the posterior distribution of the scale

parameter Afor a given dataset is defined as:
p(A)H(Alk)

P = 7 D raas ™

Now, let

K = [ H(k|A)P(4)dA ®)

Substituting for P(A) and H (k|A); we have:

K — nj Arzfl e—A;{#} da (9)
0

Through integration by substitution in equation (9), we
obtain:

Letu = AZ}Ll[

u

B
L L
i=1|¢D_1D

kP

B
CD—kD] >A=

du

D B
a[e]
Upon substituting AanddA into Equation (9) and performing
subsequent simplification, we obtain:

n—1

di =

T u Y du
K_n'([ n kD B e n kD B
o] | Yot

K=n ! - .Tu"’le’“du

n kD B
He' e

Also recall that fooo w le=wdt = I'(a)and
Jo wee™dt=[" watileWdt =T(a+1)
Hence;

(10)

that

nrn)

i ——T (11)
o5 |
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By substituting M,P(A4), and H(k|A)into equation (7) and
performing the necessary simplifications, the posterior
distribution under Jeffrey's prior is derived as:

i{cpkl)kn T}n A" ‘AZLDkaDT
L (n)

Posterior Distribution of the Scale Parameter under the
Assumption of Gamma Prior

As a conjugate prior for the scale parameter Aof the Weibull-
Power function distribution (WPFD), the gamma prior is
distinct as:

p(4) = mAb le=at;q b A >0 (13)

Under a gamma prior, the posterior distribution of the scale

parameter Afor a given dataset is defined as:
p(A)L(Alk)

(12)

p(A|k)l

PAIK) = = raiaa (14)
Now, let
M; = fo p(A)H(A|k)dA (15)
Substituting for p(A) and H(A|k); we have:
n [ k2 1P
e el

-A(wet ] )
i=1|cD_;D
M; = F(b)f Antb-le =l Jaa  (16)

Through integration by substitution in equation (16), we

obtain:
D

Letu = A<a+§]?=1 [Dk—kD]B) SA=r——
(e (a+2l 1[(:;—14)] )

u

du kP 18
aa=atZia [CD—RD]
dA = du

D
a+¥i, CDk kD]
Upon substituting Aand dAinto Equation (16) and performing

subsequent simplification, we obtain:
n+b-1

du

(erxtal2a] )

n+b-1 e “du

_ nab u
M3 S r® fo <a+ n [—;D D]B>
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b
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b
My = — I a7

B
F(b)<a+21 1[CDkaD] )
By substitutingM5,p(A4), and H(A|k) into Equation (14) and
performing the necessary simplifications, the posterior
distribution under a gamma prior is consequent as:

B
kD

-4 ‘1+Z?=1[ﬁ]
nabAn+b—1e ( ok

3 =

— I
p(4lk) = nabr(ath)
D B n+b
r)| a+z 1|cDz kD]
B
xD
n+b-1 n [P 1° " _A<a+2?=1 CD_kD] )
A <a+2i=1[m ) e
p(Alk) =

r(a+b)

(18)

Bayesian Estimation under Jeffrey’s Prior Using Three
Loss Functions

Estimation of the WPFD's scale parameter is performed under
three specified loss functions, employing the posterior
distribution derived via Jeffrey's prior.
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Using Squared Error Loss Function (SELF)

Employing the Squared Error Loss Function (SELF.) and
Jeffrey’s prior, the derivation of the Bayes estimator yields:
Asgrry = E(A]K)

E(Alk) = [ Ap(Alk) dA

For Jeffrey’s prior, it is noted that:

i1 -
r(n)
Upon substituting P(A|k)into Equation (19), we obtain:

n kD B
;{CD_kD} fare Sl aa
(20

Applying the method of integration by substitution to

(19)

B

P(Alk)=

E(Alk)=

Equation (20) and performing subsequent algebraic
simplification yields:
]]
D D .
E(A‘k): - C _k J‘un+]—le—udu
) r'(n) g

n kD B -
Aspur = E(AK) = 1|22, [2] | @1
Under Quadratic Loss Function (QLF.)
For Bayesian estimation of the scale parameter, we adopt the
normalised quadratic loss
(L(8,8) = (6 — 6)?/6?%). This loss penalises estimation
error in relative rather than absolute terms, which is
appropriate for positive scale parameters where multiplicative
precision is more meaningful. Normalised or relative
quadratic loss has been used in Bayesian decision-theoretic
analyses (Zellner, 1986; Varian, 1975; Alduais, 2021; Ishaq
et al., 2021) and provides inference that is invariant under
rescaling of the parameter.
The Bayes estimator is derived using the Quadratic Loss
Function (QLFu) and Jeffrey’s prior, resulting in:
E(a7)k) _ J, A7P(4lk)dA
E(a7?|k) ~ [, A72P(4lKk)dA
E(A™'|k) = [, A"*P(A|k)dA
For Jeffrey’s prior, it is noted that:

i=1
T(n)
Upon substituting P(A|k)into Equation (22), we obtain:

E(A"|k)=L" ok

AgLru =

(22)

P(A]k)= [

o

SR T L
(23)

Applying integration by substitution to Equation (23) and
subsequently simplifying the expression yields:

[zl = kD]B]

B
I):|

=] aa

E(A k) = =y (24)
Similarly;
E(A721k) = [ A7*P(Alk)dA (25)

For Jeffrey’s prior, it is noted that:
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S N
P(Alk)=
(Alk) T
Upon substituting P(A|k)into Equation (25), we obtain:
~CP —kD} °
E(A—2|]£): ! jAn3 —AZ|:
L) 5
(26)

By applying the method of integration by substitution to
Equation (26) and simplifying the result, we obtain:

_Ao} dA

o |
i=1|gDiD
-2 R
E(A7%|k) = T (27)
Note that
A _ E(a7K)
QLFu — E(A_ZIE)
This indicates that
b 181
[Zz 1 CD kD ] [ ?:1[anfku] ]
Ao = T e
(n—-2)
AQLFu = (28)

B
hoid L
i=1{cD_D

Using Precautionary Loss Function (PLF,)
The Bayes estimator, derived via the Precautionary Loss
Function (PLFu) and Jeffrey’s prior, is given by:

Appry = {E(A%)}: = {E(A%|K)}2 = E(A|K)
E(A%|x) = [ A*p(Alk)dA
For Jeffrey’s prior, it is noted that:

N w1 ' it [ K T
St e

T(n)
Upon substituting P(A|k) into Equation (29), we obtain:
n kD B
E(A2|k)— ;|:CD_kD:| J‘A,H] ’AZ{ :‘dA

B T(n) 2
(30)

By applying integration by substitution to Equation (30) and
simplifying the result, we arrive at:

29

P(A|k):{

E(A k)= Tu"”-‘ e “du
0

r (n)

B
E(42]k) = n(n + 1) [2 =] ] (31)
p B17!
Aprpy = [n(n + 1))z [Z?zl Cok_kn] ] (32)

Bayesian Estimation under Gamma Prior Using Three
Loss Functions

The scale parameter of the WPFDs is estimated via three
distinct loss functions, leveraging the posterior distribution
derived from a Gamma prior.

Using Squared Error Loss Function (SELFy)
Employing the Squared Error Loss Function (SELFu) and a
Gamma prior, the derivation of the Bayes estimator yields:

Dangana et al.,
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AspLry = EEOA”_C)
E(Alk) = [ Ap(Alk) dA
For the gamma prior, it is noted that:

b A( wxn [ K2 ]B>
B\"*P -Al atXi=1| 5D
A”+b—1<a+21 1[CDkaD] ) e HeP-kD
p(Alk) = i)
Upon substituting P(A|k)into Equation (33), we obtain:

. kD B n+b
S
i=1 CP—k” TAIHb e—A{aJril:c’fifk”T JdA
r (n + b) 0 :

(34)
Integrating Equation (34) by substitution and simplifying

gives
B -1
n kD
a+2{0 }
|\ =l C _kD K n+b+1-1 —y
Iu e “du

F(n+b) o

(33)

E(A|k)i

E(AIK)=

Asgir = E(AK) = (n +b) [a + 2 [chDkD]B]_
(35)

Under Quadratic Loss Function (QLF,)
The Bayes estimator, derived using a Gamma prior and a
Quadratic Loss Function (QLFu), is given by:
A B _ A e(amaa
QLFU = p(a~2lx) ~ [ A~2P(4lk)dA
E(47K) = [ AT P(4lk)dA
As a reminder, when considering a Gamma prior
D B
B\ tb —A<a+Zl )
A”*b_1<a+21 1[C1::(Dkn] ) e 1[CD kD]
p(Alk) = v
By substituting P(A|k)into Equation (36) and subsequently
simplifying, we obtain:

(36)

B
£[z5m]
E(A7x) = % 37
Similarly;
E(A72|k) = [, A72P(Alk)dA (38)

As a reminder, when considering a Gamma prior
D B
B\ tb —A<a+Zl )
A”*b_1<a+zrz1[c;_[)kn] ) e 1[CD kD]
p(Alk) = v
By substituting P(A|k)into Equation (38) and subsequently
simplifying, we obtain:

H IAM o3

(39)
Through integration by substitution of Equation (39) and
subsequent simpliﬁcation we obtain:

ZL 1 D D] ]
2 [ C -k
E(A |k) (n+b-1)(n+b-2)
As a reminder

E(471K)

E(A™2|k)

This implies that

2
n K 17 n K2 18
a+Xisi| oD a+3ita| oD

(n+b-1) (n+b-1)(n+b-2)

(40)

AQLFu =

AgLru =
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b-2
Agpy = —22272 (41)

n [k
a+2i=1[—cu_ku

Using Precautionary Loss Function (PLF,)

We obtain the Bayes estimator by employing a Precautionary
Loss Function (PLF.) and assuming a Gamma prior, as
follows:

1
Appy = {E(AD)}2 = \/E(AZU_C)
E(4%|k) = [7 A%p(Alk)dA
As a reminder, when considering a Gamma prior

L 1B
ool

(42)

cD_iD e

D
An+b—1<a+z1iq=1[ K

p(Alk) = s
Upon substituting P(A|k)into Equation (42) and simplifying,
we find:

B
:| :1 ]EAn*thefA[aJrlz’jiC;kaTJdA
0

(43)
By performing integration by substitution in Equation (43)

and simplifying the expression, we obtain:
2

n |: kD B |
~| cP —kD} .
lr(n+b) J'un+h+27l e—udu

0

E(A? k)l -

a—+

E(A’|k)=

Dangana et al.,

FJS

W 1Pl
Ir'(n+b+2) a+2}‘=1[w] ]

r(n+b)

E(A%k) =

Apppy = {E(A|@)}% = {(n +b)(n+b+1) [a +

R

i=1 1 o
Apr =[(m+Db)(n+b+ 1] [a + 2 [m] ]

RESULTS AND DISCUSSION

Simulation Results

We conducted a Monte Carlo simulation study to evaluate the
performance of classical and Bayesian estimators for the scale
parameter of the Weibull Power Function Distribution
(WPFD) under various priors and loss functions. Each
simulation scenario was replicated 5,000 times to ensure
stable and reliable estimates of the average value and Mean
Squared Error (MSE) for each estimator. The results were
computed by averaging the outcomes across all replications,
allowing for an accurate comparison of estimator bias,
variance, and overall efficiency. The sample sizes considered
were (n = 25, 100, 300, 500), reflecting small to moderately
large datasets commonly encountered in practice.

“All reported estimates and MSEs in Tables 1, 2 and 3 are
based on 5,000 Monte Carlo replications to ensure numerical
stability and reliable assessment of estimator performance.”

Table 1: Simulation Results for Estimation of the Scale Parameter using Various Priors and Loss Functions with A =

0.5,B=2.5,=0.5D=0.5a=1.0and b =1

Jeffrey’s Prior Gamma Prior
n Measures MLE SELFu QLFu PLFu SELFu QLFu PLFu
25 Estimate 0.4433 0.4434 0.4771 0.4699 0.439 0.4789 0.4471
MSE 0.0747 0.0714 0.0697 0.076 0.0705 0.069 0.0727
100  Estimate 0.4452 0.4453 0.489 0.479 0.4454 0.495 0.4499
MSE 0.0718 0.0708 0.0614 0.0719 0.0704 0.0687 0.0712
300  Estimate 0.4707 0.4763 0.4957 0.482 0.4445 0.4979 0.4548
MSE 0.0715 0.0707 0.0609 0.071 0.07 0.0679 0.0707
500  Estimate 0.486 0.4833 0.4977 0.4894 0.4443 0.4982 0.481
MSE 0.0711 0.0705 0.0544 0.0709 0.0684 0.0666 0.0707

Table 1 presents the average estimates and Mean Squared
Errors (MSEs) for the scale parameter of the WPFD under
classical MLE and Bayesian estimation using Jeffreys and
Gamma priors across different loss functions and sample
sizes. Overall, the results show that all estimators improve as
the sample size increases, with decreasing MSE values
indicating enhanced estimation accuracy and stability.

For small samples (e.g., n = 25), all methods tend to slightly
underestimate the true scale parameter ( A = 0.5 ), although
Bayesian estimators under the Quadratic Loss Function
(QLF) and Precautionary Loss Function (PLF) generally
perform better than MLE in terms of lower MSE. The QLF in
particular yields consistently lower MSEs for both Jeffreys
and Gamma priors, demonstrating its robustness even at small
sample sizes.

As the sample size increases to n = 100 and beyond,
Bayesian estimators, especially those associated with Gamma
and Jeffreys priors under the QLF, continue to show improved
performance. They produce estimates that converge more
closely to the true parameter value, while also achieving the
smallest MSEs compared to MLE and other Bayesian loss

functions. Across all sample sizes, the Bayesian QLF
estimator with the Gamma prior achieves the lowest or near-
lowest MSE, confirming its superior accuracy and efficiency.
For larger samples n = 300 and n = 500, the estimates from
all methods become more stable, with values approaching the
true parameter A. However, the QLF-based Bayesian
estimators maintain their advantage, consistently producing
the minimum MSE, confirming their asymptotic superiority.
The PLF and SELF estimators also exhibit improved
precision with increasing n, but their performance remains
slightly less efficient than QLF-based estimators.

The results in Table 1 demonstrate that Bayesian estimation,
particularly with Gamma and Jeffreys priors under the
Quadratic Loss Function, provides the most accurate and
reliable estimates for the scale parameter of the WPFD across
different sample sizes. The MLE method remains competitive
but is consistently outperformed by Bayesian QLF estimators
in terms of MSE reduction and convergence to the true
parameter.

FUDMA Journal of Sciences (FJS) Vol. 9 No. 12, December (Special Issue), 2025, pp 492 — 499

496



COMPARATIVE BAYESIAN AND CLASSIC...

Dangana et al.,

FJS

Table 2: Simulation Results for Estimation of the Scale Parameter using Various Priors and Loss Functions with A =

0.5,B=0.5,=2.5,D=0.5a=1.0andb=1.0

Jeffrey’s Prior Gamma Prior
n Measures MLE SELFu QLFu PLFu SELFu QLFu PLFu
25 Estimate 0.4431 0.4436 0.4774 0.4699 0.4392 0.479 0.4472
MSE 0.0746 0.0713 0.0691 0.076 0.0704 0.069 0.0726
100 Estimate 0.4455 0.4456 0.4892 0.4796 0.4456 0.4954 0.4499
MSE 0.0717 0.0707 0.0613 0.0719 0.0703 0.0687 0.0712
300  Estimate 0.4706 0.4766 0.4959 0.4825 0.4445 0.4979 0.4549
MSE 0.0715 0.0706 0.0608 0.071 0.0701 0.0678 0.0706
500  Estimate 0.4862 0.4836 0.4979 0.4896 0.4445 0.4984 0.4811
MSE 0.071 0.0704 0.0542 0.0708 0.0684 0.0665 0.0705

Table 2 presents the average estimates and Mean Squared
Errors (MSEs) for the scale parameter of the WPFD under
classical Maximum Likelihood Estimation (MLE) and
Bayesian estimation with Jeffreys and Gamma priors across
three different loss functions, for varying sample sizes.

The results indicate a pattern similar to Table 1. For small
sample sizes n =25, all estimators tend to slightly
underestimate the true scale parameter A = 0.5. Among
Bayesian approaches, the Quadratic Loss Function (QLF)
consistently provides estimates closer to the true value and
yields lower MSEs compared to the Self (SELFu) and
Precautionary Loss Function (PLFu) estimators. This
demonstrates that QLF is robust even when sample
information is limited.

As the sample size increases to n =100 and n = 300,
Bayesian QLF estimators under both Jeffreys and Gamma
priors continue to outperform other estimators in terms of
accuracy and precision. Estimates converge steadily toward
the true scale parameter, while the MSEs decrease, indicating

improved efficiency. The SELF and PLF estimators also
improve with sample size, but their MSEs remain slightly
higher than those of the QLF-based estimators.

For large samples n = 500, all methods produce stable
estimates approaching the true parameter. However, the QLF-
based Bayesian estimators retain a consistent advantage,
showing the lowest MSEs across all sample sizes. MLE
estimates, while improving with larger samples, are slightly
less precise than the QLF-based Bayesian estimates,
confirming the asymptotic efficiency of Bayesian QLF
estimators under the considered priors.

The results in Table 2 reinforce the superiority of Bayesian
estimation with QLF, particularly using Jeffreys and Gamma
priors, for estimating the scale parameter of the WPFD. The
consistent reduction in MSEs with increasing sample size
highlights both the efficiency and reliability of these
estimators.

Table 3: Simulation Results for Estimation of the Scale Parameter using Various Priors and Loss Functions with A =

2.5,B=0.5,=0.5D=1.0,a=1.0andb=1.0

Jeffrey’s Prior Gamma Prior
" Measures MLE SELFu QLFu PLFu SELFu QLFu PLFu
25 Estimate 2.4378 2.4128 2.4583 2.447 2.4422 1.8815 2.4061
MSE 0.5705 0.5695 0.5591 0.5613 0.5695 0.5599 0.5613
100 Estimate 2.441 2.4411 2.4687 24615 2.463 2.0465 2.4545
MSE 0.5607 0.5601 0.5449 0.5513 0.5595 0.5521 0.5553
300  Estimate 2.4501 24519 2.4793 2.4834 2.4728 2.0862 24717
MSE 0.5543 0.5495 0.5291 0.5434 0.5395 0.5351 0.5463
500  Estimate 2.461 2.4758 2.4997 2.4899 2.4796 2.0931 2.4898
MSE 0.5398 0.5195 0.5049 0.5133 0.5199 0.5153 0.5271

Table 3 shows the average estimates and Mean Squared
Errors (MSEs) for the scale parameter of the WPFD under
different estimation methods and sample sizes, for a scenario
where the true scale parameter is (A = 2.5).

The results indicate that all estimators improve as the sample
size increases. For small samples n = 25, estimates from
MLE and Bayesian approaches are close to the true value,
though some underestimation occurs for certain priors,
particularly the Gamma prior under the QLF, which produces
slightly lower estimates. MSE values are relatively high at
small sample sizes but decrease steadily as (n) increases,
reflecting enhanced precision with larger samples.

As the sample size grows (n = 100,300,500), both MLE and
Bayesian estimators converge toward the true scale
parameter. The Bayesian estimators using Jeffreys and
Gamma priors under QLF consistently yield lower MSEs
compared to SELF and PLF estimators, demonstrating better
accuracy and reliability. MLE remains competitive, especially

for larger samples, but is generally slightly less efficient than
the Bayesian QLF estimators.

Table 3 confirms the trend observed in previous scenarios:
Bayesian estimation with Jeffreys and Gamma priors under
the Quadratic Loss Function provides the most accurate and
stable estimates for the scale parameter, and estimation
precision improves with increasing sample size.

CONCLUSION

This research focused on estimating the scale parameter of the
Weibull-Power Function Distribution (WPFD) via means of
both Maximum Likelihood Estimation and Bayesian
inference. Various loss functions were investigated, and the
Quadratic Loss Function (QLFu) consistently demonstrated
superior performance compared to the Squared Error Loss
Function (SELF,) along with the Precautionary Loss Function
(PLFu). This enhanced performance was particularly evident
when the QLFu was combined with Gamma and Jeffrey prior
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distributions. Consequently, the combination of the Gamma
prior and the QLF. was identified as the optimal estimator for
the WPFD's scale parameter.
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