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ABSTRACT 

We investigate the scale parameter of the Weibull power function distribution (WPFD) via both Bayesian and 

traditional statistical methodologies. Diverse estimations for the scale parameter were derived from the 

Bayesian framework, employing three distinct loss functions. The findings revealed that quadratic loss 

functions, utilising Jeffrey's and Gamma priors, consistently yielded better results than precautionary and 

squared error loss functions, irrespective of sample size. As the sample size increased, the estimation errors 

diminished, and the calculated values converged towards the true scale parameter. In conclusion, the Bayesian 

estimates for the scale parameter, particularly those utilising Jeffrey's and Gamma priors with a quadratic loss 

function, demonstrated superior performance compared to other estimation techniques. 

 

Keywords: Weibull exponential distribution, Maximum likelihood estimation, Bayesian estimation, Gamma 

prior, Jeffrey prior 

 

INTRODUCTION 

Within the realm of probability and statistics, the Weibull 

power function distribution (WPFD) represents an advanced 

form of the exponential distribution. The necessity for 

extending the exponential distribution arises primarily from 

its inherent characteristic of a constant failure rate, which 

limits its applicability in modelling certain real-world 

phenomena. The WPFD offers enhanced flexibility and is 

thus more suitable for describing a wider array of practical 

situations. Tahir et al. (2016) conducted an in-depth 

examination of the WPFD, exploring its properties and 

potential applications. From a Bayesian perspective, the 

estimation process necessitates the choice of a prior 

distribution for the parameters under consideration. 

Conversely, classical statistical methods do not require any 

prior information about these parameters. There is no 

universally accepted method within Bayesian statistics to 

definitively determine which prior is superior. The choice of 

prior often reflects the analyst's preference. However, if 

existing in sequence concerning the parameter(s) is available, 

utilising an informative prior is generally recommended; or 

else, a non-informative prior may be considered. This 

research aims to investigate the application of Gamma and 

Jeffrey's priors for parameter estimation in this circumstance. 

The ongoing efforts to develop novel distributions capable of 

modelling dynamic data evolution are critically important. 

Consequently, numerous distributions have emerged, 

including the Weibull power function distribution (Tahir et 

al., 2016), Type I half Logistic Topp-Leone exponential 

distribution (Adepoju et al., 2023), and others such as the 

Type I half Logistic Topp-Leone Inverse Lomax model 

(Adepoju et al., 2024a) and Cosine Marshall Olkin Weibull 

distribution (Adepoju et al., 2024b). The classical approach to 

parameter estimation, unlike its Bayesian counterpart, does 

not rely on pre-existing information about the parameter. This 

is evident in the works of ZeinEldin et al. (2019), Yilmaz et 

al. (2021), and others. In contrast, the Bayesian methodology 

mandates a suitable selection of prior information for the 

parameters. Parameter estimation for the exponential 

distribution and its variations has been extensively explored. 

Oguntunde et al. (2015) estimated Weibull-exponential 

model parameters using Maximum Likelihood. Aliyu and 

Yahaya (2016) investigated the scale parameter of the 

Generalised Rayleigh distribution with non-informative 

priors under various loss functions. Ieren and Oguntunde 

(2018) estimated the scale parameter of the Weibull 

exponential distribution using Jeffrey and uniform priors. 

Danrimi, along with Abubakar (2023), proposed a Bayesian 

method for the two-parameter Weibull distribution, finding 

Bayesian estimates superior to Maximum Likelihood. Liu et 

al. (2021) compared classical and Bayesian methods for 

power function distribution, concluding that Bayesian 

estimates were more efficient. Adepoju et al. (2021a, 2021b) 

also favoured Bayesian methods, particularly with quadratic 

loss functions. Monte Carlo simulations by Eraikhuemen et 

al. (2020a, 2020b), Ieren et al. (2020), Preda et al. (2010), and 

Dey (2010) similarly supported Bayesian approaches over 

Maximum Likelihood Estimates (MLEs). Some other 

distributions were developed and found to be powerful, 

making them a more useful candidate in various fields such as 

medical, engineering, survival analysis, insurance, hydrology, 

economics, and so on. Such a model can be found in Sadiq et 

al (2022), Sadiq et al (2024), Sadiq et al (2023a), Kajuru et al 

(2023), Sadiq et al (2023b), Mohammed et al. (2025), Sadiq 

et al (2023c),  Obafemi et al (2024), Habu et al (2024), 

Semary et al (2025), Sadiq et al. (2025a) and Abd Elgawad et 

al. (2025), Sadiq et al. (2025b), Mohammed et al. (2025) to 

mention but few. 

Although the Weibull Power Function Distribution (WPFD) 

has been recognised for its flexibility in modelling reliability 

and lifetime data, existing research has largely concentrated 

on its structural properties, general estimation strategies, and 

simultaneous estimation of multiple parameters. However, 

there is a noticeable lack of studies that specifically examine 

and compare classical and Bayesian estimation techniques for 

the scale parameter of the WPFD. While Bayesian methods 

have been successfully applied to related Weibull-type 

distributions, the role of different prior distributions and loss 

functions in improving the estimation accuracy of the WPFD 

scale parameter has not been systematically investigated. In 
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particular, empirical evidence comparing the performance of 

Jeffreys and Gamma priors with classical maximum 

likelihood estimation, especially under small and moderate 

sample sizes, is currently absent from the literature. This gap 

calls attention to the need for a focused study on scale-

parameter estimation within the WPFD framework. 

The primary aim of this study is to conduct a comparative 

evaluation of classical and Bayesian estimation methods for 

the scale parameter of the Weibull Power Function 

Distribution. Specifically, the study investigates how Jeffreys 

and Gamma priors perform under three different loss 

functions within the Bayesian framework. Additionally, the 

study seeks to assess and compare the efficiency, bias, and 

overall accuracy of these estimators through an extensive 

simulation analysis across varying sample sizes. 

 

MATERIALS AND METHODS 

The Weibull-Power function distribution's probability density 

function (pdf) and cumulative distribution function (cdf) are 

given by formulas (1) and (2), as established by Tahir et al. 

(2016). The parameters α and β be identified as scale 

parameters of the WPFD.  

𝑓𝑊𝑃𝐹𝐷(𝑘) =
𝛢𝛣𝐶𝐷𝐷𝑘𝐷𝛣−1

(𝐶𝐷−𝑘𝐷)𝛣+1
𝑒
−𝛢[

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

              (1) 

𝐹𝑊𝑃𝐹𝐷(𝑘) = 1 − 𝑒
−𝛢[

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

         (2) 

 

Estimation Method 

We detail the estimation of the Weibull-power function 

distribution's scale parameter via Maximum Likelihood and 

Bayesian approaches. 

 

Maximum Likelihood Estimation 

For a sample from population K with a specified PDF, the 

chance function H(K|C, D, B, A) quantifies the combined 

density of its random variables. Equation (3) provides this 

function for the WPFD. 

𝐻(𝐾|𝐶, 𝐷, 𝛣, 𝛢) ∝

(𝛢𝛣𝐶𝐷𝐷)𝑛∏ (
𝑘𝐷𝛣−1

(𝐶𝐷−𝑘𝐷)𝛣+1
)𝑛

𝑖=1 𝑒
−𝛢[

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

 (3) 

The chance function for 𝛢 is given by; 

𝐻(𝐾|𝛢) = 𝜂𝛢𝑛𝑒
−𝛢∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1

  

Where 𝜂 = (𝜃𝛼𝛽𝛽)𝑘𝑖
𝛽𝜃−1(𝛼𝛽 − 𝑘𝑖

𝛽)
−𝜃−1

 is a constant 

independent of the scale parameter𝛢. 

The log-likelihood function,𝑝 = 𝑙𝑜𝑔𝐻 (𝐾|𝛢), is therefore 

given as: 

𝑝 = 𝑛 𝑙𝑜𝑔 𝛢 − 𝛢∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1   

Differentiating 𝑝 partially with respect to𝛢, and solving for 𝛢̂, 

yields the MLE for the scale parameter, as shown in equation 

(4) 

𝛢̂ = 𝑛 (∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 )

−1

     (4) 

In deriving the likelihood function and the closed-form 

maximum likelihood estimator (MLE) for the scale parameter 

𝐴, we explicitly assume that the shape parameters 𝛼, 𝛽 and 𝐵 

are known. This assumption is necessary because the closed-

form expression for the MLE of 𝐴 (Equation 4) is valid only 

under known nuisance parameters. When 𝛼 is unknown, the 

likelihood no longer separates cleanly with respect to 𝐴, and 

a closed-form estimator cannot be obtained; numerical 

optimisation would be required instead. Therefore, the 

classical estimator presented in this study is derived under the 

condition that 𝛼 is known. 

“For the purpose of deriving a closed-form MLE, we assume 

that the parameter 𝛼 is known. Under this assumption, the 

log-likelihood simplifies accordingly and leads to the analytic 

estimator presented in Equation (4).” 

 

Bayesian Estimation Method 

Posterior Distributions 

In statistical inference, the likelihood function is defined as 

the joint probability mass otherwise density function of the 

observed data, where the parameters are treated as variables 

and the data as fixed. For independent observations𝑘̱ =
(𝑘1, 𝑘2, . . . , 𝑘3), the likelihood function can be expressed as: 

𝐻(𝑘̱|𝐶, 𝐷, 𝛣, 𝛢) = 𝑃(𝑘1, 𝑘2, . . . . , 𝑘𝑛|𝐶, 𝐷, 𝛣, 𝛢) =

𝛱

𝑖=1
𝑛

𝑃(𝑘̱|𝐶, 𝐷, 𝛣, 𝛢)  

Bayes' Theorem is employed to derive the posterior 

model𝑃(𝛢|𝑘̱) , which quantifies the updated probability 

model of the parameter 𝜆 given the observed data.  

𝑃(𝛢|𝑘̱) =
𝑝(𝛢)𝐿(𝑘̱|𝛢)

𝑔(𝑘̱)
   (5) 

Here, g(k) is defined as the marginal distribution of  K.  

𝑔(𝑘) = ∫ 𝑝(𝛢)𝐻(𝑘̱|𝛢)
∞

−∞
  

Here, 𝑝(𝛢)denotes the prior model, and 𝐻(𝑘̱|𝛣)represents the 

likelihood function.  

 

Posterior Distribution of the Scale Parameter under the 

Assumption of Jeffrey’s Prior 

The non-informative Jeffrey's prior designed for the scale 

parameter 𝛢 of the WPFD is given by: 

𝑝(𝛢) ∝
1

𝛢
; 0 < 𝛢 < ∞        (6) 

Utilising Jeffrey's prior, the posterior distribution of the scale 

parameter 𝛢for a given dataset is defined as: 

𝑝(𝛢|𝑘̱) =
𝑝(𝛢)𝐻(𝛢|𝑘̱)

∫ 𝑝(𝛢)𝐻(𝛢|𝑘̱)𝑑𝛢
∞

0

    (7) 

Now, let 

𝐾 = ∫𝐻(𝑘̱|𝛢)𝑃(𝛢)𝑑𝛢     (8) 

Substituting for 𝑃(𝛢) and 𝐻(𝑘̱|𝛢); we have: 

1

1

0

e

n D

D D
i

k
n

C kK d 



=


 

− −  
−  

= 
       (9) 

Through integration by substitution in equation (9), we 

obtain: 

Let 𝑢 = 𝛢∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ⇒ 𝛢 =

𝑢

∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1

 

𝑑𝜆 =
𝑑𝑢

∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1

  

Upon substituting 𝛢and𝑑𝛢 into Equation (9) and performing 

subsequent simplification, we obtain: 
1

0

1 1

e

n

u

D Dn n

D D D D
i i

u du
K

k k

C k C k



−



−

 

= =

 
 
 

=  
    
    − −    


 

 

1

0

1

1
e

n u

n
Dn

D D
i

K u du

k

C k




− −



=

=
  
  

−   





    (10) 

Also recall that ∫
∞

0
𝑤𝑎−1𝑒−𝑤𝑑𝑡 = 𝛤(𝑎)and that 

∫
∞

0
𝑤𝑎𝑒−𝑤𝑑𝑡 = ∫

∞

0
𝑤𝑎+1−1𝑒−𝑤𝑑𝑡 = 𝛤(𝑎 + 1) 

Hence; 

𝑀 =
𝜂𝛤(𝑛)

[∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

𝑛       (11) 
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By substituting M,𝑃(𝛢), and 𝐻(𝑘̱|𝛢)into equation (7) and 

performing the necessary simplifications, the posterior 

distribution under Jeffrey's prior is derived as:                  

( )
( )

1

1

1

e

|

n D

D D
i

n
Dn k

n
C kD D

i

k

C k
P k

n



=


 

− −  
−  

=

     
−    =




 (12) 

Posterior Distribution of the Scale Parameter under the 

Assumption of Gamma Prior 

As a conjugate prior for the scale parameter 𝛢of the Weibull-

Power function distribution (WPFD), the gamma prior is 

distinct as:  

𝑝(𝛢) =
𝑎𝑏

𝛤(𝑏)
𝛢𝑏−1𝑒−𝑎𝛼; 𝑎, 𝑏, 𝛢 > 0     (13) 

Under a gamma prior, the posterior distribution of the scale 

parameter 𝛢for a given dataset is defined as:    

𝑝(𝛢|𝑘̱) =
𝑝(𝛢)𝐿(𝛢|𝑘̱)

∫ 𝑝(𝛢)𝐿(𝛢|𝑘̱)𝑑𝛢
∞

0

       (14) 

Now, let 

𝑀3 = ∫ 𝑝(𝛢)𝐻(𝛢|𝑘̱)𝑑𝛢
∞

0
     (15) 

Substituting for 𝑝(𝛢) and 𝐻(𝛢|𝑘̱); we have: 

𝑀3 = ∫
𝑎𝑏

𝛤(𝑏)
𝛢𝑏−1𝑒−𝑎𝛢 (𝜂𝛢𝑛𝑒

−𝛢∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 )

∞

0
𝑑𝛢  

𝑀3 =
𝜂𝑎𝑏

𝛤(𝑏)
∫ 𝛢𝑛+𝑏−1

∞

0
𝑒
−𝛢(𝑎+∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 )

𝑑𝛢  (16) 

Through integration by substitution in equation (16), we 

obtain: 

Let 𝑢 = 𝛢 (𝑎 + ∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ) ⇒ 𝛢 =

𝑢

(𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 )

 

𝑑𝑢

𝑑𝛢
= 𝑎 + ∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1   

𝑑𝛢 =
𝑑𝑢

𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1

  

Upon substituting 𝛢and 𝑑𝛢into Equation (16) and performing 

subsequent simplification, we obtain: 

𝑀3 =
𝜂𝑎𝑏

𝛤(𝑏)
∫ (

𝑢

(𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 )

)

𝑛+𝑏−1

∞

0
𝑒−𝑢

𝑑𝑢

(𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 )

  

𝑀3 =
𝜂𝑎𝑏

𝛤(𝑏)

1

(𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 )

𝑛+𝑏 ∫ 𝑢𝑛+𝑏−1
∞

0
𝑒−𝑢𝑑𝑢  

𝑀3 =
𝜂𝑎𝑏𝛤(𝑎+𝑏)

𝛤(𝑏)(𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 )

𝑛+𝑏        (17) 

By substituting𝑀3,𝑝(𝛢), and 𝐻(𝛢|𝑘̱) into Equation (14) and 

performing the necessary simplifications, the posterior 

distribution under a gamma prior is consequent as: 

𝑝(𝛢|𝑘̱) =

𝜂𝑎𝑏

𝛤(𝑏)
𝛢𝑛+𝑏−1𝑒

−𝛢(𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]

𝛣
𝑛
𝑖=1 )

𝜂𝑎𝑏𝛤(𝑎+𝑏)

𝛤(𝑏)(𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]

𝛣
𝑛
𝑖=1 )

𝑛+𝑏

  

𝑝(𝛢|𝑘̱) =
𝛢𝑛+𝑏−1(𝑎+∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 )

𝑛+𝑏

𝑒

−𝛢(𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]

𝛣
𝑛
𝑖=1 )

𝛤(𝑎+𝑏)
   

     (18) 

 

Bayesian Estimation under Jeffrey’s Prior Using Three 

Loss Functions 

Estimation of the WPFD's scale parameter is performed under 

three specified loss functions, employing the posterior 

distribution derived via Jeffrey's prior. 

 

Using Squared Error Loss Function (SELFu) 

Employing the Squared Error Loss Function (SELFu) and 

Jeffrey’s prior, the derivation of the Bayes estimator yields:  

𝛢𝑆𝐸𝐿𝐹𝑢 = 𝐸(𝛢|𝑘̱)  

𝐸(𝛢|𝑘̱) = ∫ 𝛢𝑝(𝛢|𝑘̱)
∞

0
𝑑𝛢       (19) 

For Jeffrey’s prior, it is noted that:             

( )
( )

1

1

1

e

|

n D

D D
i

n
Dn k

n
C kD D

i

k

C k
P k

n



=


 

− −  
−  

=

     
−    =




 

Upon substituting 𝑃(𝛢|𝑘̱)into Equation (19), we obtain:    

( )
( ) 1

1

0

| e

n D

D D
i

n
Dn

D D
i k

n
C k

k

C k
E k d

n



=




 =

−  
−  

  
  

−     =  





    

     (20) 

Applying the method of integration by substitution to 

Equation (20) and performing subsequent algebraic 

simplification yields:                 

( )
( )

1

1
1 1

0

| e

Dn

D D
i

n u

k

C k
E k u du

n

−



=

+ − −

  
  

−    =





     

𝛢𝑆𝐸𝐿𝐹 = 𝐸(𝛢|𝑘) = 𝑛 [∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

−1

   (21) 

 

Under Quadratic Loss Function (QLFu) 

For Bayesian estimation of the scale parameter, we adopt the 

normalised quadratic loss 

(𝐿(𝜃, 𝛿) = (𝛿 − 𝜃)2/𝜃2). This loss penalises estimation 

error in relative rather than absolute terms, which is 

appropriate for positive scale parameters where multiplicative 

precision is more meaningful. Normalised or relative 

quadratic loss has been used in Bayesian decision-theoretic 

analyses (Zellner, 1986; Varian, 1975; Alduais, 2021; Ishaq 

et al., 2021) and provides inference that is invariant under 

rescaling of the parameter. 

The Bayes estimator is derived using the Quadratic Loss 

Function (QLFu) and Jeffrey’s prior, resulting in: 

𝛢𝑄𝐿𝐹𝑢 =
𝐸(𝛢−1|𝑘)

𝐸(𝛢−2|𝑘)
=

∫ 𝛢−1𝑃(𝛢|𝑘)𝑑𝛢
∞

0

∫ 𝛢−2𝑃(𝛢|𝑘)𝑑𝛢
∞

0

  

𝐸(𝛢−1|𝑘) = ∫ 𝛢−1𝑃(𝛢|𝑘)𝑑𝛢
∞

0
     (22) 

For Jeffrey’s prior, it is noted that: 

( )
( )
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
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
 

− −  
−  

=

     
−    =




 

Upon substituting 𝑃(𝛢|𝑘̱)into Equation (22), we obtain:        

( )
( ) 1
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1 2
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Dn

D D
i k

n
C k

k

C k
E k d

n



=




 =

− − −  
−  

  
  

−     =  





 

     (23) 

Applying integration by substitution to Equation (23) and 

subsequently simplifying the expression yields: 

𝐸(𝛢−1|𝑘) =
[∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

(𝑛−1)
       (24) 

Similarly; 

𝐸(𝛢−2|𝑘) = ∫ 𝛢−2𝑃(𝛢|𝑘)𝑑𝛢
∞

0
    (25) 

For Jeffrey’s prior, it is noted that:    
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( )
( )
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n
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i

k

C k
P k

n



=


 

− −  
−  

=

     
−    =




 

 Upon substituting 𝑃(𝛢|𝑘̱)into Equation (25), we obtain:                          

( )
( ) 1

1
2 3
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n D

D D
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n
Dn

D D
i k

n
C k

k

C k
E k d

n



=




 =

− − −  
−  

  
  

−     =  





   

     (26) 

By applying the method of integration by substitution to 

Equation (26) and simplifying the result, we obtain: 

𝐸(𝛢−2|𝑘) =
[∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

2

(𝑛−1)(𝑛−2)
     (27) 

Note that 

𝛢𝑄𝐿𝐹𝑢 =
𝐸(𝛢−1|𝑘)

𝐸(𝛢−2|𝑘)
  

This indicates that   

𝛢𝑄𝐿𝐹𝑢 =
[∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

(𝑛−1)
÷

[∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

2

(𝑛−1)(𝑛−2)
  

𝛢𝑄𝐿𝐹𝑢 =
(𝑛−2)

∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1

      (28) 

 

Using Precautionary Loss Function (PLFu) 

The Bayes estimator, derived via the Precautionary Loss 

Function (PLFu) and Jeffrey’s prior, is given by: 

𝛢𝑃𝐿𝐹𝑢 = {𝐸(𝛢2)}
1

2 = {𝐸(𝛢2|𝑘̱)}
1

2 = √𝐸(𝛢2|𝑘̱)  

𝐸(𝛢2|𝑥̱) = ∫ 𝛢2𝑝(𝛢|𝑘̱)𝑑𝛢
∞

0       (29) 

For Jeffrey’s prior, it is noted that:         
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=
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−    =




 

 Upon substituting 𝑃(𝛢|𝑘̱) into Equation (29), we obtain:                                  
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  
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




   

     (30) 

By applying integration by substitution to Equation (30) and 

simplifying the result, we arrive at:                        

( )
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n

−



=

+ − −

  
  

−    =




      

𝐸(𝛢2|𝑘) = 𝑛(𝑛 + 1) [∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

−2

   (31)                                                                                               

𝛢𝑃𝐿𝐹𝑢 = [𝑛(𝑛 + 1)]
1

2 [∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

−1

        (32) 

 

Bayesian Estimation under Gamma Prior Using Three 

Loss Functions 

The scale parameter of the WPFDs is estimated via three 

distinct loss functions, leveraging the posterior distribution 

derived from a Gamma prior. 

 

Using Squared Error Loss Function (SELFu) 

Employing the Squared Error Loss Function (SELFu) and a 

Gamma prior, the derivation of the Bayes estimator yields: 

𝛢𝑆𝐸𝐿𝐹𝑢 = 𝐸(𝛢|𝑘̱)  

𝐸(𝛢|𝑘̱) = ∫ 𝛢𝑝(𝛢|𝑘̱)
∞

0
𝑑𝛢            (33) 

For the gamma prior, it is noted that:       

𝑝(𝛢|𝑘̱) =
𝛢𝑛+𝑏−1(𝑎+∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 )

𝑛+𝑏

𝑒

−𝛢(𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]

𝛣
𝑛
𝑖=1 )

𝛤(𝑛+𝑏)
  

 Upon substituting 𝑃(𝛢|𝑘̱)into Equation (33), we obtain: 
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     (34) 

Integrating Equation (34) by substitution and simplifying 

gives  
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−    =
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


     

𝛢𝑆𝐸𝐿𝐹 = 𝐸(𝛢|𝑘) = (𝑛 + 𝑏) [𝑎 + ∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

−1

  

     (35) 

 

Under Quadratic Loss Function (QLFu) 

The Bayes estimator, derived using a Gamma prior and a 

Quadratic Loss Function (QLFu), is given by: 

𝛢𝑄𝐿𝐹𝑢 =
𝐸(𝛢−1|𝑥)

𝐸(𝛢−2|𝑥)
=

∫ 𝛢−1𝑃(𝛢|𝑘)𝑑𝛢
∞

0

∫ 𝛢−2𝑃(𝛢|𝑘)𝑑𝛢
∞

0

  

𝐸(𝛢−1|𝑘) = ∫ 𝛢−1𝑃(𝛢|𝑘)𝑑𝛢
∞

0
    (36) 

As a reminder, when considering a Gamma prior 

𝑝(𝛢|𝑘̱) =
𝛢𝑛+𝑏−1(𝑎+∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 )

𝑛+𝑏

𝑒

−𝛢(𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]

𝛣
𝑛
𝑖=1 )

𝛤(𝑛+𝑏)
  

 By substituting 𝑃(𝛢|𝑘̱)into Equation (36) and subsequently 

simplifying, we obtain:  

𝐸(𝛢−1|𝑥) =
[∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

(𝑛+𝑏−1)
      (37) 

Similarly; 

𝐸(𝛢−2|𝑘) = ∫ 𝛢−2𝑃(𝛢|𝑘)𝑑𝛢
∞

0
     (38) 

As a reminder, when considering a Gamma prior 

𝑝(𝛢|𝑘̱) =
𝛢𝑛+𝑏−1(𝑎+∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 )

𝑛+𝑏

𝑒

−𝛢(𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]

𝛣
𝑛
𝑖=1 )

𝛤(𝑛+𝑏)
  

By substituting 𝑃(𝛢|𝑘̱)into Equation (38) and subsequently 

simplifying, we obtain:  
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     (39) 

Through integration by substitution of Equation (39) and 

subsequent simplification, we obtain: 

𝐸(𝛢−2|𝑘) =
[𝑎+∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

2

(𝑛+𝑏−1)(𝑛+𝑏−2)
   (40) 

As a reminder 

𝛢𝑄𝐿𝐹𝑢 =
𝐸(𝛢−1|𝑘)

𝐸(𝛢−2|𝑘)
  

This implies that 

𝛢𝑄𝐿𝐹𝑢 =
[𝑎+∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

(𝑛+𝑏−1)
÷

[𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

2

(𝑛+𝑏−1)(𝑛+𝑏−2)
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𝛢𝑄𝐿𝐹𝑢 =
(𝑛+𝑏−2)

𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1

        (41) 

 

Using Precautionary Loss Function (PLFu) 

We obtain the Bayes estimator by employing a Precautionary 

Loss Function (PLFu) and assuming a Gamma prior, as 

follows: 

𝛢𝑃𝐿𝐹𝑢 = {𝐸(𝛢2)}
1

2 = √𝐸(𝛢2|𝑘̱)  

𝐸(𝛢2|𝑘̱) = ∫ 𝛢2𝑝(𝛢|𝑘̱)𝑑𝛢
∞

0          (42) 

As a reminder, when considering a Gamma prior 

𝑝(𝛢|𝑘̱) =
𝛢𝑛+𝑏−1(𝑎+∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 )

𝑛+𝑏

𝑒

−𝛢(𝑎+∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]

𝛣
𝑛
𝑖=1 )

𝛤(𝑛+𝑏)
  

 Upon substituting 𝑃(𝛢|𝑘̱)into Equation (42) and simplifying, 

we find:    
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     (43) 

By performing integration by substitution in Equation (43) 

and simplifying the expression, we obtain: 
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𝐸(𝛢2|𝑘) =
𝛤(𝑛+𝑏+2)[𝑎+∑ [

𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

−2

𝛤(𝑛+𝑏)
  

𝛢𝑃𝐿𝐹𝑢 = {𝐸(𝛢|𝑘)}
1

2 = {(𝑛 + 𝑏)(𝑛 + 𝑏 + 1) [𝑎 +

∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

−2

}

1

2

  

𝛢𝑃𝐿𝐹 = [(𝑛 + 𝑏)(𝑛 + 𝑏 + 1)]
1

2 [𝑎 + ∑ [
𝑘𝐷

𝐶𝐷−𝑘𝐷
]
𝛣

𝑛
𝑖=1 ]

−1

                

 

RESULTS AND DISCUSSION 

Simulation Results 

We conducted a Monte Carlo simulation study to evaluate the 

performance of classical and Bayesian estimators for the scale 

parameter of the Weibull Power Function Distribution 

(WPFD) under various priors and loss functions. Each 

simulation scenario was replicated 5,000 times to ensure 

stable and reliable estimates of the average value and Mean 

Squared Error (MSE) for each estimator. The results were 

computed by averaging the outcomes across all replications, 

allowing for an accurate comparison of estimator bias, 

variance, and overall efficiency. The sample sizes considered 

were (n = 25, 100, 300, 500), reflecting small to moderately 

large datasets commonly encountered in practice. 

“All reported estimates and MSEs in Tables 1, 2 and 3 are 

based on 5,000 Monte Carlo replications to ensure numerical 

stability and reliable assessment of estimator performance.” 

 

Table 1: Simulation Results for Estimation of the Scale Parameter using Various Priors and Loss Functions with 𝜜 =
𝟎. 𝟓,𝜝 = 𝟐. 𝟓, 𝑪 = 𝟎. 𝟓, 𝑫 = 𝟎. 𝟓, 𝒂 = 𝟏. 𝟎and 𝒃 = 𝟏 

n Measures MLE 
Jeffrey’s Prior Gamma Prior 

SELFu QLFu PLFu SELFu QLFu PLFu 

25 Estimate 0.4433 0.4434 0.4771 0.4699 0.439 0.4789 0.4471  
MSE 0.0747 0.0714 0.0697 0.076 0.0705 0.069 0.0727 

100 Estimate 0.4452 0.4453 0.489 0.479 0.4454 0.495 0.4499  
MSE 0.0718 0.0708 0.0614 0.0719 0.0704 0.0687 0.0712 

300 Estimate 0.4707 0.4763 0.4957 0.482 0.4445 0.4979 0.4548  
MSE 0.0715 0.0707 0.0609 0.071 0.07 0.0679 0.0707 

500 Estimate 0.486 0.4833 0.4977 0.4894 0.4443 0.4982 0.481  
MSE 0.0711 0.0705 0.0544 0.0709 0.0684 0.0666 0.0707 

  

Table 1 presents the average estimates and Mean Squared 

Errors (MSEs) for the scale parameter of the WPFD under 

classical MLE and Bayesian estimation using Jeffreys and 

Gamma priors across different loss functions and sample 

sizes. Overall, the results show that all estimators improve as 

the sample size increases, with decreasing MSE values 

indicating enhanced estimation accuracy and stability. 

For small samples (e.g., 𝑛 = 25), all methods tend to slightly 

underestimate the true scale parameter ( A = 0.5 ), although 

Bayesian estimators under the Quadratic Loss Function 

(QLF) and Precautionary Loss Function (PLF) generally 

perform better than MLE in terms of lower MSE. The QLF in 

particular yields consistently lower MSEs for both Jeffreys 

and Gamma priors, demonstrating its robustness even at small 

sample sizes. 

As the sample size increases to 𝑛 = 100 and beyond, 

Bayesian estimators, especially those associated with Gamma 

and Jeffreys priors under the QLF, continue to show improved 

performance. They produce estimates that converge more 

closely to the true parameter value, while also achieving the 

smallest MSEs compared to MLE and other Bayesian loss 

functions. Across all sample sizes, the Bayesian QLF 

estimator with the Gamma prior achieves the lowest or near-

lowest MSE, confirming its superior accuracy and efficiency. 

For larger samples 𝑛 = 300 and 𝑛 = 500, the estimates from 

all methods become more stable, with values approaching the 

true parameter 𝐴. However, the QLF-based Bayesian 

estimators maintain their advantage, consistently producing 

the minimum MSE, confirming their asymptotic superiority. 

The PLF and SELF estimators also exhibit improved 

precision with increasing 𝑛, but their performance remains 

slightly less efficient than QLF-based estimators. 

The results in Table 1 demonstrate that Bayesian estimation, 

particularly with Gamma and Jeffreys priors under the 

Quadratic Loss Function, provides the most accurate and 

reliable estimates for the scale parameter of the WPFD across 

different sample sizes. The MLE method remains competitive 

but is consistently outperformed by Bayesian QLF estimators 

in terms of MSE reduction and convergence to the true 

parameter. 
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Table 2: Simulation Results for Estimation of the Scale Parameter using Various Priors and Loss Functions with 𝜜 =
𝟎. 𝟓,𝜝 = 𝟎. 𝟓, 𝑪 = 𝟐. 𝟓, 𝑫 = 𝟎. 𝟓, 𝒂 = 𝟏. 𝟎 and𝒃 = 𝟏. 𝟎 

n Measures MLE 
Jeffrey’s Prior Gamma Prior 

SELFu QLFu PLFu SELFu QLFu PLFu 

25 Estimate 0.4431 0.4436 0.4774 0.4699 0.4392 0.479 0.4472  
MSE 0.0746 0.0713 0.0691 0.076 0.0704 0.069 0.0726 

100 Estimate 0.4455 0.4456 0.4892 0.4796 0.4456 0.4954 0.4499  
MSE 0.0717 0.0707 0.0613 0.0719 0.0703 0.0687 0.0712 

300 Estimate 0.4706 0.4766 0.4959 0.4825 0.4445 0.4979 0.4549  
MSE 0.0715 0.0706 0.0608 0.071 0.0701 0.0678 0.0706 

500 Estimate 0.4862 0.4836 0.4979 0.4896 0.4445 0.4984 0.4811  
MSE 0.071 0.0704 0.0542 0.0708 0.0684 0.0665 0.0705 

 

Table 2 presents the average estimates and Mean Squared 

Errors (MSEs) for the scale parameter of the WPFD under 

classical Maximum Likelihood Estimation (MLE) and 

Bayesian estimation with Jeffreys and Gamma priors across 

three different loss functions, for varying sample sizes. 

The results indicate a pattern similar to Table 1. For small 

sample sizes 𝑛 = 25, all estimators tend to slightly 

underestimate the true scale parameter 𝛢 = 0.5. Among 

Bayesian approaches, the Quadratic Loss Function (QLF) 

consistently provides estimates closer to the true value and 

yields lower MSEs compared to the Self (SELFu) and 

Precautionary Loss Function (PLFu) estimators. This 

demonstrates that QLF is robust even when sample 

information is limited. 

As the sample size increases to 𝑛 = 100 and 𝑛 = 300, 

Bayesian QLF estimators under both Jeffreys and Gamma 

priors continue to outperform other estimators in terms of 

accuracy and precision. Estimates converge steadily toward 

the true scale parameter, while the MSEs decrease, indicating 

improved efficiency. The SELF and PLF estimators also 

improve with sample size, but their MSEs remain slightly 

higher than those of the QLF-based estimators. 

For large samples 𝑛 = 500, all methods produce stable 

estimates approaching the true parameter. However, the QLF-

based Bayesian estimators retain a consistent advantage, 

showing the lowest MSEs across all sample sizes. MLE 

estimates, while improving with larger samples, are slightly 

less precise than the QLF-based Bayesian estimates, 

confirming the asymptotic efficiency of Bayesian QLF 

estimators under the considered priors. 

The results in Table 2 reinforce the superiority of Bayesian 

estimation with QLF, particularly using Jeffreys and Gamma 

priors, for estimating the scale parameter of the WPFD. The 

consistent reduction in MSEs with increasing sample size 

highlights both the efficiency and reliability of these 

estimators. 

 

Table 3: Simulation Results for Estimation of the Scale Parameter using Various Priors and Loss Functions with 𝜜 =
𝟐. 𝟓,𝜝 = 𝟎. 𝟓, 𝑪 = 𝟎. 𝟓, 𝑫 = 𝟏. 𝟎, 𝒂 = 𝟏. 𝟎 and 𝒃 = 𝟏. 𝟎 

n Measures MLE 
Jeffrey’s Prior Gamma Prior 

SELFu QLFu PLFu SELFu QLFu PLFu 

25 Estimate 2.4378 2.4128 2.4583 2.447 2.4422 1.8815 2.4061  
MSE 0.5705 0.5695 0.5591 0.5613 0.5695 0.5599 0.5613 

100 Estimate 2.441 2.4411 2.4687 2.4615 2.463 2.0465 2.4545  
MSE 0.5607 0.5601 0.5449 0.5513 0.5595 0.5521 0.5553 

300 Estimate 2.4501 2.4519 2.4793 2.4834 2.4728 2.0862 2.4717  
MSE 0.5543 0.5495 0.5291 0.5434 0.5395 0.5351 0.5463 

500 Estimate 2.461 2.4758 2.4997 2.4899 2.4796 2.0931 2.4898  
MSE 0.5398 0.5195 0.5049 0.5133 0.5199 0.5153 0.5271 

 

Table 3 shows the average estimates and Mean Squared 

Errors (MSEs) for the scale parameter of the WPFD under 

different estimation methods and sample sizes, for a scenario 

where the true scale parameter is (𝛢 = 2.5). 

The results indicate that all estimators improve as the sample 

size increases. For small samples 𝑛 = 25, estimates from 

MLE and Bayesian approaches are close to the true value, 

though some underestimation occurs for certain priors, 

particularly the Gamma prior under the QLF, which produces 

slightly lower estimates. MSE values are relatively high at 

small sample sizes but decrease steadily as (n) increases, 

reflecting enhanced precision with larger samples. 

As the sample size grows (𝑛 = 100,300,500), both MLE and 

Bayesian estimators converge toward the true scale 

parameter. The Bayesian estimators using Jeffreys and 

Gamma priors under QLF consistently yield lower MSEs 

compared to SELF and PLF estimators, demonstrating better 

accuracy and reliability. MLE remains competitive, especially 

for larger samples, but is generally slightly less efficient than 

the Bayesian QLF estimators. 

Table 3 confirms the trend observed in previous scenarios: 

Bayesian estimation with Jeffreys and Gamma priors under 

the Quadratic Loss Function provides the most accurate and 

stable estimates for the scale parameter, and estimation 

precision improves with increasing sample size. 

 

CONCLUSION 

This research focused on estimating the scale parameter of the 

Weibull-Power Function Distribution (WPFD) via means of 

both Maximum Likelihood Estimation and Bayesian 

inference. Various loss functions were investigated, and the 

Quadratic Loss Function (QLFu) consistently demonstrated 

superior performance compared to the Squared Error Loss 

Function (SELFu) along with the Precautionary Loss Function 

(PLFu). This enhanced performance was particularly evident 

when the QLFu was combined with Gamma and Jeffrey prior 
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distributions. Consequently, the combination of the Gamma 

prior and the QLFu was identified as the optimal estimator for 

the WPFD's scale parameter. 
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