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ABSTRACT 

The normal, exponential, gamma, Dagum, and Burr distributions are commonly used to model uni-modal 

datasets. While the Burr III distribution is widely applied in reliability and income modeling, it is limited by its 

inherently decreasing hazard rate, inability to analyze complex survival datasets, bathtub shape hazard rates 

and asymmetric datasets, which makes it unsuitable for multimodal observations, hence the need to extend the 

classical Burr III distribution. In response, the study introduced the modified form of Burr III distribution called 

Odd Burr III-Burr III distribution with four parameters. The new distribution has the ability to capture various 

data behaviors, including heavy tails, skewness other shapes that the conventional Burr III distribution can’t 

captured. The probability density function (PDF) and cumulative distribution function (CDF) of the propose 

model were derived and Log-likelihood function were also sorted out, the goodness of fit and information 

criteria were adapted to assess the performance of the proposed model using simulated data and real-life 

applications. 
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INTRODUCTION 

Probability distributions play a vital role in statistical theory 

and applications. They describe the likelihood of different 

outcomes in a random experiment and provide mathematical 

models for real-life phenomena. Continuous probability 

distributions, in particular, are essential in modeling various 

types of lifetime data, reliability systems, and environmental 

measurements (Manu, et al., 2023). In many scientific and 

engineering fields such as hydrology, climatology, and 

survival analysis, the modeling of extreme events or lifetime 

behavior is of great importance. This need has led to the 

development of several flexible families of probability 

distributions capable of capturing skewness, kurtosis, and tail 

behavior in data more accurately (Abdulhameed et al, 2025) 

Burr (1942) introduced a comprehensive system of 

probability distributions designed for modeling cumulative 

frequency data. This system consists of twelve distinct 

cumulative distribution functions, each capable of capturing a 

wide range of distributional shapes. Its appeal lies in the 

combination of mathematical simplicity and flexibility, 

particularly in its extensive coverage of the skewness kurtosis 

space. Numerous classical distributions including the 

Weibull, exponential, logistic, generalized logistic, 

Gompertz, normal, extreme value, and uniform distributions 

emerge as special or limiting cases within the Burr system. 

Among the twelve forms, the Burr type XII (BXII) 

distribution and its inverse, the Burr type III (BIII), have 

attracted substantial interest across fields such as physics, 

actuarial science, reliability analysis, and applied statistics. 

Their versatility has supported diverse applications, 

Nadarajah and Kotz (2007) analyzed fracture toughness and 

fracture stress data using Burr-type models; Gove et al. (2008) 

applied the Burr III distribution in forestry-related studies; 

Mielke (1973) employed it to model precipitation amounts in 

meteorological research; and Shao et al. (2008) proposed and 

implemented an extended Burr III distribution for low-flow 

frequency analysis, with particular emphasis on its behavior 

in the lower tail. The Burr Type III distribution is one of the 

most versatile members of this family, it is a continuous 

distribution defined on the positive real line and is known for 

its heavy-tailed nature and flexible hazard rate. However, 

despite its flexibility, the Burr III model may still be limited 

in describing data sets with more complex skewness or 

kurtosis patterns. To overcome these limitations, statisticians 

have proposed several generalization techniques such as the 

exponentiated, Marshall–Olkin, and odd transformation 

methods. The odd transformation approach is particularly 

powerful because it introduces an additional shape parameter 

that increases the model’s ability to capture different hazard-

rate structures ranging from increasing and decreasing to 

bathtub-shaped patterns. This approach led to the formulation 

of the Odd Burr III distribution, which modifies the 

cumulative distribution function of Burr III through an odd 

transformation of the baseline model. 

Building on this idea, in this study we propose the Odd Burr 

III–Burr III distribution, sometimes denoted as the Odd Burr 

III-G family where the baseline G is again Burr III. This 

model combines the strengths of both the Burr III baseline and 

the odd transformation, producing a new family with 

enhanced flexibility. The additional parameters allow it to 

adapt to various shapes of empirical data, making it suitable 

for modeling lifetime and reliability data where other models 

fail to provide adequate fits. 

Although the Burr III distribution has been extensively used 

in modeling lifetime and reliability data, its flexibility is still 

limited when dealing with data characterized by complex 

hazard rate patterns or heavy tails. Many real-world data sets 

such as those arising from biological survival times, 

mechanical failure times, or economic losses require models 

that can adapt to multiple shapes of hazard functions and 

varying degrees of skewness. 

Existing generalizations of the Burr III distribution, such as 

the exponentiated or Marshall–Olkin extensions, provide 

some improvement but may not be sufficiently versatile for 

all data structures. The Odd Burr III–Burr III distribution 

offers a promising alternative by introducing additional 

parameters that enhance the model’s ability to fit a broader 

range of data types. However, the mathematical properties of 
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this distribution, including its reliability functions, moments, 

and parameter estimation procedures, are not yet fully 

explored or documented. The main aim of this study is to 

introduce the Odd Burr III Burr III Distribution as an 

extension of the classical Burr III distribution, to improve its 

flexibility and applicability in modeling lifetime data.  

However, similar works existed in the literature such as: 

Agboola & Adebiyi (2023), Haq, M. et al. (2019) introduced 

the generalized Odd Burr III (GOBIII) family, which 

incorporates additional shape parameters and thus yields a 

more flexible class capable of capturing more extreme tail 

behavior and varied skewness than the original single-

parameter form. Their work also develops key distributional 

properties, quantile functions, and estimation methods, and 

shows that the GOBIII models provide superior fits to 

multiple datasets when compared with simpler alternatives, 

Jamal et al (2017) introduced the odd transformer applied to 

Burr-III, derived its PDF, CDF and exploring fundamental 

statistical properties of the model, Oluyede, et al (2021) 

introduced the Weibull Odd Burr III-G Family (2021) through 

T-X generator, Maokafi et al (2022) proposed the Topp-

Leone Odd Burr III-G family, which models data on bounded 

supports and captures a variety of complex hazard rates 

shapes including bathtub and increasing/decreasing shapes, 

Oluyed & Chipepa (2025) introduced Power-series Odd Burr 

III (OBIII-GPS) using flexible mixture mixture distribution 

families. The authors concluded that the approach marks a 

modern trend of constructing flexible mixture and power-

series generalizations to capture complex distributional 

features such as over-dispersion and heterogeneity. Similarly, 

On the Generalized Log Burr III Distribution was introduced 

by Bhatti et al, (2019). The authors addresses log-scale 

modelling through log-Burr III variants, providing 

transformation and parameter estimation techniques that 

enhanced Burr III applications in various fields , Noori, et al, 

(2023) presented the Modified Burr III (MBIII) distribution. 

The authors derived key mathematical properties, such as the 

moments, hazard rate function, and survival function and 

carried out parameter estimation using MLE. Other including: 

Behairy et al (2016) showed that using exponentiation in 

models with complex hazard shape and quantile function 

leads to efficient simulation and application outcomes. 

 

The Odd Burr III-Burr III (OBIII-BIII) Distribution 

The probability generator adapted in this research is the Odd Burr III generalized family of distribution, the general form of 

the Odd Burr III-G distribution is constructed by applying a generator function G(.) to the CDF of the Odd Burr III distribution. 

𝐺(𝑥, 𝑐, 𝑘) = (1 +
𝐹(𝑥)−𝑐

1−𝐹(𝑥)
)

−𝑘

 𝑐 > 0, 𝑘 > 0.         (1) 

The corresponding probability density function (PDF) is: 

𝑔(𝑥; 𝑐, 𝑘) = 𝑐𝑘𝑓(𝑥)
(1−𝐹(𝑥))

(𝐹(𝑥))𝑐+1

𝑐−1
(1 + (

𝐹(𝑥)

1−𝐹(𝑥)
)

−𝑐
)

−𝑘−1

 𝑐 > 0, 𝑘 > 0
.
      (2) 

Similarly, the baseline distribution used in this research is the Burr III distribution. The cumulative distribution function (CDF) 

and probability density function (PDF) are defined as: 

𝐹(𝑥, 𝛼, 𝜆) = (1 + 𝑥−𝛼)−𝜆 𝛼 > 0, 𝜆 > 0, 𝑥 > 0.         (3) 

The corresponding PDF is: 

 𝑓(𝑥; 𝛼, 𝜆) = 𝛼𝜆𝑥−𝑐−1(1 + 𝑥−𝛼)−𝜆−1 𝑥 > 0, 𝛼, 𝜆 > 0.         (4) 

The proposed distribution (Odd Burr III Burr III distribution) has its cumulative distribution function (CDF) and probability 

density function (PDF) as: 

𝐺(𝑥) = (1 + (
(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆
)

−𝑐

)
−𝑘

 𝑐, 𝑘, 𝛼, 𝜆 > 0.         (5) 

And 

𝑓(𝑥) =
𝑐𝑘𝜆𝛼𝑥−𝛼−1(1+𝑥−𝛼)−𝜆−1

(1+(1+𝑥−𝛼)−𝜆)
2 (

(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆
)

−𝑐−1

(1 + (
(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆
)

−𝑐

)
−𝑘−1

𝑐, 𝑘, 𝛼, 𝜆 > 0    (6) 

By substituting Eq. (3) in (1), yields (5). Similarly, we obtained Eq. (6) by inputting (3) and (4) in (2). 

 

  
Figure 1: Plots showing the shapes of the CDF and PDF of the Odd Burr III-Burr III model 

 

Theorem (Normalization of PDF) 

To normalize the Odd Burr III Burr III distribution, we need to ensure that the total probability over all possible outcomes 

integrates to 1. That is: 

∫ 𝑓(𝑥)𝑑(𝑥) = 1
∞

−∞
.            (7) 

Proof:  

Substituting Eq. (6) in (7), yields; 
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∫ 𝑓(𝑥)𝑑(𝑥)
∞

−∞
= ∫

𝑐𝑘𝜆𝛼𝑥−𝛼−1(1+𝑥−𝛼)−𝜆−1

(1+(1+𝑥−𝛼)−𝜆)
2 (

(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆
)

−𝑐−1

(1 + (
(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆
)

−𝑐

)
−𝑘−1

∞

−∞
𝑑(𝑥).    (8) 

Let𝑦 = (1 + 𝑥−𝛼)−𝜆0 < 𝑦 < 1, 
𝑑(𝑦)

𝑑(𝑥)
= −𝜆(1 + 𝑥−𝛼)−𝜆−1 − 𝛼𝑥−𝛼−1 

𝑑(𝑥) =
1

𝜆(1+𝑥−𝛼)−𝜆−1𝛼𝑥−𝛼−1=
1

𝜆𝛼𝑥−𝛼−1(1+𝑥−𝛼)−𝜆−1 𝑑(𝑦). 

Limits: 𝑥 → 0, 𝑦 → 1, 𝑥 → ∞, 𝑦 → 0. 
Imputing the following terms in Eq. (8) yields Eq. (9); 

∫ 𝑓(𝑥)𝑑(𝑥)
∞

−∞
= ∫

𝑐𝑘𝜆𝛼𝑥−𝛼−1(𝑦)−1

(1−𝑦)2
(

𝑦

1−𝑦
)

−𝑐−1
(1 + (

𝑦

1−𝑦
)

−𝑐
)

−𝑘−1

×
1

0

1

𝜆𝛼𝑥−𝛼−1(𝑦)−1
𝑑(𝑦).     (9) 

Cancelling out common terms in the left and right hand side of Eq. (9) yield Eq. (10); 

∫ 𝑓(𝑥)𝑑(𝑥)
∞

−∞
= ∫

𝑐𝑘

(1−𝑦)2

1

0
(

𝑦

1−𝑦
)

−𝑐−1
(1 + (

𝑦

1−𝑦
)

−𝑐
)

−𝑘−1

𝑑(𝑦) .       (10)  

Let𝑚 =
𝑦

1−𝑦
, 0<m<1, 

𝑑𝑚

𝑑𝑦
=

1

(1−𝑦)2
, 𝑑𝑦 = (1 − 𝑦)2𝑑𝑚

,
 𝑦 → 0, 𝑚 → 1, 𝑦 → 1, 𝑚 → 0

.
 

By substituting these terms into Eq. (10), we generate Eq. (11): 

∫ 𝑓(𝑥)𝑑(𝑥)
∞

−∞
= ∫

𝑐𝑘

(1−𝑦)2
𝑚−𝑐−1(1 + 𝑚−𝑐)

1

0

−𝑘−1
× (1 − 𝑦)2𝑑𝑚 .      (11) 

Cancelling out common terms in Eq. (11) would yield Eq. (12): 

 ∫ 𝑓(𝑥)𝑑(𝑥)
∞

−∞
= 𝑐𝑘 ∫ 𝑚−𝑐−1(1 + 𝑚−𝑐)−𝑘−11

0
𝑑𝑚 .        (12) 

Let𝑝 = (1 + 𝑚)−𝑐, 0<P<1, 
𝑑𝑝

𝑑𝑚
= −𝑐(𝑚)−𝑐−1,𝑑𝑚 =

1

−𝑐(𝑚)−𝑐−1
𝑑𝑝.

 Limits: 𝑥 → 0, 𝑝 → 1, 𝑥 → 1, 𝑝 → 0. 
By substituting these terms into Eq. (12) we generate Eq. (13): 

∫ 𝑓(𝑥)𝑑(𝑥)
∞

−∞
= 𝑐𝑘 ∫ 𝑚−𝑐−11

0
𝑝−𝑘−1 ×

1

−𝑐(𝑚)−𝑐−1
𝑑𝑝 .        (13) 

Cancelling out common terms in Eq. (13) would yield: 

∫ 𝑓(𝑥)𝑑(𝑥)
∞

−∞
= −𝑘 ∫ 𝑝−𝑘−1𝑑𝑝

1

0
 .         (14) 

Therefore integrating Eq. (14) with the given limits yielded 1. 

 ∫ 𝑓(𝑥)𝑑(𝑥)
∞

−∞
= −𝑘 (

𝑝−𝑘−1+1

−𝑘−1+1
)

0

1

=𝑝−𝑘/0
1= (1)−𝑘 − (0)−𝑘 = 1.

 

Hence;
∫ 𝑓(𝑥)𝑑(𝑥)
∞

−∞
= 1. 

 

Reliability Properties 

The Odd Burr III Burr III distribution offers a robust framework for reliability analysis with properties like survival function, 

hazard function and cumulative hazard function thereby providing valuable insights into the systems performance. 

 

Survival function S(x) 

𝑆(𝑥) = 1 − 𝐹(𝑥)            (15) 

By substituting Eq. (5) into Eq. (15), we generate Eq. (16). 

𝑆(𝑥) = 1 − (1 + (
(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆
)

−𝑐

)
−𝑘

          (16) 

 

Hazard function h(x); 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
            (17) 

By substituting Eq. (6) into Eq. (17) ,we generate Eq. (18). 

ℎ(𝑥) =

𝑐𝑘𝜆𝛼𝑥−𝛼−1(1+𝑥−𝛼)
−𝜆−1

(1+(1+𝑥−𝛼)−𝜆)
2 (

(1+𝑥−𝛼)
−𝜆

1−(1+𝑥−𝛼)−𝜆)

−𝑐−1

(1+(
(1+𝑥−𝛼)

−𝜆

1−(1+𝑥−𝛼)−𝜆)

−𝑐

)

−𝑘−1

1−(1+(
(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆)
−𝑐

)

−𝑘        (18) 

 

 
 

Figure 2: Plots showing the shapes of the Survival and Hazard of the Odd Burr III-Burr III model 
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Cumulative Hazard Function (CHF): 

The cumulative hazard function for the Odd Burr III Burr III distribution is the negative logarithm of the survival function; 

ℎ(𝑥) = − 𝑙𝑛(𝑆(𝑥))           (19) 

Substituting the survival function in Eq. (16), yield: 

ℎ(𝑥) = −𝑙𝑛 (1 − (1 + (
(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆
)

−𝑐

)
−𝑘

)        (20) 

 

Quartile Function 

The quantile function, is the inverse of the cumulative distribution function (CDF) and is often used to find specific percentiles 

of a distribution such as the first, second (median) and third quartiles. It is usually denoted as𝑄(𝑥). For Odd Burr III Burr III 

distribution is defined as follows: 

𝑄(𝑢) = ((1 + (𝑈
1

−𝑘 − 1)

1

𝑐
)

1

𝜆

− 1)

−
1

𝛼

         (21)

 
Proof:  

Let X be a random variable following the Odd Burr III Burr III distribution with CDF given by  

𝑈 = (1 + (
(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆
)

−𝑐

)
−𝑘

 𝑐, 𝑘, 𝛼, 𝜆 > 0  

By raising both sides to the power of 
1

−𝑘
, 

 𝑈
1

−𝑘 = 1 + (
(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆
)

−𝑐

, 𝑈
1

−𝑘 − 1 = (
(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆
)

−𝑐

 

Raise both sides to the power of −
1

𝑐
, (𝑈

1

−𝑘 − 1)
−

1

𝑐
=

(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆 

Let 𝑍 = (1 + 𝑥−𝛼)−𝜆, (𝑈
1

−𝑘 − 1)
−

1

𝑐
=

𝑍

1−𝑍
 

Make Z the subject formula 

𝑍 =
(𝑈

1
−𝑘−1)

−
1
𝑐

1+(𝑈
1

−𝑘−1)
−

1
𝑐

 , (1 + 𝑥−𝛼)−𝜆 =
(𝑈

1
−𝑘−1)

−
1
𝑐

1+(𝑈
1

−𝑘−1)
−

1
𝑐

 

Raise both sides to the power of −
1

𝜆
,

 

1 + 𝑥−𝛼 = (
1+(𝑈

1
−𝑘−1)

−
1
𝑐

(𝑈
1

−𝑘−1)
−

1
𝑐

)

1

𝜆

, 
1+(𝑈

1
−𝑘−1)

−
1
𝑐

(𝑈
1

−𝑘−1)
−

1
𝑐

= 1 + (𝑈
1

−𝑘 − 1)

1

𝑐
 

Raise both sides to the power of −
1

𝛼
 

𝑥 = ((1 + (𝑈
1

−𝑘 − 1)

1

𝑐
)

1

𝜆

− 1)

−
1

𝛼

  

Hence the expression of X in terms of U is: 

(𝑢) = ((1 + (𝑈
1

−𝑘 − 1)

1

𝑐
)

1

𝜆

− 1)

−
1

𝛼

  

Where u ~ uniform distribution (0,1). 

 

Log Likelihood Function 

The likelihood function for the Odd Burr III-Burr III Distribution is expressed as follows: 

 𝐿(𝑐, 𝑘, 𝜆, 𝛼) = ∏
𝑐𝑘𝜆𝛼𝑥−𝛼−1(1+𝑥−𝛼)−𝜆−1

(1+(1+𝑥−𝛼)−𝜆)
2 (

(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆
)

−𝑐−1

(1 + (
(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆
)

−𝑐

)
−𝑘−1

𝑛
𝑖=1     (22) 

And taking the log of both sides of Eq. (22), yields: 

𝐼𝑛𝐿(𝑐, 𝑘, 𝜆, 𝛼) = ∑ [

𝐼𝑛𝐶 + 𝐼𝑛𝐾 + 𝐼𝑛𝜆 + 𝐼𝑛𝛼 + (−𝛼 − 1)𝐼𝑛𝑥𝑖 + (−𝜆 − 1)𝐼𝑛(1 + 𝑥𝑖
−𝛼) − 2𝐼𝑛(1 + (1 + 𝑥−𝛼)−𝜆) +

(𝑐 − 1)𝐼𝑛 (
(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆) + (−𝑘 − 1)𝐼𝑛 (1 + (
(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆)
−𝑐

)
−𝑘−1 ]𝑛

𝑖=1  (23) 

𝐼𝑛𝐿(𝑐, 𝑘, 𝜆, 𝛼) = 𝑛(𝐼𝑛𝐶 + 𝐼𝑛𝐾 + 𝐼𝑛𝜆 + 𝐼𝑛𝛼) − (𝛼 − 1) ∑ 𝐼𝑛𝑥𝑖

𝑛

𝑖=1

− (𝜆 − 1) ∑ 𝐼𝑛(1 + 𝑥𝑖
−𝛼)

𝑛

𝑖=1

− 2 ∑ 𝐼𝑛(1 + (1 + 𝑥−𝛼)−𝜆)

𝑛

𝑖=1

+ 

(𝑐 − 1) ∑ 𝐼𝑛 (
(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆
)𝑛

𝑖=1 − (𝑘 − 1) ∑ 𝐼𝑛 (1 + (
(1+𝑥−𝛼)−𝜆

1−(1+𝑥−𝛼)−𝜆
)

−𝑐

)
−𝑘−1

𝑛
𝑖=1      (24) 
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The Competing Models 

In this section, we would be listing out other competing 

models, their CDFs and PDFs. 

Burr III distribution, introduced by Irving W. Burr (1942), the 

author defined the CDF and PDF as follows: 

𝐹(𝑥) = (1 + 𝑥−𝑐)−𝑘   (25) 

And
 

𝑓(𝑥) = 𝑐𝑘𝑥−𝑐−1(1 + 𝑥𝑐)−𝑘−1,𝑥 > 0, 𝑐, 𝑘 > 0 (26) 

 

Burr XII distribution was introduced by Irving W. Burr 

(1942). The CDF and PDF was given as: 

𝐹(𝑥) = 1 − (1 + 𝑥𝑐)−𝑘   (27) 

𝑓(𝑥) = 𝑐𝑘𝑥𝑐−1(1 + 𝑥𝑐)−(𝑘+1),𝑥 > 0, 𝑐 > 0, 𝑘 > 0 

     (28) 

Burr X distribution, introduced by Irving W. Burr (1942). The 

CDF and PDF was defined as: 

𝐹(𝑥) = 1 − 𝑒
−(

𝑘

𝑥
)

𝑐

,
 x > 0    (29) 

𝑓(𝑥) = 𝑐𝑘𝑐𝑥−𝑐−1 𝑒
−(

𝑘

𝑥
)

𝑐

,
 x > 0,𝑐, 𝑘 > 0 (30) 

MO-BIII distribution: The Marshall-Okin Burr III 

distribution, introduced by Bhatti et al (2019), the authors 

defined the CDF and PDF as follows; 

𝐹(𝑥) =
(1+𝑥−𝑐)−𝑘

1−𝜆+𝜆(1+𝑥−𝑐)−𝑘
   (31) 

𝑓(𝑥) =
(1−𝜆)𝑐𝑘𝑥−𝑐−1(1+𝑥−𝑐)−𝑘−1

(1−𝜆+𝜆(1+𝑥−𝑐)−𝑘)2 𝑥 > 0, 𝑐, 𝑘, 𝜆 > 0 (32) 

 

Model Comparison and Selection Criteria 

In this section, the flexibility of the proposed model would be 

initiated by comparing its performance to other selected 

models using information criteria in R software. The 

information criteria to be used are Akaike Information 

Criteria (AIC), the Bayesian Information Criteria (BIC), the 

Consistent Akaike Information Criteria (CAIC) and Hannan-

Quinn Information Criteria (HQIC). The formulations for the 

information criteria are given below: 

i. Akaike Information Criterion (AIC): AIC = -2ln(L) + 

2k. 

ii. Bayesian Information Criterion (BIC): BIC = -2 ln(L) + 

k ln (n). 

iii. Consistent Akaike Information Criterion (CAIC): 

CAIC = -2 ln(L) + k(ln(n) +1). 

iv. Hannan-Quinn Information Criterion (HQIC): HQIC = 

-2 ln (L) + 2k ln(ln(n)). 

Where n is for sample size, and k is the number of parameters 

to be estimated. 

 

The Survival Datasets 

Data 1: The data set considered in this study consists of 100 

observations of breaking stress of carbon fibers given by [22] 

as presented below; the data was termed to be normally 

distributed and it was originally studied by Khalif et al. 

0.920, 0.9280, 0.9997, 0.9971, 1.0610, 1.117,1.1620, 1.183, 

1.187, 1.1920, 1.196, 1.2130,1.215, 1.2199, 1.220, 1.2240, 

1.225, 1.2280, 1.237, 1.240, 1.244, 1.259, 1.2610, 1.263, 

1.276, 1.310, 1.3210, 1.3290, 1.3310, 1.337, 1.351, 1.359, 

1.388, 1.4080, 1.449, 1.4497, 1.450, 1.459, 1.471, 1.475, 

1.477, 1.480, 1.489, 1.501, 1.507, 1.515, 1.530, 1.5304, 1.533, 

1.544, 1.5443,1.552, 1.556, 1.5620, 1.566, 1.585, 1.586, 

1.599, 1.602, 1.6140, 1.6160, 1.617, 1.6280, 1.6840, 

1.71100,1.7180, 1.733,1.7380, 1.7380, 1.7430,1.7590, 1.777, 

1.7940, 1.799, 1.806, 1.814, 1.8160, 1.8280, 1.830, 1.884, 

1.892, 1.944, 1.972, 1.9840, 1.987, 2.02, 2.0304, 2.0290, 

2.0350, 2.0370, 2.0430, 2.0460, 2.0590, 2.111, 2.165, 2.686, 

2.778, 2.972, 3.504, 3.863, 5.3060. 

Data 2: this dataset represents 101 observations that show the 

failure times (in hours) of Kevlar 49/epoxy strands subjected 

to constant sustained pressure at a 90 percent stress level. The 

data was originally given by (R. Barlow et al 1984) and has 

been analyzed in several studies. The observations are as 

follows: 

0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 

0.07,0.08, 0.09, 0.10, 0.10, 0.11, 0.11,0.12, 0.13, 0.18, 0.19, 

0.20, 0.23, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 

0.52, 0.54, 0.56, 0.60, 0.63,0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 

0.73, 0.79, 0.79, 0.80, 0.80,0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 

1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.15, 1.18, 1.20, 1.29,1.31, 

1,33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.53, 1.54, 1.55, 1.58, 

1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.14, 2.17, 2.33, 3.03, 

3.34, 4.20, 4.69, 7.89. 

For the analysis of data, R-language possessing packages was 

used, The function provides some key comparison criteria. 

Loglikelihood, AIC, BIC, CAIC and HQIC were considered, 

The criteria for good fitted model is that the values of these 

comparison measures should be smaller as compared to 

others. The analysis of this work would be presented using 

table. 

 

RESULTS AND DISCUSSION 

Results 

In this section, the results of the data analysis and the 

performance of models based on the Odd Burr III–Burr III 

distribution are presented. All analyses were carried out using 

the R statistical software in accordance with the methodology 

outlined in Section 2. 

 

Table 1: Simulation Results for MLE Parameter Performance for Odd Burr III–Burr III and Burr III Models 

 

Odd Burr III–Burr 

III Model 

n Parameter True-value Estimates Bias Variance MSE 

100 C 2.5 2.5404 0.404 0.0017 0.0033 

K 2.5 0.3000 -2.2000 0.0005 4.8400 

 𝜆 1.1 3.0000 1.9000 0.0004 3.6100 

𝛼 1.8 1.1575 -0.6425 0.0141 0.4269 

200 C 2.5 2.5358 0.0358 0.0008 0.0021 

K 2.5 0.2900 -2.1000 0.0004 4.8300 

𝜆 1.1 2.9000 1.8000 0.0003 3.6000 

𝛼 1.8 1.1573 -0.6410 0.0079 0.4185 

500 C 2.5 2.5355 0.0355 0.0003 0.0015 

K 2.5 0.2600 -2.0000 0.0001 4.8000 

𝜆 1.1 2.7000 1.6000 0.0002 3.5800 

𝛼 1.8 1.1570 -0.6407 0.0036 0.4155 

1000 

 

C 2.5 2.5350 0.0350 0.0001 0.0010 

K 2.5 0.2200 -1.6000 0.0000 4.7500 
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𝜆 1.1 2.3000 1.1000 0.0001 3.5300 

𝛼 1.8 1.1566 -0.6402 0.0018 0.4150 
        

Burr III Model 100 𝛿 2.5 2.5267 0.0267 0.0371 0.0378 

𝛾 2.5 2.5558 0.0558 0.0631 0.0660 

200 𝛿 2.5 2.5139 0.0139 0.0198 0.0199 

𝛾 2.5 2.5055 0.0055 0.0283 0.0283 

500 𝛿 2.5 2.5023 0.0023 0.0070 0.0070 

𝛾 2.5 2.5038 0.0038 0.0136 0.0136 

1000 

 
𝛿 2.5 2.5017 0.0017 0.0036 0.0036 

𝛾 2.5 2.5083 0.0083 0.0058 0.0058 

 

The simulation results above shows clear differences in the 

estimation efficiency between the two competing 

distributions. Across all sample sizes, the variance of the 

parameter estimates under Odd Burr III-Burr III distribution 

is consistently lower, implying greater stability and less 

fluctuation across repeated samples. As the sample size 

increases, the estimators of the Odd Burr III-Burr III 

distribution converge more rapidly to the true parameter 

values than those of Burr III distribution demonstrating 

superior asymptotic efficiency. Although both distributions 

improve with increasing sample size (as expected from MLE 

theory), Odd Burr III-Burr III distribution maintains its 

advantage at every level of n. This suggests that the Odd Burr 

III-Burr III distribution is better suited for modeling data 

similar to the one used in this study, and it may offer practical 

benefits in real-world applications involving reliability and 

lifetime modeling. 

 

Table 2: Goodness of fit test for Odd Burr III-Burr III Distribution and Competing Models for data-1 

Models LLE AIC BIC CAIC HQIC AD CR-M K-S 

OBIII-BIII 991.27 -1974.54 -1964.241 -1974.105 -1970.376 40.869 8.9269 0.5659 

BIII 51.1297 106.2596 111.409 106.3872 108.3417 0.5359 0.0705 0.0694 

BXII -50.3893 107.6786 115.4027 107.9366 110.8018 0.4759 0.0662 0.0675 

BX -74.0433 152.8066 157.956 152.9832 154.8888 8.9515 1.7554 0.2307 

MO-BIII -50.2832 108.5664 118.8652 109.1011 112.7307 0.4308 0.0613 0.0613 

 

Table 3: Goodness of fit test for Odd Burr III-Burr III Distribution and Competing Models for data-2 

Models LLE AIC BIC CAIC HQIC AD CR-M K-S 

OBIII-BIII 11641.63 -23275.25 -23265.17 -23274.79 -23271.18 12.26603 2.4406 0.2763 

BIII -103.911 211.8222 216.8657 211.957 213.8578 1.7296 0.3403 0.1261 

BXII -104.1619 214.3237 221.8891 214.5964 217.3772 1.3189 0.2263 0.0907 

BX -105.3125 214.625 219.6686 214.7598 216.6606 1.8356 0.3352 0.1129 

MO-BIII -101.2099 210.4199 220.507 210.8796 214.4911 0.6225 0.0896 0.0687 

 

Table 2 & 3, above provides details of the model comparison 

between the proposed model and several existing models for 

both data1 and data 2, it is evident that the proposed model 

has the lowest values for AIC, BIC, CAIC and HQIC and also 

the highest value for the loglikelihood estimation both in 

data1 and in data2. This indicates that the proposed model (the 

Odd Burr III-Burr III Distribution, OBIII-BIII) offers the best 

fit amongst the compared models. The values of the Cramer-

von Mises, Anderson-Darling, and Kolmogorov-Smirnov 

tests are shown in the table, with the p-value for the K-S test 

also included. 

 

Table 4: Parameter Estimates for Odd Burr III-Burr III Distribution and Competing Models for data-1. 

Models C K 𝜶 𝝀 

OBIII-BIII 1.9665 0.0790 10.0000 0.2225 

BIII 6.1437 4.9219 _ _ 

BXII 0.4489 10.0152 _ _ 

BX 0.1078 19.6956 _ _ 

MO-BIII 0.0256 2.8687 4.3221 _ 

 

Table 5: Parameter Estimates for Odd Burr III-Burr III Distribution and Competing Models for Data-2. 

Models C K 𝜶 𝝀 

OBIII-BIII 0.0267 0.3136 9.4839 7.5768 

BIII 0.5709 1.7081 _ _ 

BXII 1.0272 24.8426 _ _ 

BX 1.147085 1.5637 _ _ 

MO-BIII 1.4325 2.4216 0.2879 _ 
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Figure 3: Empirical PDF and CDF Plots for Data 1 

 

  
Figure 4: Empirical PDF and CDF Plots for Data 2 

 

CONCLUSION 

This study proposes a modified form of Burr III distribution, 

termed the Odd Burr III–Burr III (OBIII–BIII) distribution, to 

enhance its flexibility and applicability to real-world datasets. 

The model retains core properties of the Burr III while 

introducing parameter adjustments for greater flexibility. The 

Odd Burr III–Burr III distribution’s probability density 

function, cumulative distribution function, log-likelihood 

expression, and reliability properties are formally derived. In 

a comparative analysis against competing models such as the 

Burr III, Burr XII, Burr X, and Marshall–Olkin-Burr III 

models, the proposed Odd BIII–BIII distribution consistently 

achieved the lowest goodness-of-fit and simulation values, 

demonstrating superior precision and adaptability. These 

findings highlight its potential for survival analysis, 

reliability, and risk modeling. Future work should refine its 

theoretical foundation, improve estimation methods, and test 

it across more diverse, complex datasets to further establish 

its applicability in interdisciplinary statistics. 
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