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ABSTRACT

The normal, exponential, gamma, Dagum, and Burr distributions are commonly used to model uni-modal
datasets. While the Burr III distribution is widely applied in reliability and income modeling, it is limited by its
inherently decreasing hazard rate, inability to analyze complex survival datasets, bathtub shape hazard rates
and asymmetric datasets, which makes it unsuitable for multimodal observations, hence the need to extend the
classical Burr III distribution. In response, the study introduced the modified form of Burr III distribution called
Odd Burr [I-Burr III distribution with four parameters. The new distribution has the ability to capture various
data behaviors, including heavy tails, skewness other shapes that the conventional Burr III distribution can’t
captured. The probability density function (PDF) and cumulative distribution function (CDF) of the propose
model were derived and Log-likelihood function were also sorted out, the goodness of fit and information
criteria were adapted to assess the performance of the proposed model using simulated data and real-life

applications.

Keywords: Odd Burr III family, Burr III distribution, Cumulative distribution function, Probability density

function, Survival data

INTRODUCTION

Probability distributions play a vital role in statistical theory
and applications. They describe the likelihood of different
outcomes in a random experiment and provide mathematical
models for real-life phenomena. Continuous probability
distributions, in particular, are essential in modeling various
types of lifetime data, reliability systems, and environmental
measurements (Manu, et al., 2023). In many scientific and
engineering fields such as hydrology, climatology, and
survival analysis, the modeling of extreme events or lifetime
behavior is of great importance. This need has led to the
development of several flexible families of probability
distributions capable of capturing skewness, kurtosis, and tail
behavior in data more accurately (Abdulhameed et al, 2025)

Burr (1942) introduced a comprehensive system of
probability distributions designed for modeling cumulative
frequency data. This system consists of twelve distinct
cumulative distribution functions, each capable of capturing a
wide range of distributional shapes. Its appeal lies in the
combination of mathematical simplicity and flexibility,
particularly in its extensive coverage of the skewness kurtosis
space. Numerous classical distributions including the
Weibull, exponential, logistic, generalized logistic,
Gompertz, normal, extreme value, and uniform distributions
emerge as special or limiting cases within the Burr system.
Among the twelve forms, the Burr type XII (BXII)
distribution and its inverse, the Burr type III (BIII), have
attracted substantial interest across fields such as physics,
actuarial science, reliability analysis, and applied statistics.
Their versatility has supported diverse applications,
Nadarajah and Kotz (2007) analyzed fracture toughness and
fracture stress data using Burr-type models; Gove et al. (2008)
applied the Burr III distribution in forestry-related studies;
Mielke (1973) employed it to model precipitation amounts in
meteorological research; and Shao et al. (2008) proposed and
implemented an extended Burr III distribution for low-flow
frequency analysis, with particular emphasis on its behavior
in the lower tail. The Burr Type III distribution is one of the
most versatile members of this family, it is a continuous

distribution defined on the positive real line and is known for
its heavy-tailed nature and flexible hazard rate. However,
despite its flexibility, the Burr III model may still be limited
in describing data sets with more complex skewness or
kurtosis patterns. To overcome these limitations, statisticians
have proposed several generalization techniques such as the
exponentiated, Marshall-Olkin, and odd transformation
methods. The odd transformation approach is particularly
powerful because it introduces an additional shape parameter
that increases the model’s ability to capture different hazard-
rate structures ranging from increasing and decreasing to
bathtub-shaped patterns. This approach led to the formulation
of the Odd Burr III distribution, which modifies the
cumulative distribution function of Burr III through an odd
transformation of the baseline model.

Building on this idea, in this study we propose the Odd Burr
III-Burr III distribution, sometimes denoted as the Odd Burr
III-G family where the baseline G is again Burr III. This
model combines the strengths of both the Burr I1I baseline and
the odd transformation, producing a new family with
enhanced flexibility. The additional parameters allow it to
adapt to various shapes of empirical data, making it suitable
for modeling lifetime and reliability data where other models
fail to provide adequate fits.

Although the Burr III distribution has been extensively used
in modeling lifetime and reliability data, its flexibility is still
limited when dealing with data characterized by complex
hazard rate patterns or heavy tails. Many real-world data sets
such as those arising from biological survival times,
mechanical failure times, or economic losses require models
that can adapt to multiple shapes of hazard functions and
varying degrees of skewness.

Existing generalizations of the Burr III distribution, such as
the exponentiated or Marshall-Olkin extensions, provide
some improvement but may not be sufficiently versatile for
all data structures. The Odd Burr III-Burr III distribution
offers a promising alternative by introducing additional
parameters that enhance the model’s ability to fit a broader
range of data types. However, the mathematical properties of
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this distribution, including its reliability functions, moments,
and parameter estimation procedures, are not yet fully
explored or documented. The main aim of this study is to
introduce the Odd Burr III Burr III Distribution as an
extension of the classical Burr III distribution, to improve its
flexibility and applicability in modeling lifetime data.

However, similar works existed in the literature such as:
Agboola & Adebiyi (2023), Haq, M. et al. (2019) introduced
the generalized Odd Burr III (GOBIII) family, which
incorporates additional shape parameters and thus yields a
more flexible class capable of capturing more extreme tail
behavior and varied skewness than the original single-
parameter form. Their work also develops key distributional
properties, quantile functions, and estimation methods, and
shows that the GOBIII models provide superior fits to
multiple datasets when compared with simpler alternatives,
Jamal et al (2017) introduced the odd transformer applied to
Burr-111, derived its PDF, CDF and exploring fundamental
statistical properties of the model, Oluyede, et al (2021)
introduced the Weibull Odd Burr III-G Family (2021) through
T-X generator, Maokafi et a/ (2022) proposed the Topp-

The Odd Burr III-Burr III (OBIII-BIII) Distribution

FJS

Leone Odd Burr I1I-G family, which models data on bounded
supports and captures a variety of complex hazard rates
shapes including bathtub and increasing/decreasing shapes,
Oluyed & Chipepa (2025) introduced Power-series Odd Burr
I (OBIII-GPS) using flexible mixture mixture distribution
families. The authors concluded that the approach marks a
modern trend of constructing flexible mixture and power-
series generalizations to capture complex distributional
features such as over-dispersion and heterogeneity. Similarly,
On the Generalized Log Burr III Distribution was introduced
by Bhatti et al, (2019). The authors addresses log-scale
modelling through log-Burr III variants, providing
transformation and parameter estimation techniques that
enhanced Burr III applications in various fields , Noori, et al,
(2023) presented the Modified Burr III (MBIII) distribution.
The authors derived key mathematical properties, such as the
moments, hazard rate function, and survival function and
carried out parameter estimation using MLE. Other including:
Behairy et al (2016) showed that using exponentiation in
models with complex hazard shape and quantile function
leads to efficient simulation and application outcomes.

The probability generator adapted in this research is the Odd Burr III generalized family of distribution, the general form of
the Odd Burr III-G distribution is constructed by applying a generator function G(.) to the CDF of the Odd Burr III distribution.

—en—k
Glx e k)= (1 +%’m) ¢>0,k>0.
The corresponding probability density function (PDF) is:

A-F@) 1 Feo ¢\ K1
gl = ckf G (1+(5) )

c>0k>0

(M

@

Similarly, the baseline distribution used in this research is the Burr III distribution. The cumulative distribution function (CDF)

and probability density function (PDF) are defined as:
Fx,a,)) =(1+x9*a>01>0x>0.

The corresponding PDF is:

fad) =alx 11 +x~*) 41 x> 0,a,1> 0.

)
4)

The proposed distribution (Odd Burr III Burr III distribution) has its cumulative distribution function (CDF) and probability

density function (PDF) as:

—c\—k
(1+x~®=2 \ 7€
G(x) = (1 + (m) ) ¢, k,a,A>0. %)
And
_ ckAax™ T(1+x~®) A1 /1 (14x"9) 2 -1 (1+x~)~2 —ey Tkt
£ = e (i) () ) ekeazo ©)

By substituting Eq. (3) in (1), yields (5). Similarly, we obtained Eq. (6) by inputting (3) and (4) in (2).
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Figure 1: Plots showing the shapes of the CDF and PDF of the Odd Burr III-Burr IIT model

Theorem (Normalization of PDF)

To normalize the Odd Burr IIT Burr III distribution, we need to ensure that the total probability over all possible outcomes

integrates to 1. That is:

J_ fCod@) =1.

Proof:

Substituting Eq. (6) in (7), yields;

0

FUDMA Journal of Sciences (FJS) Vol. 9 No. 12, December (Special Issue), 2025, pp 400 — 407

401



DEVELOPING THE ODD BURR III-BURR I11... Ndatsu and Dodo FJS

foo d _ foo ckAax~ % 1(1+x~¥)~2-1 ( (1+x~%)~2 )_C_l (1 + ( (1+x~ %)% )_C)_k_l d 8
—wf(x) () = —o (1+(1+x—‘7‘)—/1)2 1-(1+x~%)~2 1-(14+x~9)~2 (). ®)
Lety=(14+x"%) %0 <y<1, % = A1 + x~ %)~ A1 — gx~a-1
1 _ 1

d(x) T A +x— ) A 1gx—a-1 Jgx—@-1(14x-@) A1 d(y)
Limits: x - 0,y = 1,x = o,y = 0.
Imputing the following terms in Eq. (8) yields Eq. (9);

) _ lckdax™* ()"t y —c-1 y \ ¢ —k=1 1
J_ fd() = [§ T(ﬁ) (1 + (g) ) Xt 1) ©)
Cancelling out common terms in the left and right hand side of Eq. (9) yield Eq. (10);

0 _rl ck y —c-1 y \ ¢ —k-1
[Lredm =l =) (1+() ) 0. (10)

-y am _ 1 (1 —)2
Letm—l_y,0<m<1,dy—(1_y)2,dy (1 —-y)?dm y—)O,m—)l,y—)l,m—)O'

By substituting these terms into Eq. (10), we generate Eq. (11):

[ f0d) = [} m=e (a4 me) X (1 - y)dm. (an

Cancelling out common terms in Eq. (11) would yield Eq. (12):

J7 fed@) = ck [y m™ (1 +m=) < dm. (12)

— —-C d_p — —-c—-1 — 1

Letp = (1 +m)~¢, 0<P<I, e c(m) ,dm = p———
Limits: x - 0,p > 1,x - 1,p - 0.
By substituting these terms into Eq. (12) we generate Eq. (13):
[2F)dG) = ck fym™e pkt x ——dp . (13)
Cancelling out common terms in Eq. (13) would yield:

0 1 k-
I f)d(x) = =k [yp™*"dp. (14)
Therefore integrating Eq. (14) with the given limits yielded 1.

dp.

—k—1+1
b

1
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Reliability Properties
The Odd Burr III Burr 111 distribution offers a robust framework for reliability analysis with properties like survival function,

hazard function and cumulative hazard function thereby providing valuable insights into the systems performance.

Survival function S(x)

Sx)=1-F() (15)
By substituting Eq. (5) into Eq. (15), we generate Eq. (16).
—ev—k
_ A+x~®)=2 \ €
S(x) = 1—(1+(W) ) (16)
Hazard function h(x);
h(x) = L2 (17)
S(x)
By substituting Eq. (6) into Eq. (17) ,we generate Eq. (18).
cklax_a_1(1+x_a)_l_1/ (1+x_‘z)_z >_C_1<1 ( (1+x_‘z)_z >_C>_k_1
a2 \1-(xm@)=2 1-(1+x~®)~2
h(x) = — o)A \ "\ K (18)
1+x~ %)~
1_(1+(1—(1+x—‘1)—’1) )
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Figure 2: Plots showing the shapes of the Survival and Hazard of the Odd Burr III-Burr III model
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Cumulative Hazard Function (CHF):

The cumulative hazard function for the Odd Burr III Burr III distribution is the negative logarithm of the survival function;
h(x) = —In(S(x)) (19)
Substituting the survival function in Eq. (16), yield:

h( = — _ ﬂ—c -k
VT ln<1 (1+( ) ) ) 20)

1-(14x~%)~4

Quartile Function
The quantile function, is the inverse of the cumulative distribution function (CDF) and is often used to find specific percentiles
of a distribution such as the first, second (median) and third quartiles. It is usually denoted asQ (x). For Odd Burr III Burr III
distribution is defined as follows:

1

1 o

Q) = (1 + (U—Lk - 1)%>Z -1 1)

Proof:

Let X be a random variable following the Odd Burr III Burr III distribution with CDF given by
—e\—k
_ (1+x—®)=2 \ "€
U_(1+(W) ) o k,a,A>0
By raising both sides to the power of _ik,
c

U= 1 (Y g = (LA

-C

1-(1+x~%)~4 1-(1+x~%)~4
1
. . T N € L )
Raise both sides to the power of o (U k 1) = o
1
) L
— —ay-4 (1= — c__Z
LetZ=(1+x 94 (v5-1) ‘=L
Make Z the subject formula
1 1
1 ) 1 s
U=k-1 UR-1
BN e PO o5
1 s 1 s
1+(u—7—1) 1+(U—T—1)
Raise both sides to the power of —%
1 _% 2 1 _% 1
1+(U=k-1 1+(U=k-1 1 =
1+x7%= ( )1 , ( )1 =1+(U__k_1)c

e ) )

Raise both sides to the power of —i
N
s

x= <1+(U—Lk—1)%> -1

Hence the expression of X in terms of U is:
1

. 1\Z “
) = <1 + (U= - 1)) -1
Where u ~ uniform distribution (0,1).

Log Likelihood Function

The likelihood function for the Odd Burr III-Burr III Distribution is expressed as follows:
k-1

—-a-1 —ay-A-1 —ay-4 —c-1 —ay-24 —c
L(c, kA, a) = ?:1 ckAax (14+x79) ( (1+x79) ) (1 n (M) ) (22)

(1+(1+x-2)-2)* 1-(14+x~%)=2 1-(14x-9)-2
And taking the log of both sides of Eq. (22), yields:
InC + InK + Ind + Ina + (—a — Dinx; + (=1 — DIn(1 + x;%) — 21n(1 +(1+ x“")"l) +
A —ay=2A € —k—-1 (23)
(= D (B2 ¢ (k- nin (14 ((2225) )

1-(1+x~%)=2 1-(1+x~%)=4

InL(c,k, A a) =21,

n n

n
InL(c,k, A, @) = n(InC + InK + Ind + Ina) — (a — 1)2 Inx;— (A —1) z In(1+x;7%) — 22 m(1+ @1 +x"9)?)

i=1 i=1 i=1
+
(- DT, I ((EE0) -1y ,n(H(M)‘“ - (24)
e T e =1 1-(1+x~9)~4
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The Competing Models

In this section, we would be listing out other competing
models, their CDFs and PDFs.

Burr I distribution, introduced by Irving W. Burr (1942), the
author defined the CDF and PDF as follows:

F(x)=(1+x")7* (25)
And
f() =ckx™ 1+ x)*1x>0,c,k>0 (26

Burr XII distribution was introduced by Irving W. Burr
(1942). The CDF and PDF was given as:
F(x)=1—-(1+x)7k 27
f(x) = ckx® 114+ x)"®*D x > 0,¢ >0,k >0

(28)
Burr X distribution, introduced by Irving W. Burr (1942). The
CDF and PDF was defined as:

Fx)=1- e® x>0 29)

s

k c
f(x) = ckx—c1 e_(Q) x>0,k >0 (30)
MO-BIII  distribution: The Marshall-Okin  Burr Il
distribution, introduced by Bhatti et al (2019), the authors
defined the CDF and PDF as follows;

_ (1+x~¢)7*
FG) = 1-A+A(1+x~)
fx) =

(D
x>0,¢,k,A>0 (32)

(1= ckx~¢1(1+x~¢) k-1
(1-A+A(1+x7€)7k)2

Model Comparison and Selection Criteria
In this section, the flexibility of the proposed model would be
initiated by comparing its performance to other selected
models using information criteria in R software. The
information criteria to be used are Akaike Information
Criteria (AIC), the Bayesian Information Criteria (BIC), the
Consistent Akaike Information Criteria (CAIC) and Hannan-
Quinn Information Criteria (HQIC). The formulations for the
information criteria are given below:
i. Akaike Information Criterion (AIC): AIC = -2In(L) +
2k.
ii. Bayesian Information Criterion (BIC): BIC=-2 In(L) +
k In (n).
iii. Consistent Akaike Information Criterion (CAIC):
CAIC =-2 In(L) + k(In(n) +1).
iv. Hannan-Quinn Information Criterion (HQIC): HQIC =
-2 In (L) + 2k In(In(n)).
Where n is for sample size, and k is the number of parameters
to be estimated.

FJS

The Survival Datasets

Data 1: The data set considered in this study consists of 100
observations of breaking stress of carbon fibers given by [22]
as presented below; the data was termed to be normally
distributed and it was originally studied by Khalif et al.
0.920, 0.9280, 0.9997, 0.9971, 1.0610, 1.117,1.1620, 1.183,
1.187, 1.1920, 1.196, 1.2130,1.215, 1.2199, 1.220, 1.2240,
1.225, 1.2280, 1.237, 1.240, 1.244, 1.259, 1.2610, 1.263,
1.276, 1.310, 1.3210, 1.3290, 1.3310, 1.337, 1.351, 1.359,
1.388, 1.4080, 1.449, 1.4497, 1.450, 1.459, 1.471, 1.475,
1.477,1.480, 1.489,1.501, 1.507,1.515,1.530, 1.5304, 1.533,
1.544, 1.5443,1.552, 1.556, 1.5620, 1.566, 1.585, 1.586,
1.599, 1.602, 1.6140, 1.6160, 1.617, 1.6280, 1.6840,
1.71100,1.7180, 1.733,1.7380, 1.7380, 1.7430,1.7590, 1.777,
1.7940, 1.799, 1.806, 1.814, 1.8160, 1.8280, 1.830, 1.884,
1.892, 1.944, 1.972, 1.9840, 1.987, 2.02, 2.0304, 2.0290,
2.0350, 2.0370, 2.0430, 2.0460, 2.0590, 2.111, 2.165, 2.686,
2.778,2.972,3.504, 3.863, 5.3060.

Data 2: this dataset represents 101 observations that show the
failure times (in hours) of Kevlar 49/epoxy strands subjected
to constant sustained pressure at a 90 percent stress level. The
data was originally given by (R. Barlow et a/ 1984) and has
been analyzed in several studies. The observations are as
follows:

0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07,
0.07,0.08, 0.09, 0.10, 0.10, 0.11, 0.11,0.12, 0.13, 0.18, 0.19,
0.20, 0.23, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43,
0.52, 0.54, 0.56, 0.60, 0.63,0.65, 0.67, 0.68, 0.72, 0.72, 0.72,
0.73, 0.79, 0.79, 0.80, 0.80,0.85, 0.90, 0.92, 0.95, 0.99, 1.00,
1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.15, 1.18, 1.20, 1.29,1.31,
1,33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.53, 1.54, 1.55, 1.58,
1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.14, 2.17,2.33, 3.03,
3.34,4.20, 4.69, 7.89.

For the analysis of data, R-language possessing packages was
used, The function provides some key comparison criteria.
Loglikelihood, AIC, BIC, CAIC and HQIC were considered,
The criteria for good fitted model is that the values of these
comparison measures should be smaller as compared to
others. The analysis of this work would be presented using
table.

RESULTS AND DISCUSSION

Results

In this section, the results of the data analysis and the
performance of models based on the Odd Burr III-Burr III
distribution are presented. All analyses were carried out using
the R statistical software in accordance with the methodology
outlined in Section 2.

Table 1: Simulation Results for MLE Parameter Performance for Odd Burr III-Burr 111 and Burr 111 Models

n Parameter True-value Estimates Bias Variance MSE
Odd Burr III-Burr 100 C 2.5 2.5404 0.404 0.0017 0.0033
III Model K 2.5 0.3000 -2.2000 0.0005 4.8400
A 1.1 3.0000 1.9000 0.0004 3.6100
a 1.8 1.1575 -0.6425 0.0141 0.4269
200 C 2.5 2.5358 0.0358 0.0008 0.0021
K 2.5 0.2900 -2.1000 0.0004 4.8300
A 1.1 2.9000 1.8000 0.0003 3.6000
a 1.8 1.1573 -0.6410 0.0079 0.4185
500 C 2.5 2.5355 0.0355 0.0003 0.0015
K 2.5 0.2600 -2.0000 0.0001 4.8000
A 1.1 2.7000 1.6000 0.0002 3.5800
a 1.8 1.1570 -0.6407 0.0036 0.4155
1000 C 2.5 2.5350 0.0350 0.0001 0.0010
K 2.5 0.2200 -1.6000 0.0000 4.7500
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1.8

2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5

Burr III Model 100
200
500

1000

R ORI OHIRNR O R >

FJS
2.3000 1.1000 0.0001 3.5300
1.1566 -0.6402 0.0018 0.4150
2.5267 0.0267 0.0371 0.0378
2.5558 0.0558 0.0631 0.0660
2.5139 0.0139 0.0198 0.0199
2.5055 0.0055 0.0283 0.0283
2.5023 0.0023 0.0070 0.0070
2.5038 0.0038 0.0136 0.0136
2.5017 0.0017 0.0036 0.0036
2.5083 0.0083 0.0058 0.0058

The simulation results above shows clear differences in the
estimation efficiency between the two competing
distributions. Across all sample sizes, the variance of the
parameter estimates under Odd Burr III-Burr III distribution
is consistently lower, implying greater stability and less
fluctuation across repeated samples. As the sample size
increases, the estimators of the Odd Burr III-Burr III
distribution converge more rapidly to the true parameter
values than those of Burr III distribution demonstrating

superior asymptotic efficiency. Although both distributions
improve with increasing sample size (as expected from MLE
theory), Odd Burr III-Burr III distribution maintains its
advantage at every level of n. This suggests that the Odd Burr
[I-Burr III distribution is better suited for modeling data
similar to the one used in this study, and it may offer practical
benefits in real-world applications involving reliability and
lifetime modeling.

Table 2: Goodness of fit test for Odd Burr III-Burr III Distribution and Competing Models for data-1

Models LLE AIC BIC CAIC HQIC AD CR-M K-S
OBIII-BIII 991.27 -1974.54  -1964.241 -1974.105 -1970.376 40.869  8.9269 0.5659
BIII 51.1297 106.2596  111.409 106.3872 108.3417 0.5359  0.0705 0.0694
BXII -50.3893 107.6786  115.4027 107.9366 110.8018 0.4759  0.0662 0.0675
BX -74.0433 152.8066  157.956 152.9832 154.8888 8.9515  1.7554 0.2307
MO-BIII -50.2832 108.5664  118.8652 109.1011 112.7307 0.4308  0.0613 0.0613
Table 3: Goodness of fit test for Odd Burr I1I-Burr III Distribution and Competing Models for data-2
Models LLE AIC BIC CAIC HQIC AD CR-M K-S
OBIII-BIII  11641.63 -23275.25  -23265.17  -23274.79  -23271.18  12.26603  2.4406 0.2763
BIII -103.911 211.8222 216.8657 211.957 213.8578 1.7296 0.3403 0.1261
BXII -104.1619 214.3237 221.8891 214.5964 217.3772 1.3189 0.2263 0.0907
BX -105.3125 214.625 219.6686 214.7598 216.6606 1.8356 0.3352 0.1129
MO-BIII -101.2099 210.4199 220.507 210.8796 214.4911 0.6225 0.0896 0.0687

Table 2 & 3, above provides details of the model comparison
between the proposed model and several existing models for
both datal and data 2, it is evident that the proposed model
has the lowest values for AIC, BIC, CAIC and HQIC and also
the highest value for the loglikelihood estimation both in
datal and in data2. This indicates that the proposed model (the

Odd Burr III-Burr I1I Distribution, OBIII-BIII) offers the best
fit amongst the compared models. The values of the Cramer-
von Mises, Anderson-Darling, and Kolmogorov-Smirnov
tests are shown in the table, with the p-value for the K-S test
also included.

Table 4: Parameter Estimates for Odd Burr I1I-Burr III Distribution and Competing Models for data-1.

Models C K a A
OBIII-BIII 1.9665 0.0790 10.0000 0.2225
BIII 6.1437 4.9219 _ _
BXII 0.4489 10.0152 B B

BX 0.1078 19.6956 _ _
MO-BIII 0.0256 2.8687 4.3221

Table 5: Parameter Estimates for Odd Burr III-Burr III Distribution and Competing Models for Data-2.

Models C K a A
OBIII-BIII 0.0267 0.3136 9.4839 7.5768
BIII 0.5709 1.7081 _ _
BXII 1.0272 24.8426 _ _

BX 1.147085 1.5637 _ _
MO-BIII 1.4325 2.4216 0.2879
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Figure 4: Empirical PDF and CDF Plots for Data 2

CONCLUSION

This study proposes a modified form of Burr III distribution,
termed the Odd Burr III-Burr I1I (OBIII-BIII) distribution, to
enhance its flexibility and applicability to real-world datasets.
The model retains core properties of the Burr III while
introducing parameter adjustments for greater flexibility. The
Odd Burr II-Burr III distribution’s probability density
function, cumulative distribution function, log-likelihood
expression, and reliability properties are formally derived. In
a comparative analysis against competing models such as the
Burr III, Burr XII, Burr X, and Marshall-Olkin-Burr III
models, the proposed Odd BIII-BIII distribution consistently
achieved the lowest goodness-of-fit and simulation values,
demonstrating superior precision and adaptability. These
findings highlight its potential for survival analysis,
reliability, and risk modeling. Future work should refine its
theoretical foundation, improve estimation methods, and test
it across more diverse, complex datasets to further establish
its applicability in interdisciplinary statistics.
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