
USING THE JACOBI LAST MULTIPLIER…           Orverem FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 12, December (Special Issue), 2025, pp 417 – 419 417 

8 

 

USING THE JACOBI LAST MULTIPLIER APPROACH TO LINEARIZE THE MATHEW-LAKSHMANAN 

OSCILLATOR EQUATION 

 

Orverem Joel Mvendaga 

 

Federal University Dutsin-Ma, Katsina State-Nigeria 

 

*Corresponding authors’ email:  orveremjoel@yahoo.com   

 

ABSTRACT 

The Mathews–Lakshmanan (ML) oscillator is a remarkable nonlinear dynamical system that preserves several 

features of the linear harmonic oscillator while exhibiting inherent nonlinearity. Owing to its exact solvability, 

linearizability, and relevance in classical and quantum mechanics, the ML oscillator has attracted significant 

research interest across physics, engineering, and applied mathematics. Parallel to this, the Jacobi Last 

Multiplier (JLM) method originally developed by Carl Gustav Jacobi has re-emerged as a powerful analytical 

tool for deriving Lagrangians, identifying first integrals, and revealing variational structures of nonlinear 

differential equations. In this study, we apply the JLM framework to the ML oscillator in order to construct its 

corresponding Lagrangian and perform an explicit linearization. 
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INTRODUCTION 

The nonlinear oscillator model known as the Mathews–

Lakshmanan (ML) oscillator equation was first presented by 

P. M. Mathews and M. Lakshmanan in 1974. It is noteworthy 

because it is linearizable under appropriate transformations 

and admits accurate harmonic-type solutions, in contrast to 

the majority of nonlinear oscillators. To put it briefly, it 

bridges the gap between complicated nonlinear systems and 

linear harmonic oscillators, which makes it useful in both 

theoretical and applied sciences. 

The Jacobi Last Multiplier (JLM) approach on the other hand, 

is a classical method introduced by Carl Gustav Jacobi in the 

19th century, for solving ordinary differential equations 

(ODEs). By providing a methodical approach to determining 

a Lagrangian, the Jacobi Last Multiplier Method converts a 

second-order nonlinear ODE into a variational problem. 

Because of this, it is an effective tool in nonlinear dynamics, 

mechanics, and mathematical physics. 

A Mathews-Lakshmanan-type oscillator with 𝑚(𝑥) = 1/
[1 + (𝜆𝑥)2] is used in a work that investigates classical and 

quantum position-dependent mass (PDM) systems using 

Hamiltonian factorization and canonical transformations 

(Tainá & González-borrero, 2023). According to the authors, 

when the phase space was analyzed classically, the 

trajectories show progressively more noticeable abnormalities 

as the energy and 𝜆 values rise. An examination of wave 

functions and probability densities was presented along with 

the solution to the ambiguous ordering problem for the PDM 

oscillator in the quantum domain. 

The authors of a different work suggested the novel approach 

in a wide category of nonpolynomial oscillators and velocity-

dependent potential systems, which are commonly 

encountered in mechanical and physical contexts (Kabilan & 

Venkatesan, 2023). The findings are helpful for examining the 

impact of damping on the nonlinear behavior as well as for 

studying energy transfer events for this class of nonlinear 

systems. The design and fault detection of mechanical 

systems and structures that this nonlinear model may 

represent depend on these findings. As a result, academics 

from a variety of disciplines, including the cognitive sciences 

and engineering, have been interested in studying the 

dynamics of nonlinear systems.  

An overview of some recent developments in the 

identification and generation of finite dimensional integrable 

nonlinear dynamical systems that display intriguing 

oscillatory and other solution features, such as quantum 

aspects, was provided in another article. The authors 

specifically focus on nonlinear oscillators of the Lienard type, 

as well as their coupled and generalized forms. Mathews-

Lakshmanan oscillators, modified Emden equations, 

isochronous oscillators, and generalizations are examples of 

specific systems (Lakshmanan & Chandrasekar, 2014). They 

also briefly discuss nonstandard Hamiltonian and Lagrangian 

formulations of certain of these systems. 

A work uses the case study of a two-dimensionally linked 

Mathews-Lakshmanan oscillator (abbreviated as M-L 

oscillator) to demonstrate the theory and techniques of 

analytical mechanics that may be successfully used to the 

analysis of various nonlinear nonconservative systems 

(Guangbao & Guangtao, 2020). They added that, the 

Lagrangian and Hamiltonian function in the form of 

rectangular coordinates of the two-dimensional M-L 

oscillator was directly created from an integral of the two-

dimensional M-L oscillators, in accordance with the inverse 

problem approach of Lagrangian mechanics. The authors 

continued that, the Lagrange function, the initial integral, and 

the two-dimensional M-L oscillator motion differential 

equation are expressed by introducing the vector form 

variables. Consequently, it was demonstrated that the three-

dimensional M-L oscillator may be reduced to the two-

dimensional case, and the two-dimensional M-L oscillator 

was immediately extended to the three-dimensional case. 

To get the Lagrangians of any second-order differential 

equation, Nucci & Tamizhmani (2013) employed the Jacobi's 

technique, which entails computing the Jacobi Last 

Multiplier. Utilizing the relationships between a mechanical 

system's Lie symmetries, Jacobi Last Multiplier, and 

Lagrangian to generate alternate Lagrangians and first 

integrals is possible when symmetry is abundant (Nucci & 

Leach, 2008). A Liénard-type nonlinear oscillator serves as 

the example. They also illustrate the possible 

incompatibilities between the general solution and the first 

integrals of a dynamical system. 

Madhav Rao created a method almost 70 years ago that 

connects the Jacobi Last Multiplier and its Lagrangian of a 
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second-order ordinary differential equation, which we use to 

get the Lagrangians of the Painlevé equations (Choudhury et 

al., 2009). In fact, the Lagrangians of a large number of the 

Painlevé–Gambier classification equations are obtained using 

this method. The authors determine the corresponding 

Hamiltonian functions by applying the usual Legendre 

transformation. Despite their often-non-standard shape, these 

Hamiltonians were shown to be constants of motion. To get 

the pertinent Lagrangians for second-order Liénard class 

equations, they employed a novel transformation. Examples 

of some particular situations were given, together with the 

conserved quantity (first integral) that results from the 

associated Noetherian symmetry. 

The linearization of the Mathews–Lakshmanan (ML) 

oscillator equation with the Jacobi Last Multiplier (JLM) 

method is the main topic of this study.  

 

MATERIALS AND METHODS 

Method of Jacobi Last Multiplier  

Second-order nonlinear differential equations can be analyzed 

classically using the Jacobi Last Multiplier (JLM), which 

offers a methodical approach to obtaining a Lagrangian and, 

in some situations, aids in linearizing or simplifying the 

equation. Regarding an equation of this type: 

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′),       (1) 

the following is satisfied by the Jacobi Last Multiplier 

𝑀(𝑥, 𝑦, 𝑦′): 

𝑀(𝑦′′ − 𝑓(𝑥, 𝑦, 𝑦′) =
𝑑𝐿

𝑑𝑥
,     (2) 

where the Lagrangian function is given as 𝐿(𝑥, 𝑦, 𝑦′). 
From equation (1), the JLM fulfills 
𝑑

𝑑𝑥
(ln𝑀) +

𝜕𝑓

𝜕𝑦′
= 0,     (3) 

or similar to this, 
𝑑𝑀

𝑑𝑥
= −𝑀

𝜕𝑓

𝜕𝑦′
.      (4) 

This is a first-order linear ordinary differential equation in 𝑀. 
In summary, given a second-order ordinary differential 

equation in equation (1), compute 
𝜕𝑓

𝜕𝑦′
.  

Solve the JLM from equation (3) 
𝑑

𝑑𝑥
(ln𝑀) = −

𝜕𝑓

𝜕𝑦′
.  

Integrating the above equation with respect to 𝑥: 

ln𝑀 = −∫
𝜕𝑓

𝜕𝑦′
𝑑𝑥 + 𝐶,  

so that 

𝑀(𝑥, 𝑦, 𝑦′) = 𝐶 𝑒𝑥𝑝 (−∫
𝜕𝑓

𝜕𝑦′
𝑑𝑥).  

Jacobi showed that 𝑀 can also be represented as a determinant 

constructed from solutions of the system of first-order ODEs 

equivalent to 𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′). That system is: 

𝑥̇ = 1,  

𝑦̇ = 𝑦′,  

𝑦′̇ = 𝑓(𝑥, 𝑦, 𝑦′).  

If we have two independent first integrals 𝜙1(𝑥, 𝑦, 𝑦′) and 

𝜙2(𝑥, 𝑦, 𝑦′), then the Jacobi multiplier can be written as 

𝑀 =

(

 
 

𝜕𝜙1

𝜕𝑥

𝜕𝜙1

𝜕𝑦

𝜕𝜙1

𝜕𝑦′

𝜕𝜙2

𝜕𝑥

𝜕𝜙2

𝜕𝑦

𝜕𝜙2

𝜕𝑦′

1 𝑦′ 𝑓(𝑥, 𝑦, 𝑦′))

 
 
.  

By definition, the Jacobi last multiplier 𝑀(𝑥, 𝑦, 𝑦′) satisfies  
𝜕2𝐿

𝜕𝑦′2
= 𝑀.  

That means the Lagrangian 𝐿(𝑥, 𝑦, 𝑦′) can be reconstructed 

by integrating twice with respect to 𝑦′. 
Integrating once with respect to 𝑦′, one has that: 

𝜕𝐿

𝜕𝑦′
= ∫𝑀𝑑𝑦′ + 𝜙1(𝑥, 𝑦),  

where 𝜙1(𝑥, 𝑦) is an arbitrary function of 𝑥 and 𝑦 (since it 

vanishes under 𝜕/𝜕𝑦′). 
Integrating again with respect to 𝑦′, we have: 

𝐿(𝑥, 𝑦, 𝑦′) = ∫(∫𝑀𝑑𝑦′ + 𝜙1(𝑥, 𝑦))𝑑𝑦
′ +𝜙2(𝑥, 𝑦),  

where 𝜙2(𝑥, 𝑦) is another arbitrary function of 𝑥 and 𝑦. 
Thus, 
𝐿(𝑥, 𝑦, 𝑦′) = ∫∫𝑀(𝑥, 𝑦, 𝑦′)𝑑(𝑦′2) +𝜙1(𝑥, 𝑦)𝑦

′ +𝜙2(𝑥, 𝑦).  

Therefore, the Lagrangian is determined up to gauge terms 

that do not affect the equations of motion. 

Once we have 𝐿, we verify the ordinary differential equation 

by applying the Euler–Lagrange equation: 
𝑑

𝑑𝑥
(
𝑑𝐿

𝑑𝑦′
) −

𝑑𝐿

𝑑𝑦
= 0.  

The resulting equation should reproduce the original second–

order ordinary differential equation 𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′). 

The condition 
𝜕2𝐿

𝜕𝑦′2
= 𝑀 ensures that the Euler–Lagrange 

equation is consistent with the Jacobi last multiplier equation  
𝑑𝑀

𝑑𝑥
+𝑀

𝜕𝑓

𝜕𝑦′
= 0.  

Thus, 𝑀 directly connects the variational (Lagrangian) 

structure to the dynamics of the nonlinear ODE. 

 

RESULTS AND DISCUSSION 

The Mathews–Lakshmanan oscillator equation is given as 

𝑦′′ −
𝜆𝑦

1+𝜆𝑦2
𝑦′
2
+ 𝜔2𝑦(1 + 𝜆𝑦2) = 0,   (5) 

where 𝜆 and 𝜔 are real parameters. 

First, rewrite the equation in the form 

𝑦′′ = 𝑓(𝑦, 𝑦′).  

That is  

𝑦′′ =
𝜆𝑦

1+𝜆𝑦2
𝑦′
2
− 𝜔2𝑦(1 + 𝜆𝑦2).     (6) 

The Jacobi Last Multiplier 𝑀(𝑥) satisfies equation (3). 

Computing 
𝜕𝑓

𝜕𝑦′
, one has that: 

𝑓(𝑦, 𝑦′) =
𝜆𝑦

1+𝜆𝑦2
𝑦′
2
−𝜔2𝑦(1 + 𝜆𝑦2) ⟹

𝜕𝑓

𝜕𝑦′
= 2(

𝜆𝑦

1+𝜆𝑦2
𝑦′).  

Therefore, 
𝑑

𝑑𝑥
(ln𝑀) + 2 (

𝜆𝑦

1+𝜆𝑦2
𝑦′) = 0.    (7) 

Consider 𝑀 = 𝑀(𝑥) (no 𝑦′ dependence) then; 
𝑑

𝑑𝑥
(ln𝑀(𝑦)) =

𝑑

𝑑𝑦
(ln𝑀(𝑦))𝑦′.  

Thus, 
𝑑

𝑑𝑥
(ln𝑀)𝑦′ + 2(

𝜆𝑦

1+𝜆𝑦2
𝑦′) = 0 ⟹ (

𝑑

𝑑𝑥
(ln𝑀)𝑦′ + 2

𝜆𝑦

1+𝜆𝑦2
)𝑦′ = 0.

  

Since 𝑦′ ≠ 0 in general: 
𝑑

𝑑𝑥
(ln𝑀) = −2(

𝜆𝑦

1+𝜆𝑦2
).  

On integration of both sides, one has that: 

ln𝑀 = −∫2 (
𝜆𝑦

1+𝜆𝑦2
) 𝑑𝑦.      (8) 

But 

∫
2𝜆𝑦

1+𝜆𝑦2
𝑑𝑦 = ∫

𝑑(1+𝜆𝑦2)

1+𝜆𝑦2
= ln(1 + 𝜆𝑦2).  

So,  

ln𝑀 = −ln(1 + 𝜆𝑦2) ⟹ 𝑀(𝑦) =
1

1+𝜆𝑦2
.   (9) 

To construct the Lagrangian using the JLM is the next thing 

to do. For second order ODEs, the JLM 𝑀(𝑦) is related to the 

Lagragian 𝐿(𝑦, 𝑦′) by: 

𝑀(𝑦) =
𝜕2𝐿

𝜕𝑦′2
.     (10) 

So, one integrates 𝑀(𝑦) twice to obtain the Lagragian. The 

first integration gives 
𝜕𝐿

𝜕𝑦′
= ∫𝑀(𝑦)𝑑𝑦′ = ∫

1

1+𝜆𝑦2
𝑑𝑦′ =

1

(1+𝜆𝑦2)
𝑦′ + 𝑐1(𝑦).  

Second integration produces 
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𝐿 = ∫(
1

(1+𝜆𝑦2)
𝑦′ + 𝑐1(𝑦))𝑑𝑦

′ =
1

2(1+𝜆𝑦2)
𝑦′2 + 𝑐1(𝑦)𝑦

′ + 𝑐2(𝑦).  

One can discard the total derivative terms (like 𝑐1(𝑦)𝑦
′) 

because they do not contribute to the Euler-Lagrange 

equations. So, the Lagrangian is 

𝐿 =
1

2(1+𝜆𝑦2)
𝑦′2 −

1

2
𝜔2𝑦2.    (11) 

Now, we find a coordinate transformation that transforms the 

nonlinear equation into a linear one. Define a new coordinate: 

𝑋 =
𝑦

√1+𝜆𝑦2
.     (12) 

Differentiating equation (12) with respect to 𝑥 using the 

quotient rule, one has that: 

𝑋′ =
𝑦′(1+𝜆𝑦2)−𝜆𝑦2𝑦′

(1+𝜆𝑦2)
3
2⁄

=
𝑦′

(1+𝜆𝑦2)
1
2⁄
.  

One can use the product and chain rules to differentiate the 

equation above to have: 

𝑋′′ =
𝑦′′

(1+𝜆𝑦2)
1
2⁄
−

𝜆𝑦𝑦′
2

(1+𝜆𝑦2)
3
2⁄
=

1

(1+𝜆𝑦2)
3
2⁄
[𝑦′′(1 + 𝜆𝑦2) − 𝜆𝑦𝑦′

2
].  

     (13) 

Recall that 𝑦′′ =
𝜆𝑦

1+𝜆𝑦2
𝑦′
2
− 𝜔2𝑦(1 + 𝜆𝑦2). Therefore, 

equation (13) can be simplified to become 

𝑋′′ =
−𝜔2𝑦(1+𝜆𝑦2)2

(1+𝜆𝑦2)
3
2⁄
= −𝜔2𝑦(1 + 𝜆𝑦2)

1
2⁄ .  

Now, recall from equation (12) that  

𝑋 =
𝑦

√1+𝜆𝑦2
⟹ 𝑦 =

𝑋

√1−𝜆𝑋2
,  

invertible only when 𝜆𝑋2 < 1. Therefore, 

𝑦(1 + 𝜆𝑦2)
1
2⁄ = 𝑋 ⟹ 𝑋′′ = −𝜔2𝑋.  

Thus, the transformed equation is: 

𝑋′′ + 𝜔2𝑋 = 0.     (14) 

Equation (14) is the classical linear harmonic oscillator. The 

general solution of equation (14) is 

𝑋(𝑥) = 𝐴 cos(𝜔𝑥) + 𝐵 sin(𝜔𝑥)  

where 𝐴 and 𝐵 are constants determined by the initial 

conditions. 

The Mathews–Lakshmanan (ML) oscillator is a remarkable 

nonlinear oscillator whose dynamics resemble those of the 

simple harmonic oscillator despite its nonlinearity. Starting 

from the nonlinear ODE  

𝑦′′ −
𝜆𝑦

1+𝜆𝑦2
𝑦′
2
+ 𝜔2𝑦(1 + 𝜆𝑦2) = 0,  

the Jacobi Last Multiplier (JLM) technique provides a 

systematic way to determine whether the equation admits a 

Lagrangian formulation. Computing the multiplier yields 

𝑀(𝑦) =
1

1+𝜆𝑦2
,  

which immediately leads to the Lagrangian 

𝐿 =
1

2

(𝑦′)2

1+𝜆𝑦2
−
1

2
𝜔2𝑦2.  

This Lagrangian shows that the ML oscillator behaves like a 

particle with a position-dependent effective mass  

𝑚(𝑦) = 1 + 𝜆𝑦2.  

Thus, the nonlinearity arises entirely from a variable mass 

term, while the potential energy remains quadratic. 

A key result is that the nonlinear equation can be exactly 

linearized by the coordinate transformation 

𝑋 =
𝑦

1+𝜆𝑦2
,  

which converts the equation into the linear harmonic 

oscillator 

𝑋′′ + 𝜔2𝑋 = 0.  

This means the ML oscillator is point-transformable to a 

linear system and therefore exactly solvable. Its solutions can 

be written explicitly in terms of trigonometric functions, and 

the general motion retains a constant period 

𝑇 =
2𝜋

𝜔
,  

independent of the amplitude. This property isochrony makes 

the ML oscillator a rare example of a nonlinear system whose 

oscillations do not change period with amplitude. 

The transformation is valid only when 𝜆𝑋2 < 1, which places 

a bound on the amplitude when 𝜆 > 0. For 𝜆 ≤ 0, no such 

restriction occurs. 

In summary, the results show that: 

i. A Lagrangian exists and corresponds to a system with 

position-dependent mass. 

ii. The nonlinear ML oscillator is exactly linearizable, 

revealing hidden simplicity behind its nonlinear form. 

iii. The oscillator is isochronous, sharing fundamental 

behavior with the simple harmonic oscillator despite its 

nonlinearity. 

These properties explain why the ML oscillator is widely 

studied and why it fits naturally into geometric linearization 

theory. 

 

CONCLUSION 

The linearization of the Mathews–Lakshmanan (ML) 

oscillator equation using the Jacobi Last Multiplier (JLM) 

method is considered in this study. The Jacobi Last Multiplier 

is used to construct the appropriate Lagrangian. The 

Mathews–Lakshmanan oscillator equation is reduced to the 

second-order classical linear harmonic oscillator equation 

with an appropriate transformation.  
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