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ABSTRACT

The Mathews—Lakshmanan (ML) oscillator is a remarkable nonlinear dynamical system that preserves several
features of the linear harmonic oscillator while exhibiting inherent nonlinearity. Owing to its exact solvability,
linearizability, and relevance in classical and quantum mechanics, the ML oscillator has attracted significant
research interest across physics, engineering, and applied mathematics. Parallel to this, the Jacobi Last
Multiplier (JLM) method originally developed by Carl Gustav Jacobi has re-emerged as a powerful analytical
tool for deriving Lagrangians, identifying first integrals, and revealing variational structures of nonlinear
differential equations. In this study, we apply the JLM framework to the ML oscillator in order to construct its
corresponding Lagrangian and perform an explicit linearization.
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INTRODUCTION

The nonlinear oscillator model known as the Mathews—
Lakshmanan (ML) oscillator equation was first presented by
P. M. Mathews and M. Lakshmanan in 1974. It is noteworthy
because it is linearizable under appropriate transformations
and admits accurate harmonic-type solutions, in contrast to
the majority of nonlinear oscillators. To put it briefly, it
bridges the gap between complicated nonlinear systems and
linear harmonic oscillators, which makes it useful in both
theoretical and applied sciences.

The Jacobi Last Multiplier (JLM) approach on the other hand,
is a classical method introduced by Carl Gustav Jacobi in the
19th century, for solving ordinary differential equations
(ODEs). By providing a methodical approach to determining
a Lagrangian, the Jacobi Last Multiplier Method converts a
second-order nonlinear ODE into a variational problem.
Because of this, it is an effective tool in nonlinear dynamics,
mechanics, and mathematical physics.

A Mathews-Lakshmanan-type oscillator with m(x) =1/
[1+ (Ax)?] is used in a work that investigates classical and
quantum position-dependent mass (PDM) systems using
Hamiltonian factorization and canonical transformations
(Taind & Gonzalez-borrero, 2023). According to the authors,
when the phase space was analyzed classically, the
trajectories show progressively more noticeable abnormalities
as the energy and A values rise. An examination of wave
functions and probability densities was presented along with
the solution to the ambiguous ordering problem for the PDM
oscillator in the quantum domain.

The authors of a different work suggested the novel approach
in a wide category of nonpolynomial oscillators and velocity-
dependent potential systems, which are commonly
encountered in mechanical and physical contexts (Kabilan &
Venkatesan, 2023). The findings are helpful for examining the
impact of damping on the nonlinear behavior as well as for
studying energy transfer events for this class of nonlinear
systems. The design and fault detection of mechanical
systems and structures that this nonlinear model may
represent depend on these findings. As a result, academics
from a variety of disciplines, including the cognitive sciences
and engineering, have been interested in studying the
dynamics of nonlinear systems.

An overview of some recent developments in the
identification and generation of finite dimensional integrable
nonlinear dynamical systems that display intriguing
oscillatory and other solution features, such as quantum
aspects, was provided in another article. The authors
specifically focus on nonlinear oscillators of the Lienard type,
as well as their coupled and generalized forms. Mathews-
Lakshmanan oscillators, modified Emden equations,
isochronous oscillators, and generalizations are examples of
specific systems (Lakshmanan & Chandrasekar, 2014). They
also briefly discuss nonstandard Hamiltonian and Lagrangian
formulations of certain of these systems.

A work uses the case study of a two-dimensionally linked
Mathews-Lakshmanan oscillator (abbreviated as M-L
oscillator) to demonstrate the theory and techniques of
analytical mechanics that may be successfully used to the
analysis of various nonlinear nonconservative systems
(Guangbao & Guangtao, 2020). They added that, the
Lagrangian and Hamiltonian function in the form of
rectangular coordinates of the two-dimensional M-L
oscillator was directly created from an integral of the two-
dimensional M-L oscillators, in accordance with the inverse
problem approach of Lagrangian mechanics. The authors
continued that, the Lagrange function, the initial integral, and
the two-dimensional M-L oscillator motion differential
equation are expressed by introducing the vector form
variables. Consequently, it was demonstrated that the three-
dimensional M-L oscillator may be reduced to the two-
dimensional case, and the two-dimensional M-L oscillator
was immediately extended to the three-dimensional case.

To get the Lagrangians of any second-order differential
equation, Nucci & Tamizhmani (2013) employed the Jacobi's
technique, which entails computing the Jacobi Last
Multiplier. Utilizing the relationships between a mechanical
system's Lie symmetries, Jacobi Last Multiplier, and
Lagrangian to generate alternate Lagrangians and first
integrals is possible when symmetry is abundant (Nucci &
Leach, 2008). A Liénard-type nonlinear oscillator serves as
the example. They also illustrate the possible
incompatibilities between the general solution and the first
integrals of a dynamical system.

Madhav Rao created a method almost 70 years ago that
connects the Jacobi Last Multiplier and its Lagrangian of a
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second-order ordinary differential equation, which we use to
get the Lagrangians of the Painlevé equations (Choudhury et
al., 2009). In fact, the Lagrangians of a large number of the
Painlevé—Gambier classification equations are obtained using
this method. The authors determine the corresponding
Hamiltonian functions by applying the usual Legendre
transformation. Despite their often-non-standard shape, these
Hamiltonians were shown to be constants of motion. To get
the pertinent Lagrangians for second-order Liénard class
equations, they employed a novel transformation. Examples
of some particular situations were given, together with the
conserved quantity (first integral) that results from the
associated Noetherian symmetry.

The linearization of the Mathews—Lakshmanan (ML)
oscillator equation with the Jacobi Last Multiplier (JLM)
method is the main topic of this study.

MATERIALS AND METHODS

Method of Jacobi Last Multiplier

Second-order nonlinear differential equations can be analyzed
classically using the Jacobi Last Multiplier (JLM), which
offers a methodical approach to obtaining a Lagrangian and,
in some situations, aids in linearizing or simplifying the
equation. Regarding an equation of this type:
y'=fxyy) M

the following is satisfied by the Jacobi Last Multiplier
M(x,y,y"):

MG - fyy) =2 )

where the Lagrangian function is given as L(x,y,y").

From equation (1), the JLM fulfills

—(1 M) + ay, =0, 3)
or similar to this,

aMm _ . of

E - ayl' (4)

This is a first-order linear ordinary differential equation in M.
In summary, given a second-order ordinary differential
equation in equation (1), compute
af
ayr’
Solve the JLM from equation (3)
4 (1 M) = _a_f
Integratlng the above equation with respect to x:
lnM——fafdx+C
so that

, d
M(x,y,y") = C exp (—fa—;,dx).
Jacobi showed that M can also be represented as a determinant
constructed from solutions of the system of first-order ODEs
equivalent to y'' = f(x,y,y"). That system is:

x=1,
y=y,
=f(x,y,y").

If we have two independent first integrals ¢, (x,y,y") and
¢, (x,y,¥"), then the Jacobi multiplier can be written as

b1 941 9¢1
0x ay ayr

M=|29%: 09¢: 99 .
0x ay ayr
1y fyy)

By definition, the Jacobi last multiplier M (x, y, y") satisfies
0°L

oyr?

That means the Lagrangian L(x,y,y") can be reconstructed
by integrating twice with respect to y'.

Integrating once with respect to y’, one has that:
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2 — [Mdy +91(x,),

where ¢ (x,y) is an arbitrary function of x and y (since it
vanishes under /9y").
Integrating again with respect to y’, we have:
L(xy,y") = [(J Mdy'+ ¢1(x,))dy" + b5 (x,9),
where ¢, (x, y) is another arbitrary function of x and y.
Thus,
LGy, y) = [ [MC,y,y)d0') + 1 (6, 2)y" + d2(x, ).
Therefore, the Lagrangian is determined up to gauge terms
that do not affect the equations of motion.
Once we have L, we verify the ordinary differential equation
by applying the Euler-Lagrange equation:
() L

dyr dy
The resulting equation should reproduce the original second—
order ordinary differential equation y" = f(x,y,y").

L. 87
The condition W/LZ = M ensures that the Euler—Lagrange

equation is consistent with the Jacobi last multiplier equation
d

PrmL=o.
dx

Thus, M dlrectly connects the variational (Lagrangian)
structure to the dynamics of the nonlinear ODE.

RESULTS AND DISCUSSION
The Mathews Lakshmanan oscillator equation is given as
y' = H,lyzy “+wly(1+2y?) =0, )

where 1 and w are real parameters.
First, rewrite the equation in the form

y'=fy).
That is
" ﬂ' !
Y= myyzy 2 — w2y(1 + y?). (©6)

The Jacobi Last Multiplier M(x) satisfies equation (3).

Computmg , one has that:

of _
fo.y) = 1+)Lyzy —w?y(1+2y") = 2(1+/1y2y)
Therefore,
Lanm) +2(2y) =0 @

Consider M = M(x) (no y' dependence) then;
d _d ,

Z M) == (InM@G))y".

Thus,

—(lnM)y + 2(1M -y ) =0= ( (InM)y’ +21+/1y )y’ =0.
Since y' # 0 in general:
d _ Ay
dx (InM) = -2 (1+,1y2)'
On integration of both sides, one has that:
o = 2 ®
But
21y d(1+1y?) 2
f1+ly2 _f 1+Ay? 11’1(1 +ly )
So,
InM = —In(1 + Ay?) = M(y) = )

1+Ay
To construct the Lagrangian using the JLM is the next thing
to do. For second order ODEs, the JLM M (y) is related to the

Lagragian L(y, y") by:

MO) =5 (10)

So, one integrates M (y) twice to obtain the Lagragian. The
first integration gives

oL . 1
oy = TMONAY' = [
Second integration produces

I

1 r
dy' =55y tab).
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1 ' ’ 1 ” ’ T = 2
L=[gmnY +a®) |y = 5oy + a0y + 0. o’
independent of the amplitude. This property isochrony makes

One can discard the total derivative terms (like ¢, (y)y')
because they do not contribute to the Euler-Lagrange
equations. So, the Lagrangian is

_ 1 n_1 22
L= 204727 @Y (1D
Now, we find a coordinate transformation that transforms the

nonlinear equation into a linear one. Define a new coordinate:

y
X= e (12)

Differentiating equation (12) with respect to x using the
quotient rule, one has that:
x' = Y QrayH-ayryr oy

(142y2)°)2 (1+ay2)'2’
One can use the product and chain rules to differentiate the
equation above to have:

"o__ yn _ Ayylz _ 1 " 2y _ 12
= G G~ @ [y + ) — yy'™?].
(13)
Recall that y" = 13’)}231’2 — w?y(1+ Ay?). Therefore,

equation (13) can be simplified to become

n_ —wly(1+ay?)? 1
-ty

Now, recall from equation (12) that
y X
X=Fonr ) = i

invertible only when A1X? < 1. Therefore,

y(1+ D)2 = X = X" = —w?X.

Thus, the transformed equation is:

X"+ w?X = 0. (14)
Equation (14) is the classical linear harmonic oscillator. The
general solution of equation (14) is

X(x) = Acos(wx) + B sin(wx)

where A and B are constants determined by the initial
conditions.

The Mathews—Lakshmanan (ML) oscillator is a remarkable
nonlinear oscillator whose dynamics resemble those of the
simple harmonic oscillator despite its nonlinearity. Starting
from the nonlinear ODE

"o_ Ay 12 2 2N\
y 1+/1y2y +wJ’(1+AJ’)—0'

the Jacobi Last Multiplier (JLM) technique provides a
systematic way to determine whether the equation admits a
Lagrangian formulation. Computing the multiplier yields

1
M(y) = Ty

which immediately leads to the Lagrangian
1) 1

=2 2
This Lagrangian shows that the ML oscillator behaves like a
particle with a position-dependent effective mass
m(y) =1+ Ay?.
Thus, the nonlinearity arises entirely from a variable mass
term, while the potential energy remains quadratic.
A key result is that the nonlinear equation can be exactly
linearized by the coordinate transformation

y

= 1+2y%’
which converts the equation into the linear harmonic
oscillator
X"+ w?X = 0.
This means the ML oscillator is point-transformable to a
linear system and therefore exactly solvable. Its solutions can
be written explicitly in terms of trigonometric functions, and
the general motion retains a constant period

the ML oscillator a rare example of a nonlinear system whose
oscillations do not change period with amplitude.
The transformation is valid only when AX? < 1, which places
a bound on the amplitude when 4 > 0. For 4 < 0, no such
restriction occurs.
In summary, the results show that:
i. A Lagrangian exists and corresponds to a system with
position-dependent mass.
ii. The nonlinear ML oscillator is exactly linearizable,
revealing hidden simplicity behind its nonlinear form.
iii. The oscillator is isochronous, sharing fundamental
behavior with the simple harmonic oscillator despite its
nonlinearity.
These properties explain why the ML oscillator is widely
studied and why it fits naturally into geometric linearization
theory.

CONCLUSION

The linearization of the Mathews—Lakshmanan (ML)
oscillator equation using the Jacobi Last Multiplier (JLM)
method is considered in this study. The Jacobi Last Multiplier
is used to construct the appropriate Lagrangian. The
Mathews—Lakshmanan oscillator equation is reduced to the
second-order classical linear harmonic oscillator equation
with an appropriate transformation.
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