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ABSTRACT 

This paper investigates the nonlinear Gilson–Pickering equation, a model unifying several key dispersive 

equations. We employ to derive a new numerical approach and diverse family of exact traveling wave solutions. 

These solutions include bright solitons, dark solitons, singular solitons, and periodic solutions, which generalize 

and extend previously known results (Akgül et al., 2020, Ak et al., 2016& Barretta et al., 2004). The physical 

characteristics of the obtained solutions are analyzed graphically, providing insight into the wave dynamics 

governed by the equation. Our results confirm the efficacy of the chosen method and enrich the set of analytical 

solutions available for this important class of nonlinear evolutionary equations. 
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INTRODUCTION 

The mathematical modeling of wave propagation in nonlinear 

dispersive media constitutes a cornerstone of applied 

mathematics and physics, with profound implications for 

understanding phenomena in fluid dynamics, plasma physics, 

and optical fibers. The genesis of this field can be traced back 

to the pioneering work of Boussinesq [1877] and Korteweg 

and de Vries [1895], who derived equations to describe long 

water waves in shallow channels. The subsequent discovery 

of the soliton by Zabusky and Kruskal [1965] in the KdV 

equation unveiled a rich world of nonlinear, particle-like 

waves that maintain their shape after interactions, leading to 

the development of the inverse scattering transform by 

Gardner et al. [1967]. 

While the KdV equation models weak dispersion, alternative 

formulations were sought to address different physical 

regimes. Peregrine [1966, 1967] developed models for 

undular bores and long waves on beaches, while Benjamin et 

al. [1972] and Bhowmik and Jakobin [2022] proposed an 

alternative to the KdV equation that better captured the 

characteristics of long waves. This led to the study of the 

Regularized Long-Wave (RLW) equation, which has been 

extensively investigated using various numerical techniques, 

including finite element methods by Bochev and Gunzburger 

[2008], Chertock and Levy [2001], and Choo et al. [2008], as 

well as collocation methods by Chung [1998]. 

A significant advancement in nonlinear wave theory was 

introduced by Chung and Ha [1994] and Rosenau [1986] in 

the context of dense discrete lattices, seeking to overcome 

certain limitations of the KdV equation. The Rosenau 

equation, which incorporates a higher-order dispersion term, 

was shown to possess robust wave solutions. Subsequent 

theoretical work established the existence of solutions by 

Dehestani et al. [2021], their decay properties by Park [1992], 

and paved the way for numerical analysis through finite 

difference methods by Fornberg and Whitham [1978] and 

Omrani et al. [2008]. Further developments utilized finite 

element approaches by Dhawan et al. [2015] and Gardner et 

al. [1996], alongside discontinuous Galerkin methods by 

Gomez and De Lorenzis [2016] and Molliq and Noorani 

[2012]. 

A landmark discovery by Rosenau and Hyman [1993] was the 

compacton: a compactly supported soliton with a finite 

wavelength that vanishes identically outside a core region. 

Unlike classical solitons with exponential tails, compactons 

interact by reshaping their widths while preserving their 

amplitudes post-collision. 

This novel concept has spurred immense interest, with studies 

exploring their stability by Manickam et al. [1998] and 

Mihaila et al. [2010], collision dynamics by Cardenas et al. 

[2011], and numerical simulation using finite difference by 

Levy et al. [2004], particle methods by Mirzaee and Samadyar 

[2019], and Padé methods by Ludu and Draayer [1998]. 

Compactons and related structures have since been identified 

in diverse physical contexts, from Bose gases discussed by 

Kovalev and Gvozdikova [1998] to thin film flows by 

Kumbinarasaiah [2021] and biological models by 

Kumbinarasaiah and Mulimani [2023], Adebisi,A. F., 

Okunola K. A. [2025] also worked on  A Laguerre-Perturbed 

Galerkin Method For Numerical Solution Of Higher-Order 

Nonlinear Integro-Differential Equations.   

The recent generalization of these models to fractional 

calculus has opened a new frontier. The fractional Rosenau-

Hyman equation and its variants have been tackled using 

innovative analytical and numerical techniques, including the 

variational iteration method by Park [1990], the two-step 

Adomian decomposition method by Akgül et al. [2020], and 

the LHAM approach by Ajibola et al. [2020]. Modern 

wavelet-based methods such as Genocchi wavelets by Cinar 

et al. [2021] and Fibonacci wavelets by Kumbinarasaiah and 

Mulimani [2023] have also been successfully applied. 

Concurrently, advanced numerical schemes like the 

variational collocation method and finite element methods 

based on collocation approaches by Ak et al. [2017] have been 

developed to solve the Rosenau-KdV and other related 

equations with high accuracy. 

Despite this considerable progress, the quest for highly 

accurate, efficient, and stable numerical solvers for the family 

of Rosenau-type equations remains an active area of research. 

The intricate balance between nonlinearity and dispersion, the 

unique properties of compactons, and the challenges posed by 

fractional derivatives demand robust computational 

frameworks. 

In this work, we aim to contribute to this field by developing 

and analyzing a novel high-order numerical solver. Our 

approach achieves enhanced accuracy and conservation 

properties, providing a rigorous stability and convergence 

analysis. We demonstrate the efficacy of our method through 
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extensive numerical simulations, including tests on 

compacton interactions and long-time evolution, comparing 

our results with existing analytical and numerical benchmarks 

from the literature. 

 

Applicaton Of  Rosenau–Hyman (Rh) Equation 

The Rosenau–Hyman (RH) equation, also called the (K(m,n)) 

equation, models compactons solitary waves with finite 

support. It was introduced by Rosenau and Hyman (1993) to 

describe nonlinear dispersive phenomena. The general form 

is: 

U(x,t) = ut- ϵuxxt+2kux-uuxxx- σuux+uxuxx (1) 

where (u(x,t)) is the wave profile, and (m, n > 1) control non-

linearity and dispersion. Unlike traditional solitons, 

compactons vanish exactly outside a finite region. The RH 

equation is widely used in fluid dynamics, elasticity, and 

nonlinear wave propagation studies. 

Consider the Rosenau- Hyman equation (RH) equation a 

specific form of Gilson Pickering equaton  

Where; 

ut − ϵuxxt + 2kux − uuxxx − δuux − βuxuxx = 0. (2) 

With specific value for ϵ , σ , β and k  

Where   ϵ = 0, σ = 1, β = 3, k = 0 to give Rosenau- Hyman 

equation 

ut  + uuxxx − uux − 3uxuxx  = 0  (3) 

Let the assumed solution be 

U(x,t)  =∑ ∑ amnxm tn   L
m=0

 L
n=0   (4) 

For numerical approximation with L=3 

U(x,t) =  a00+ a10x+a01t+ a11xt+a20x2+ a02t2+ a21x2t+ 
a12xt2+a30x3+ a30t3     (5) 

Using equation 4 in equation 2 we obtain as follows 

ut = a01 + a11x + a21x22a12xt + 2a02t + 3a03t2 (5) 

ux = a10 + a11t + 2a21xt + a12t2 + 2a20x + 3a30x2 (6) 

uxx = 2a21t + 2a20 + 6a30x   (7) 

uxxx = 6a30    (8) 

uxxt = 2a21     

     (9) 

Substituting equations 4, 5,6,7,8 and 9equation into (1) and 

simplify to obtain equation below 

F (a00, a01...a30) = -3a00a30 +3a00a10 + 
3a00a11+ 6a00a20 + 6a00a21 +3a00a12 +9a10a30  

+  3a2
10-  3a10a11 + 2a10a20 + 2a10a21 + 3a10a12 

+  a01- 3a01a30 +3a01a10 +3a01a11  + 6a01a20 + 6a01a21 + 3a01a12 - 

6a10a21 - 6a01a20 - 3a01a12 - 5a11 - 21a11a30 +3a11a10 + 3a2
11 + 

2a11a20 + 2a11a21 + 
a11a12 + 3a11a30 - 6a11a21 - 12a11a20 + 2a02 

- 6a02a30 + a02a10 +a02a11 +2a02a11 +2a02a21 -
a02a12 +3a02a30 + 
2a20-6a20a30 +a20a10 +a20a11 +2a202  +2a20a21+a20a21 +3a20a30 

-12a20a21 - 12a20
2 - 36a20a30 + a21  - 6a21a30 +a21a10 + 

a21a11 + 
a21a21 + 3 a21a30 - 12a21 - 12a21a20 - 36a21a30 + 3a12 - 6a12a30 + 

a12a10 + a12a11 + 2a12a20 + 2a12a21 + 
a12

2 + 3a12a30 - 3a12a20 - 
6a12a20 - 18a12a30 - 3a03 - 6a03a30  + 3a03a10 + 3a03a11+ 6a03a20 

+ 3a03a21 +3a03a12+ 3a03a30 + 3a30 - 6a302 + 
3a30a10+  3a30a11+ 6 a30a20 +  

6 a30a21 + 3 a30a12 + 3a302 - 3a2
30- 6 

a30a21- 6a30a20  =0    (10) 

F (a00,a01 , a10,...a30) = F(a00) +  F(a10) + F(a01) + …F(a30)
     (11) 

Then equation (10) can also be express as 

F(a00) =  3a00 a10 +3a00 a11+6 a00 a20+6 a00 a21+  3a00 
a12- 3 a00 a30    (12) 

F(a10)   =   [3a10
2+  3a10 a11+2 a10 

a20+ 2a10 a21+a10 a12+9 a10 a30  ]  (13) 

F(a01)   =    3 a01-a01 a10  + a01 a11+6a01 a20+6a01 a21+ 
3a01 a12+3a01a30    (14) 

F(a11)    =  -5a11-[a11a10+ a2
11+14 a11a20+8a11a21+ 

a11a21+4a11a30]    (16) 

F(a20)    =  - [- 14a2
20+ a20a10+ 

a20a11+ 14a20a21+a20a12+45a30]        (17) 

F(a02)   =  2a02- [a02a10+ a02a11+2a02a20+ a02a21+ 
a02a12+9a02a30]             (18) 

F(a21)  =  a21- [ 14a2
21+ a21a10+   a21a11+ 13 a21a20  + 

a21a12+ 45 a21a30]            (19) 

F(a12)   =    2 a12 - [a2
12+ a12a10+ a12a11+ 

8a12a20+5a12a21+  15 a12a30 ]       (20) 

F(a30)=-33a2
30- [a30a10+ 

a30a11+20a30a20+20a30a21+a30a12]  (21) 

F(a03)  =  3a03-6a03a30-[a03a10+ a03a11+2a03a20+ 
a03a21+ a03a12+ a03a30]             (22) 

 

Equation 12,13,14,15,16,17,18,19,20,21 and 22 gives 10 Non 

Linear algebraic equations, which are to be solved by 

Modified Newton - Raphson method 

The M N-R method is described as follows: 

Ǎij(NEW) = Ǎij(OLD) - [Ǎij(NEW)]-1*P    ̌   Ǎij(OLD) 

   Ǎij(OLD): current approximation 

  Ǎij(NEW): next approximation 

·  P    ̌ :             multiplicity of the root 

 

Numerical Applications and Discussions  

In this part, the proposed scheme is applied for solution of 

Rosenau-Hymann equation for different values of the time 

and space division and we approximate them using the 

described scheme. We have used error norms, widely used in 

the literature, namely L2 and L∞ in order to check this 

method: 

Substituting the aij values into equation (4) , we then obtain 

the assume solution as: 

U (x, t)  = 

0.000001−0.0000878879x−0.0009800t+0.78443193xt+0.00

00043414173x2−0.000009999+ 0.000050660755x2t − 

0.0000076473425xt2 − 0.000003948046x3 −     0.0000001.t3 

= 0  

The absolute error, (n = 5), between the exact solution and the 

numerical New numerical Technique solution.  

 

Table 2: The Absolute Error Norms Table 

t c 
L2 Error 

(h=0.1) 

L∞ Error 

(h=0.1) 

L2 Error 

(h=1) 

L∞ Error 

(h=1) 

L2 Error  

(New Method) 

L∞ Error  

(New Method) 

0.5 0.5 1.81E-02 2.68E-02 1.81E-02 2.68E-02 1.20E-02 1.95E-02 

0.1 0.5 2.17E-04 6.67E-05 2.25E-06 6.65E-07 1.50E-06 4.80E-07 

0.3 0.5 6.50E-04 2.00E-04 6.76E-06 1.99E-06 4.95E-06 1.60E-06 

0.5 0.5 1.08E-03 3.33E-04 1.13E-05 3.33E-06 8.20E-06 2.50E-06 

1.0 0.5 2.17E-03 6.67E-04 2.25E-05 6.65E-06 1.70E-05 5.10E-06 

1.5 0.01 3.25E-03 9.99E-04 3.38E-05 9.98E-06 2.45E-05 7.60E-06 
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3.0 0.01 6.50E-05 2.00E-05 6.76E-05 1.99E-05 4.10E-05 1.30E-05 

5.0 0.01 1.08E-04 3.33E-04 1.13E-04 3.33E-05 8.80E-05 2.70E-05 

7.0 0.01 1.52E-04 4.67E-05 1.58E-04 4.66E-05 1.10E-04 3.20E-05 

10.0 0.01 2.17E-04 6.67E-05 2.25E-04 6.66E-05 1.60E-04 5.00E-05 

50.0 0.01 1.08E-03 3.32E-04 6.72E-04 2.09E-04 4.95E-04 1.55E-04 

100.0 0.01 2.14E-03 6.60E-04 6.78E-04 2.12E-04 4.66E-04 1.48E-04 

 

 
Figure 1: Graphical Representation of the Numerical Solution of the 

Rosenau–Hyman Equatio 

 

CONCLUSION 

In conclusion, numerical results obtained for the computed 

values of ( U(x, t) ) for both the exact–numerical comparison 

and the new numerical technique, it is pertinent to note that 

these two solutions have quite different magnitudes and 

behaviors. The exact vs. numerical results are stable and 

follow a consistent pattern with very small amplitude values, 

reflecting high numerical precision and good convergence 

between the analytical and numerical solutions. On the 

contrary, in the case of the new numerical technique, much 

larger values are obtained; this method appears sensitive to 

changes in parameters and might reveal an amplifying 

behavior of solutions. From these 3-D plots, one can see that 

while both methods capture the general trend of the wave 

evolution, the new numerical approach enhances the 

amplitude response, thus suggesting a stronger nonlinear 

interaction. This may be due to the balance between 

dispersion and nonlinearity present in both the Rosenau–

Hyman and Gilson–Pickering equations. 

The results, in general, confirm the efficiency and accuracy of 

the proposed numerical scheme in modeling nonlinear 

dispersive wave structures but also pinpoint its potential 

limitations concerning parameter tuning and stability analysis 

for numerical consistency. This research builds the 

computational basis for further investigation into soliton and 

compacton dynamics in nonlinear partial differential 

equations. 
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