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ABSTRACT

This paper investigates the nonlinear Gilson—Pickering equation, a model unifying several key dispersive
equations. We employ to derive a new numerical approach and diverse family of exact traveling wave solutions.
These solutions include bright solitons, dark solitons, singular solitons, and periodic solutions, which generalize
and extend previously known results (Akgl et al., 2020, Ak et al., 2016& Barretta et al., 2004). The physical
characteristics of the obtained solutions are analyzed graphically, providing insight into the wave dynamics
governed by the equation. Our results confirm the efficacy of the chosen method and enrich the set of analytical
solutions available for this important class of nonlinear evolutionary equations.

Keywords: Rosenau—Hyman equation, Gilson—Pickering equation, Nonlinear dispersion, Soliton, compacton,
Spectral collocation method, Numerical analysis

INTRODUCTION

The mathematical modeling of wave propagation in nonlinear
dispersive media constitutes a cornerstone of applied
mathematics and physics, with profound implications for
understanding phenomena in fluid dynamics, plasma physics,
and optical fibers. The genesis of this field can be traced back
to the pioneering work of Boussinesq [1877] and Korteweg
and de Vries [1895], who derived equations to describe long
water waves in shallow channels. The subsequent discovery
of the soliton by Zabusky and Kruskal [1965] in the KdV
equation unveiled a rich world of nonlinear, particle-like
waves that maintain their shape after interactions, leading to
the development of the inverse scattering transform by
Gardner et al. [1967].

While the KdV equation models weak dispersion, alternative
formulations were sought to address different physical
regimes. Peregrine [1966, 1967] developed models for
undular bores and long waves on beaches, while Benjamin et
al. [1972] and Bhowmik and Jakobin [2022] proposed an
alternative to the KdV equation that better captured the
characteristics of long waves. This led to the study of the
Regularized Long-Wave (RLW) equation, which has been
extensively investigated using various numerical techniques,
including finite element methods by Bochev and Gunzburger
[2008], Chertock and Levy [2001], and Choo et al. [2008], as
well as collocation methods by Chung [1998].

A significant advancement in nonlinear wave theory was
introduced by Chung and Ha [1994] and Rosenau [1986] in
the context of dense discrete lattices, seeking to overcome
certain limitations of the KdV equation. The Rosenau
equation, which incorporates a higher-order dispersion term,
was shown to possess robust wave solutions. Subsequent
theoretical work established the existence of solutions by
Dehestani et al. [2021], their decay properties by Park [1992],
and paved the way for numerical analysis through finite
difference methods by Fornberg and Whitham [1978] and
Omrani et al. [2008]. Further developments utilized finite
element approaches by Dhawan et al. [2015] and Gardner et
al. [1996], alongside discontinuous Galerkin methods by
Gomez and De Lorenzis [2016] and Mollig and Noorani
[2012].

A landmark discovery by Rosenau and Hyman [1993] was the
compacton: a compactly supported soliton with a finite
wavelength that vanishes identically outside a core region.

Unlike classical solitons with exponential tails, compactons
interact by reshaping their widths while preserving their
amplitudes post-collision.

This novel concept has spurred immense interest, with studies
exploring their stability by Manickam et al. [1998] and
Mihaila et al. [2010], collision dynamics by Cardenas et al.
[2011], and numerical simulation using finite difference by
Levy et al. [2004], particle methods by Mirzaee and Samadyar
[2019], and Padé methods by Ludu and Draayer [1998].
Compactons and related structures have since been identified
in diverse physical contexts, from Bose gases discussed by
Kovalev and Gvozdikova [1998] to thin film flows by
Kumbinarasaiah  [2021] and Dbiological models by
Kumbinarasaiah and Mulimani [2023], Adebisi,A. F.,
Okunola K. A. [2025] also worked on A Laguerre-Perturbed
Galerkin Method For Numerical Solution Of Higher-Order
Nonlinear Integro-Differential Equations.

The recent generalization of these models to fractional
calculus has opened a new frontier. The fractional Rosenau-
Hyman equation and its variants have been tackled using
innovative analytical and numerical techniques, including the
variational iteration method by Park [1990], the two-step
Adomian decomposition method by Akgll et al. [2020], and
the LHAM approach by Ajibola et al. [2020]. Modern
wavelet-based methods such as Genocchi wavelets by Cinar
et al. [2021] and Fibonacci wavelets by Kumbinarasaiah and
Mulimani [2023] have also been successfully applied.
Concurrently, advanced numerical schemes like the
variational collocation method and finite element methods
based on collocation approaches by Ak et al. [2017] have been
developed to solve the Rosenau-KdV and other related
equations with high accuracy.

Despite this considerable progress, the quest for highly
accurate, efficient, and stable numerical solvers for the family
of Rosenau-type equations remains an active area of research.
The intricate balance between nonlinearity and dispersion, the
unique properties of compactons, and the challenges posed by
fractional derivatives demand robust computational
frameworks.

In this work, we aim to contribute to this field by developing
and analyzing a novel high-order numerical solver. Our
approach achieves enhanced accuracy and conservation
properties, providing a rigorous stability and convergence
analysis. We demonstrate the efficacy of our method through
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extensive numerical simulations, including tests on
compacton interactions and long-time evolution, comparing
our results with existing analytical and numerical benchmarks
from the literature.

Applicaton Of Rosenau-Hyman (Rh) Equation

The Rosenau—Hyman (RH) equation, also called the (K(m,n))
equation, models compactons solitary waves with finite
support. It was introduced by Rosenau and Hyman (1993) to
describe nonlinear dispersive phenomena. The general form
is:

U(X,t) = Ug- EUyye+2KUy-Ulyyy - UL, Uy Uyy 1)

where (u(x,t)) is the wave profile, and (m, n > 1) control non-
linearity and dispersion. Unlike traditional solitons,
compactons vanish exactly outside a finite region. The RH
equation is widely used in fluid dynamics, elasticity, and
nonlinear wave propagation studies.

Consider the Rosenau- Hyman equation (RH) equation a
specific form of Gilson Pickering equaton

Where;

ut — euxxt + 2kux — uuxxx — duux — Puxuxx = 0. (2)

With specific value for €, o, B and k

Where €=0,c=1,p =23, k=0 to give Rosenau- Hyman
equation

ut +uuxxx — uux — 3uxuxx =0 ?3)

Let the assumed solution be

U(xD) =Zpo Zizo amnX™ t" 4)

For numerical approximation with L=3

U(X,t) = a00+ 310X+301t+ 311Xt+320X2+ 302t2+ 321X2t+
312Xt2+a30X3+ a30t3 (5)

Using equation 4 in equation 2 we obtain as follows

ut = a0l + allx + a21x22al2xt + 2a02t + 3a03t2 (5)

ux = al0 + allt + 2a21xt + al2t2 + 2a20x + 3a30x2  (6)
Uxx = 2a21t + 2a20 + 6a30x @)
uxxx = 6a30 8)
uxxt = 2a21

9)

Substituting equations 4, 5,6,7,8 and 9equation into (1) and

simplify to obtain equation below

F (aOO, 301330) = '3300330 +3300310 +
3agpas1+ 6agpaze + 6agoaz; +3agoasz +9a10aze

+ 3a%y0- 3ajary + 2aj9agy + 2asdz; + 3aj0ar;

+ ag1- 3ap1a39 +3ap1a10 +3a1a11 + 6ag1az + 6391321 + 301217 -

63198y, - 63913z - 39131, - 5ayy - 21ayqagg +3ay4age + 32’y +

2311320 + 2311321 +

apjagy + 3agiagg - 6agiayy - 12a15a9 + 2ag;

- 6agpazg +ap2a10 +apzar +2ap2a11 +2apzany -

agpza1z +3agza30 +

2ay9-6ay9a3g +az0a10 +aair 2802 +2a50ay1 320821 +3aa30

'12320321 - 123202 - 36320330 + dz1 - 6821330 +321310 +

azay +

ap1ay1 + 3 azazg - 12a,q - 12a51a, - 36a,1a39 + 3a4, - 6aaz +

ajpayo +apayy + 2appag + 2apay; +

agp® + 3agpag - 3agzaz -

6ay,ay - 18ay,a3 - 3ap3 - 6293839 + 3agza19 + 3ap3a11+ 6agzaz

+ 3303321 +3ao3312+ 3303330 + 3330 - 63302 +

3330310'1‘ 3330311"‘ 6 dzpdag +

Table 2: The Absolute Error Norms Table
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6 dzpda1 + 3 dzpdq + 33302 - 33230' 6

azpay- 6azpaz =0 (10)

F (ag0,a01 , @10,--830) = F(agg) + F(a1o) + F(ag1) + ...F(azo)
(11)

Then equation (10) can also be express as
F(ago) = 3agp a0 +3agp a11+6 agp az0+6 ago az1+ 3ago

agp- 3 agg azp 5 (12)
F(a10) = [3310 + 3ajpat+2ag
az+ 2ajpaz;tagaz+9apaz ] (13)

F(ap1) = 3agi-ap; a0 + ap1 a11+6ag1 azpt6ag; az+
3ag; a2 +3ap1a30 (14)
F(a11) = -Saji-[agae+ %y +14 aggaz0+8agjas +
ajpap;+4agiage] (16)
F(azo) = - [- 14a%50+ azpaso+
azpas+ 14azpa;; +azpasp+45as] 17

F(aoz) = 2agy- [agza0t agzaig +2agzaz+ agzaz +
agp2a12+9ag2a30] (18)
Fag1) = api- [14a%;1+ apage+ ayag+ 13 azaz +

azjagp+ 45 azaz] (19)
F(aiz) = 2y, - [a%1+ agpago+ agpag +
8ayzaz0+5aa1+ 15 agzaz ] (20)
F(azo)=-33a%3- [azoaso+

aggaiq +20azgaze+20azgay; +azpasz] (21)

3ag3-6ag3azg-[agzaio+ agzai+2agzaz+
(22)

Fags) =
ap3a1+ ag3aiz+ ag3azo]

Equation 12,13,14,15,16,17,18,19,20,21 and 22 gives 10 Non
Linear algebraic equations, which are to be solved by
Modified Newton - Raphson method

The M N-R method is described as follows:

Ayvemy = Aoy - [Aynvem ™ P Ayown)

Zii(gw): current approximation
Z,/(NEW): next approximation

- P multiplicity of the root

Numerical Applications and Discussions

In this part, the proposed scheme is applied for solution of
Rosenau-Hymann equation for different values of the time
and space division and we approximate them using the
described scheme. We have used error norms, widely used in
the literature, namely L2 and Lo in order to check this
method:

Substituting the a;; values into equation (4) , we then obtain
the assume solution as:

U (%, t) =
0.000001-0.0000878879x—0.0009800t+0.78443193xt+0.00
00043414173x2-0.000009999+  0.000050660755x2t  —
0.0000076473425xt2 — 0.000003948046x3 —  0.0000001.t3
=0

The absolute error, (n =5), between the exact solution and the
numerical New numerical Technique solution.

t c L2 Error Loo Error L2 Error Lo Error L2Error Lo Error
(h=0.1) (h=0.1) (h=1) (h=1) (New Method) (New Method)
0.5 0.5 1.81E-02 2.68E-02 1.81E-02 2.68E-02 1.20E-02 1.95E-02
0.1 0.5 2.17E-04 6.67E-05 2.25E-06 6.65E-07 1.50E-06 4.80E-07
0.3 0.5 6.50E-04 2.00E-04 6.76E-06 1.99E-06 4.95E-06 1.60E-06
0.5 0.5 1.08E-03 3.33E-04 1.13E-05 3.33E-06 8.20E-06 2.50E-06
1.0 0.5 2.17E-03 6.67E-04 2.25E-05 6.65E-06 1.70E-05 5.10E-06
15 0.01 3.25E-03 9.99E-04 3.38E-05 9.98E-06 2.45E-05 7.60E-06
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3.0 0.01 6.50E-05 2.00E-05 6.76E-05 1.99E-05 4.10E-05 1.30E-05
5.0 0.01 1.08E-04 3.33E-04 1.13E-04 3.33E-05 8.80E-05 2.70E-05
7.0 0.01 1.52E-04 4.67E-05 1.58E-04 4.66E-05 1.10E-04 3.20E-05
10.0 0.01 2.17E-04 6.67E-05 2.25E-04 6.66E-05 1.60E-04 5.00E-05
50.0 0.01 1.08E-03 3.32E-04 6.72E-04 2.09E-04 4.95E-04 1.55E-04
1000  0.01 2.14E-03 6.60E-04 6.78E-04 2.12E-04 4.66E-04 1.48E-04
Figure 1: Graphical Representation of the Numerical Solution of the
Rosenau—Hyman Equatio
CONCLUSION 14.

In conclusion, numerical results obtained for the computed
values of ( U(x, t) ) for both the exact—numerical comparison
and the new numerical technique, it is pertinent to note that
these two solutions have quite different magnitudes and
behaviors. The exact vs. numerical results are stable and
follow a consistent pattern with very small amplitude values,
reflecting high numerical precision and good convergence
between the analytical and numerical solutions. On the
contrary, in the case of the new numerical technique, much
larger values are obtained; this method appears sensitive to
changes in parameters and might reveal an amplifying
behavior of solutions. From these 3-D plots, one can see that
while both methods capture the general trend of the wave
evolution, the new numerical approach enhances the
amplitude response, thus suggesting a stronger nonlinear
interaction. This may be due to the balance between
dispersion and nonlinearity present in both the Rosenau—
Hyman and Gilson—Pickering equations.

The results, in general, confirm the efficiency and accuracy of
the proposed numerical scheme in modeling nonlinear
dispersive wave structures but also pinpoint its potential
limitations concerning parameter tuning and stability analysis
for numerical consistency. This research builds the
computational basis for further investigation into soliton and
compacton dynamics in nonlinear partial differential
equations.
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