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ABSTRACT

Casting is a widely used manufacturing process which is frequently affected by surface and internal defects that
compromise product quality and structural integrity. Conventional inspection methods, such as manual visual
inspection, rely heavily on human expertise and are often slow, subjective, and prone to oversight. To address
these limitations, this study develops a computer vision system for the detection of defects in cast products
using Transformer-based and conventional convolutional neural network (CNN) models. The performance of
both models was evaluated in terms of accuracy, precision, recall, specificity, sensitivity, and F1-score. The
models were trained on a dataset of 7,348 grayscale images using the Google Colab platform. Experimental
results show that the Transformer-based model outperformed the traditional CNN, achieving an accuracy of
98.4%, precision of 96.7%, recall of 94.9%, F1-score of 96.2%, specificity of 95.9%, and sensitivity of 97.8%.
The proposed system enhances quality assurance, reduces manufacturing waste, and supports continuous
process optimization, offering significant benefits for medium-sized foundries seeking improved efficiency and

product reliability.
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INTRODUCTION

The foundry industry plays a critical role in modern industrial
society by producing cast products such as engine blocks,
turbine blades, and structural components that support
technological advancement and infrastructure development.
Casting remains one of the most widely used manufacturing
processes due to its ability to produce metal components with
complex geometries, high dimensional accuracy, and
desirable mechanical properties. The casting process involves
pouring molten metal into a mould cavity, where it solidifies
into the required shape (Craft Mach Engineered Solutions
Inc., 2023). This manufacturing method is extensively applied
in the automotive, acrospace, and heavy machinery industries
because it enables the production of strong, durable, and
intricately designed components. In the automotive sector,
casting is commonly used to manufacture critical components
such as engine blocks, cylinder heads, and transmission
systems, which require high strength and dimensional
precision (Butt et al., 2017). Similarly, the aerospace industry
relies on casting to produce lightweight yet high-strength
engine and structural components, while heavy machinery
manufacturers use casting to fabricate large and durable parts
for construction and mining equipment. Given the safety-
critical nature of these components, maintaining strict quality
standards in cast products is essential. Defects arising during
the casting process can compromise structural integrity,
reduce service life, and negatively affect product
performance.

Despite its advantages, the casting process is susceptible to
various surface and internal defects, including blow holes,
short runs, shrinkage cavities, and uneven solidification.
These defects often result from variations in process
parameters such as temperature fluctuations, mould quality,
and impurities in molten metal. Detecting and eliminating
such defects at an early stage is therefore crucial to ensure
compliance with quality and safety requirements.
Traditionally, inspection in foundry workshops relies on
manual visual inspection conducted by skilled personnel.
However, manual inspection methods are time-consuming,

subjective, and prone to human error, particularly in high-
volume production environments. Recent advances in
computer vision and artificial intelligence have introduced
new possibilities for automated defect detection in
manufacturing systems. Computer vision techniques, when
integrated with machine learning and deep learning
algorithms, enable rapid and accurate analysis of cast product
images, allowing defects to be detected with high reliability.
Deep learning approaches, particularly convolutional neural
networks (CNNs), have demonstrated strong performance in
surface defect detection tasks within industrial settings
(Pierdicca et al., 2020). More recently, Transformer-based
architectures have gained increasing attention due to their
ability to capture global contextual information and improve
feature representation, making them suitable for complex
visual inspection applications. The implementation of
automated visual inspection systems offers several benefits,
including reduced inspection time, improved consistency,
lower production costs, and reduced material wastage. These
advantages support the transition toward smart manufacturing
environments where intelligent systems complement human
expertise. The adoption of computer vision—based inspection
aligns with the principles of Industry 5.0, which emphasize
human-centric, resilient, and sustainable manufacturing
systems (Noor-Arhaim et al., 2022).

In many local foundry industries, including those operating in
Afikpo, Ebonyi State, Nigeria, quality inspection is still
predominantly performed using manual methods. This
practice often results in inefficiencies, production delays,
increased waste, and higher operational costs. There is
therefore a pressing need for an efficient, and reliable
computer vision—based inspection system tailored to the
operational realities of small and medium-sized enterprises.
Addressing this need can significantly enhance quality
assurance processes, reduce material wastage, and improve
product reliability in local foundry workshops. This study
aims to develop a computer vision system for automated
defect detection in cast products and to conduct a comparative
performance analysis of deep learning models, specifically
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conventional ~ convolutional neural networks and 2.1. The defective samples exhibit surface defects, visually
Transformer-based models. The models are evaluated based characterized by open cavities, pits, and irregular surface
on accuracy, processing efficiency, and industrial conditions. Based on visual inspection, these defects

applicability. The proposed system is intended to support
quality inspection engineers and improve quality control
practices in small and medium-scale foundries within Afikpo,
Ebonyi State.

MATERIALS AND METHODS

Data Collection

The dataset used in this research comprises 7,348 grayscale
images of cast products collected from the foundry workshop
at Akanu Ibiam Federal Polytechnic, Unwana. Image
acquisition was performed under stable and controlled
lighting conditions to ensure consistency and reduce
illumination-induced variability. Figures 2.1, 2.2, and 2.3
show representative examples of defective and non-defective
cast samples. Each image was captured as a top-view shot
with a spatial resolution of 300 x 300 pixels. For the purpose
of binary classification, the dataset was divided into two
classes: defective and non-defective, as summarized in Table

correspond to surface porosity and blowhole-type defects,
which are common gas-related anomalies in cast products.
Non-defective samples consist of cast products with uniform
surface texture and no visible cavities, pits, or surface
discontinuities. All images were obtained from a single
foundry environment involving similar casting materials,
component types, and production conditions. While this
controlled setup ensures consistency in image quality, it also
implies that the dataset represents a focused inspection
scenario rather than broad multi-site industrial variability.
Class labels were assigned based on visual inspection of
surface characteristics conducted during data collection at the
foundry workshop. The final dataset distribution includes
3,758 defective samples and 2,875 non-defective samples,
reflecting a slight class imbalance that was preserved to
maintain realism with typical inspection outcomes in foundry
operations.

Figure 1: Non-Defect Cast Sample

Figure 2: Defective Cast Sample 1
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Figure 3: Defective Cast Sample 2

Table 1: Dataset Collection Summary

S/N  Class Number of Images Description Label
1 Defective 3758 Cast images with visible defects 0
2 Non-Defective 2875 Cast images without visible defects 1

Data Preprocessing

During data preprocessing, data augmentation techniques
were applied to the training dataset only to increase sample
diversity and improve model robustness. Augmentation was
employed to mitigate overfitting and enhance the models’
ability to generalize to unseen data, particularly given the
controlled nature of image acquisition. The augmentation
pipeline consisted of a combination of geometric and
photometric transformations. Random rotations were applied
within a range of 15 degrees to simulate variations in
specimen orientation during inspection. Horizontal and
vertical flipping were applied with a probability of 0.5,
accounting for changes in viewing angles commonly
encountered in practical inspection scenarios. Image scaling
was performed within a range of 0.9 to 1.1 of the original size
to reflect minor variations in camera distance and focus. To
further improve robustness, Gaussian noise with low variance
was added randomly to a subset of training images to simulate
sensor noise and surface irregularities. In addition, brightness
adjustments were applied by varying pixel intensity within a
range of +20% to account for moderate illumination
differences. All augmentation operations were applied on the
training dataset, while the validation and test datasets were
left unaltered to ensure unbiased performance evaluation and
prevent data leakage. Collectively, these augmentation
strategies increased the variability of the training data and
exposed the models to a broader range of defect appearances
and imaging conditions. This preprocessing approach
supported stable model training and improved resilience to
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minor distortions and environmental variations commonly
encountered in foundry inspection environments.

Data Spliting

For the purpose of this study the data was split into 3 main
subsets which includes the training set, test set and validation
set. The training set was used to fit the model parameters and
enable the learning of feature from the data, while the
validation set served to fine-tune hyperparameters and
prevent overfitting by providing feedback on model
performance during training. Finally, the test set was reserved
for final evaluation to assess the model’s on unseen data. The
data splitting followed ratio of 70 % for training, 10 % for
validation, and 20 % for testing.

Model Training

The training of the models was carried out in the Google
Collaboratory environment because of its free access to GPU
resources and its compatibility with TensorFlow and Keras
frameworks. This platform provided the required computing
power to handle the dataset, to build, train, and evaluate the
models efficiently. For this study, two models were selected,
namely Convolutional Neural Network (CNN) and
Transformer. They were chosen because of their strengths in
image classification tasks. CNN was selected for its ability to
extract spatial features such as edges, textures and local
patterns, which are important in identifying casting defects.
The Transformer was selected because of its self-attention
mechanism that captures long-range dependencies and global
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context in images. This makes it possible to detect subtle or
scattered defects that may not be obvious through local
features alone. The CNN architecture used in this study was
made up of several convolutional layers with ReLU
activation, followed by pool as shown in table 2.2 below. To
prevent overfitting, dropout and L2 regularization were
applied, and early stopping was employed based on validation

Table 2: Model Training Specifications
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performance. Model checkpointing was used to retain the
best-performing weights during training. Performance was
monitored using accuracy, precision, recall, and F1-score on
the validation set. Each epoch required approximately 2.5
minutes, and full training completed in approximately 1 hour
and 47 minutes. Both models exhibited stable convergence,
with no evidence of training instability.

S/N Hyperparameter Traditional CNN Transformers
1. Batch-Size 64 64
2. Loss Function/Optimizer Adam Optimizer Adam Optimizer
3. Epoch 50 50
4. Activation function Sigmoid function (output layer) Sigmoid function (output layer)
5. Network architecture Inception Net Attention based
6. Learning rate 0.0001 0.0001
7. Numbers of layers 32 47
8. Number of hidden nodes 128 64
9 Input size 300x300x1 300%300x1
9 Pooling layer Max pooling Max pooling
9 Patch size - 16 X 16
9 Dropout 0.5 -
Model Evaluation by the total number of positive samples that the classifier

The following metrics were used to evaluate the performance
of the transformer based model and the traditional CNN
models:

Accuracy
This shows the proportion of correct cast class predictions
relative to the total number of input cast samples.

Number of Correct casting class predictions

(M

Accuracy =
y Total number of cast predictions made

Recall

Recall, also known as sensitivity or true positive rate
measures the model's ability to capture and correctly classify
all positive instances in a dataset. It is calculated by dividing
the number of correctly identified positive samples by the
total number of actual positive samples that should have been
recognized

P True Positives
Sensitivity =

@

True Positives+False Negatives

Precision

Precision quantifies how many of the positive predictions
made by the model are actually correct. It is calculated by
dividing the number of correctly identified positive samples

predicted.

True Positives

Precision = — — 3)
True Positives+False Positives
FI1-Score

F1-score is a metric used to evaluate the overall accuracy of
the cast classification test. It represents the harmonic mean
between recall and precision, providing insight into both the
precision and recall of the classification. The Fl-score is
particularly useful when you want to balance the trade-off
between precision and recall. If a model has high precision
but low recall, it implies that it achieves high accuracy but
may miss a significant number of relevant instances.
Conversely, a high recall but low precision indicates that it
captures many relevant instances but may also include a large
number of false positives. It can be calculated using the
following formula:

Accuracy = 2 * %

precision sensitivity

“)

RESULTS AND DISCUSSION
The performance of the model was evaluated on the test
dataset. Table 4.2 below shows a summary of the results :

Table 3: Comparison Between Traditional CNN and Transformers

Evaluated Metrics Traditional CNN Transformer Model
Accuracy 95.6387 98.4194

Precision 0.9432 0.9667

F1-score 0.9523 0.9617

Recall 0.9317 0.9491

Specificity 0.9338 0.9594

In terms of accuracy, the transformer model outperformed the
traditional CNN, achieving an accuracy rate of 98.42%,
compared to 95.64%, resulting in a performance improvement
of about 2.5%. The precision metric, which measures the
accuracy of positive casting defect predictions, also favored
the transformer model, with a precision of 0.9667, surpassing
the traditional CNN’s precision of 0.9432 and resulting in an
improvement of approximately 2.2%. Similarly, the F1-score,
a harmonic mean of precision and recall, demonstrated the

FUDMA Journal of Sciences (FJS) Vol.

transformer model’s superiority with a score of 0.9617, while
the traditional CNN achieved a slightly lower Fl-score of
0.9523, indicating an improvement of about 1%.
Additionally, the recall metric, which assesses the model’s
capability to capture true positive defect classifications, also
favored the transformer model with a recall of 0.9491,
outperforming the traditional CNN’s recall of 0.9317, leading
to an improvement of about 1.7%.
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The specificity metrics, which measure the model's ability to
correctly identify defective and non-defective instances,
respectively, also favored the transformer model. It achieved
a specificity of 0.9594, outperforming the traditional CNN’s
specificity of 0.9338 with an improvement of about 2.0% in
specificity. Collectively, these performance metrics highlight
the enhanced accuracy, sensitivity, and precision of the

Confusion

Defect

Actual

OK

Defect

Igwe and Olugboji
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transformer model, showing its efficacy in the casting defect
classification task compared to the traditional CNN.

The confusion matrix in Figure 4.2 shows that the model
performed very well in distinguishing between defective and
non-defective samples, as shown by the high values of True
Positives and True Negatives.

Matrix

-400

- 350

Predicted

Figure 4: System Confusion Matrix Plot

The confusion matrix shown in the results section provides
insights into the performance of the model by presenting a
summary of prediction outcomes across the two classes.

True Positives (TP): The top-left cell with a value of 421
indicates the number of defective samples correctly classified
as defective.

False Positives (FP): The top-right cell with a value of 32
represents the non-defective samples incorrectly classified as
defective. This is also known as a Type I error.

False Negatives (FN): The bottom-left cell has a value of 0,
indicating that there were no defective samples misclassified
as non-defective. This result implies that the model perfectly
avoided Type Il errors.

True Negatives (TN): The bottom-right cell, with a value of
262, shows the number of non-defective samples correctly
classified as non-defective.

The absence of False Negatives (0) is particularly noteworthy,
as it means the model did not miss any defective samples,
which is crucial in quality control where missing defective
items could lead to significant losses. However, there is a
moderate number of False Positives (32), which indicates that
some non-defective items were mistakenly classified as
defective, possibly leading to unnecessary re-inspection or
rejection of quality products. This result is highly favorable
for an automated inspection system, as it minimizes the risk
of defective items passing through quality control while
maintaining a high accuracy rate.

Discussion

The results of this study indicate that transformer-based
models can provide improved performance for automated
casting defect detection when compared with traditional
convolutional neural networks under the evaluated
experimental conditions. The transformer model achieved an
overall classification accuracy of 98.4%, demonstrating its
potential effectiveness for visual inspection tasks in
controlled foundry environments. While this level of
performance is encouraging, it should be interpreted in the

context of the dataset characteristics and evaluation setup.
Compared to the traditional CNN model, the transformer-
based approach consistently achieved higher values across all
evaluated metrics, including accuracy, precision, recall,
sensitivity, and specificity. Although the observed
improvements are relatively modest in magnitude, their
consistency suggests that the transformer architecture offers a
more balanced classification behavior. This can be attributed
to the self-attention mechanism employed by transformers,
which enables the model to capture global contextual
information across the cast surface. Such capability is
particularly relevant for surface-related defects, such as
porosity and blowholes, which may appear as spatially
dispersed or irregular patterns that are not easily captured
using purely local feature extraction. The absence of false
negative predictions observed for the transformer model in the
evaluated test split indicates that, under the controlled
conditions of this experiment, defective samples were not
misclassified as non-defective. From a quality control
perspective, this is a desirable outcome, as false negatives
pose a higher operational risk than false positives. However,
this result should not be interpreted as a guarantee of error-
free performance, as deep learning models are sensitive to
data variation, initialization, and operating conditions. Further
evaluation using multiple data splits or larger and more
diverse datasets would be necessary to confirm the robustness
of this behavior in real-world deployment scenarios. Overall,
the results suggest that the observed performance gains are
primarily driven by architectural differences rather than
dataset-specific artifacts.

CONCLUSION

This study investigated the application of computer vision
based deep learning models for automated defect detection in
cast manufacturing, with particular emphasis on comparing
transformer-based architectures and conventional
convolutional neural networks. The experimental evaluation,
conducted on a dataset of 7,348 grayscale images collected
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under controlled conditions, indicates that the transformer-
based model achieved consistently higher performance than
the traditional CNN across multiple classification metrics,
including accuracy, precision, recall, sensitivity, and
specificity. The transformer model attained an overall
accuracy of 98.4%, suggesting its potential suitability for
visual inspection tasks in controlled foundry environments.
While the observed performance improvements are relatively
modest in magnitude, their consistency across evaluation
metrics indicates that transformer architectures can provide a
more balanced classification behavior for surface-related
casting defects, such as porosity and blowholes. These
findings support the potential of data-driven inspection
systems to complement manual inspection practices by
improving consistency and reducing subjectivity in quality
assessment, particularly in medium-scale foundry operations.
From a practical standpoint, the results suggest that automated
inspection systems based on deep learning may contribute to
improved quality control processes and reduced material
waste when deployed under appropriate operating conditions.
However, the findings of this study are limited to the
evaluated dataset and experimental setup, and further
validation using larger and more diverse datasets would be
required to establish robustness and generalizability in real-
world industrial scenarios. Future work may focus on
enhancing system applicability by integrating automated
material handling mechanisms, such as conveyor-based
inspection, incorporating controlled LED illumination to
stabilize imaging conditions, and expanding locally sourced
datasets through collaboration with small and medium-scale
foundries. Increasing dataset diversity and operational
variability would further support the evaluation of model
robustness and facilitate broader adoption of intelligent
inspection systems in industrial manufacturing.
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