
A DISCRETE-TIME ECONOMIC ORDER…      Igwe and Olugboji FJS 

FUDMA Journal of Sciences (FJS) Vol. 10 No. 1, January, 2026, pp 217 – 223 217 

8 

 

COMPARATIVE ANALYSIS OF TRANSFORMER-BASED AND CONVENTIONAL CONVOLUTIONAL 

NEURAL NETWORK (CNN) MODELS FOR DEFECT DETECTION IN CAST PRODUCTS 

 

*Igwe Lazarus Uduma and Oluwafemi Ayodeji Olugboji 

 

Department of Mechanical Engineering, Federal University of Technology, Minna, Niger State 

 

*Corresponding authors’ email: igwe.m1605340@st.futminna.edu.ng 

 

ABSTRACT 

Casting is a widely used manufacturing process which is frequently affected by surface and internal defects that 

compromise product quality and structural integrity. Conventional inspection methods, such as manual visual 

inspection, rely heavily on human expertise and are often slow, subjective, and prone to oversight. To address 

these limitations, this study develops a computer vision system for the detection of defects in cast products 

using Transformer-based and conventional convolutional neural network (CNN) models. The performance of 

both models was evaluated in terms of accuracy, precision, recall, specificity, sensitivity, and F1-score. The 

models were trained on a dataset of 7,348 grayscale images using the Google Colab platform. Experimental 

results show that the Transformer-based model outperformed the traditional CNN, achieving an accuracy of 

98.4%, precision of 96.7%, recall of 94.9%, F1-score of 96.2%, specificity of 95.9%, and sensitivity of 97.8%. 

The proposed system enhances quality assurance, reduces manufacturing waste, and supports continuous 

process optimization, offering significant benefits for medium-sized foundries seeking improved efficiency and 

product reliability. 
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INTRODUCTION 

The foundry industry plays a critical role in modern industrial 

society by producing cast products such as engine blocks, 

turbine blades, and structural components that support 

technological advancement and infrastructure development. 

Casting remains one of the most widely used manufacturing 

processes due to its ability to produce metal components with 

complex geometries, high dimensional accuracy, and 

desirable mechanical properties. The casting process involves 

pouring molten metal into a mould cavity, where it solidifies 

into the required shape (Craft Mach Engineered Solutions 

Inc., 2023). This manufacturing method is extensively applied 

in the automotive, aerospace, and heavy machinery industries 

because it enables the production of strong, durable, and 

intricately designed components. In the automotive sector, 

casting is commonly used to manufacture critical components 

such as engine blocks, cylinder heads, and transmission 

systems, which require high strength and dimensional 

precision (Butt et al., 2017). Similarly, the aerospace industry 

relies on casting to produce lightweight yet high-strength 

engine and structural components, while heavy machinery 

manufacturers use casting to fabricate large and durable parts 

for construction and mining equipment. Given the safety-

critical nature of these components, maintaining strict quality 

standards in cast products is essential. Defects arising during 

the casting process can compromise structural integrity, 

reduce service life, and negatively affect product 

performance. 

Despite its advantages, the casting process is susceptible to 

various surface and internal defects, including blow holes, 

short runs, shrinkage cavities, and uneven solidification. 

These defects often result from variations in process 

parameters such as temperature fluctuations, mould quality, 

and impurities in molten metal. Detecting and eliminating 

such defects at an early stage is therefore crucial to ensure 

compliance with quality and safety requirements. 

Traditionally, inspection in foundry workshops relies on 

manual visual inspection conducted by skilled personnel. 

However, manual inspection methods are time-consuming, 

subjective, and prone to human error, particularly in high-

volume production environments. Recent advances in 

computer vision and artificial intelligence have introduced 

new possibilities for automated defect detection in 

manufacturing systems. Computer vision techniques, when 

integrated with machine learning and deep learning 

algorithms, enable rapid and accurate analysis of cast product 

images, allowing defects to be detected with high reliability. 

Deep learning approaches, particularly convolutional neural 

networks (CNNs), have demonstrated strong performance in 

surface defect detection tasks within industrial settings 

(Pierdicca et al., 2020). More recently, Transformer-based 

architectures have gained increasing attention due to their 

ability to capture global contextual information and improve 

feature representation, making them suitable for complex 

visual inspection applications. The implementation of 

automated visual inspection systems offers several benefits, 

including reduced inspection time, improved consistency, 

lower production costs, and reduced material wastage. These 

advantages support the transition toward smart manufacturing 

environments where intelligent systems complement human 

expertise. The adoption of computer vision–based inspection 

aligns with the principles of Industry 5.0, which emphasize 

human-centric, resilient, and sustainable manufacturing 

systems (Noor-Arhaim et al., 2022). 

In many local foundry industries, including those operating in 

Afikpo, Ebonyi State, Nigeria, quality inspection is still 

predominantly performed using manual methods. This 

practice often results in inefficiencies, production delays, 

increased waste, and higher operational costs. There is 

therefore a pressing need for an efficient, and reliable 

computer vision–based inspection system tailored to the 

operational realities of small and medium-sized enterprises. 

Addressing this need can significantly enhance quality 

assurance processes, reduce material wastage, and improve 

product reliability in local foundry workshops. This study 

aims to develop a computer vision system for automated 

defect detection in cast products and to conduct a comparative 

performance analysis of deep learning models, specifically 
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conventional convolutional neural networks and 

Transformer-based models. The models are evaluated based 

on accuracy, processing efficiency, and industrial 

applicability. The proposed system is intended to support 

quality inspection engineers and improve quality control 

practices in small and medium-scale foundries within Afikpo, 

Ebonyi State. 

 

MATERIALS AND METHODS 

Data Collection 

The dataset used in this research comprises 7,348 grayscale 

images of cast products collected from the foundry workshop 

at Akanu Ibiam Federal Polytechnic, Unwana. Image 

acquisition was performed under stable and controlled 

lighting conditions to ensure consistency and reduce 

illumination-induced variability. Figures 2.1, 2.2, and 2.3 

show representative examples of defective and non-defective 

cast samples. Each image was captured as a top-view shot 

with a spatial resolution of 300 × 300 pixels. For the purpose 

of binary classification, the dataset was divided into two 

classes: defective and non-defective, as summarized in Table 

2.1. The defective samples exhibit surface defects, visually 

characterized by open cavities, pits, and irregular surface 

conditions. Based on visual inspection, these defects 

correspond to surface porosity and blowhole-type defects, 

which are common gas-related anomalies in cast products. 

Non-defective samples consist of cast products with uniform 

surface texture and no visible cavities, pits, or surface 

discontinuities. All images were obtained from a single 

foundry environment involving similar casting materials, 

component types, and production conditions. While this 

controlled setup ensures consistency in image quality, it also 

implies that the dataset represents a focused inspection 

scenario rather than broad multi-site industrial variability. 

Class labels were assigned based on visual inspection of 

surface characteristics conducted during data collection at the 

foundry workshop. The final dataset distribution includes 

3,758 defective samples and 2,875 non-defective samples, 

reflecting a slight class imbalance that was preserved to 

maintain realism with typical inspection outcomes in foundry 

operations. 

 

 
Figure 1: Non-Defect Cast Sample 

 

 
Figure 2: Defective Cast Sample 1 
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Figure 3: Defective Cast Sample 2 

 

Table 1: Dataset Collection Summary 

S/N Class Number of Images Description Label 

1 Defective 3758 Cast images with visible defects 0 

2 Non-Defective 2875 Cast images without visible defects 1 

 

Data Preprocessing 

During data preprocessing, data augmentation techniques 

were applied to the training dataset only to increase sample 

diversity and improve model robustness. Augmentation was 

employed to mitigate overfitting and enhance the models’ 

ability to generalize to unseen data, particularly given the 

controlled nature of image acquisition. The augmentation 

pipeline consisted of a combination of geometric and 

photometric transformations. Random rotations were applied 

within a range of ±15 degrees to simulate variations in 

specimen orientation during inspection. Horizontal and 

vertical flipping were applied with a probability of 0.5, 

accounting for changes in viewing angles commonly 

encountered in practical inspection scenarios. Image scaling 

was performed within a range of 0.9 to 1.1 of the original size 

to reflect minor variations in camera distance and focus. To 

further improve robustness, Gaussian noise with low variance 

was added randomly to a subset of training images to simulate 

sensor noise and surface irregularities. In addition, brightness 

adjustments were applied by varying pixel intensity within a 

range of ±20% to account for moderate illumination 

differences. All augmentation operations were applied on the 

training dataset, while the validation and test datasets were 

left unaltered to ensure unbiased performance evaluation and 

prevent data leakage. Collectively, these augmentation 

strategies increased the variability of the training data and 

exposed the models to a broader range of defect appearances 

and imaging conditions. This preprocessing approach 

supported stable model training and improved resilience to 

minor distortions and environmental variations commonly 

encountered in foundry inspection environments. 

 

Data Spliting 

For the purpose of this study the data was split into 3 main 

subsets which includes the training set, test set and validation 

set. The training set was used to fit the model parameters and 

enable the learning of feature from the data, while the 

validation set served to fine-tune hyperparameters and 

prevent overfitting by providing feedback on model 

performance during training. Finally, the test set was reserved 

for final evaluation to assess the model’s on unseen data. The 

data splitting followed ratio of 70 % for training, 10 % for 

validation, and 20 % for testing. 

 

Model Training 

The training of the models was carried out in the Google 

Collaboratory environment because of its free access to GPU 

resources and its compatibility with TensorFlow and Keras 

frameworks. This platform provided the required computing 

power to handle the dataset, to build, train, and evaluate the 

models efficiently. For this study, two models were selected, 

namely Convolutional Neural Network (CNN) and 

Transformer. They were chosen because of their strengths in 

image classification tasks. CNN was selected for its ability to 

extract spatial features such as edges, textures and local 

patterns, which are important in identifying casting defects. 

The Transformer was selected because of its self-attention 

mechanism that captures long-range dependencies and global 
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context in images. This makes it possible to detect subtle or 

scattered defects that may not be obvious through local 

features alone. The CNN architecture used in this study was 

made up of several convolutional layers with ReLU 

activation, followed by pool as shown in table 2.2 below. To 

prevent overfitting, dropout and L2 regularization were 

applied, and early stopping was employed based on validation 

performance. Model checkpointing was used to retain the 

best-performing weights during training. Performance was 

monitored using accuracy, precision, recall, and F1-score on 

the validation set. Each epoch required approximately 2.5 

minutes, and full training completed in approximately 1 hour 

and 47 minutes. Both models exhibited stable convergence, 

with no evidence of training instability. 

 

Table 2: Model Training Specifications 

S/N Hyperparameter Traditional CNN Transformers 

1. Batch-Size 64 64 

2. Loss Function/Optimizer Adam Optimizer Adam Optimizer 

3. Epoch 50 50 

4. Activation function Sigmoid function (output layer) Sigmoid function (output layer) 

5. Network architecture Inception Net  Attention based 

6. Learning rate 0.0001 0.0001 

7. Numbers of layers 32 47 

8. Number of hidden nodes 128 64 

9 Input size 300×300×1 300×300×1 

9 Pooling layer Max pooling Max pooling 

9 Patch size - 16 × 16 

9 Dropout 0.5 - 

 

Model Evaluation 

The following metrics were used to evaluate the performance 

of the transformer based model and the traditional CNN 

models: 

 

Accuracy 

This shows the proportion of correct cast class predictions 

relative to the total number of input cast samples.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑎𝑠𝑡𝑖𝑛𝑔 𝑐𝑙𝑎𝑠𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
 (1) 

 

Recall  

Recall, also known as sensitivity or true positive rate 

measures the model's ability to capture and correctly classify 

all positive instances in a dataset. It is calculated by dividing 

the number of correctly identified positive samples by the 

total number of actual positive samples that should have been 

recognized 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  (2) 

 

Precision  

Precision quantifies how many of the positive predictions 

made by the model are actually correct. It is calculated by 

dividing the number of correctly identified positive samples 

by the total number of positive samples that the classifier 

predicted. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  (3) 

 

F1-Score  

F1-score is a metric used to evaluate the overall accuracy of 

the cast classification test. It represents the harmonic mean 

between recall and precision, providing insight into both the 

precision and recall of the classification. The F1-score is 

particularly useful when you want to balance the trade-off 

between precision and recall. If a model has high precision 

but low recall, it implies that it achieves high accuracy but 

may miss a significant number of relevant instances. 

Conversely, a high recall but low precision indicates that it 

captures many relevant instances but may also include a large 

number of false positives. It can be calculated using the 

following formula:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 2 ∗
1

1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+

1

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

   (4) 

 

RESULTS AND DISCUSSION 

The performance of the model was evaluated on the test 

dataset. Table 4.2 below shows a summary of the results : 

 

Table 3: Comparison Between Traditional CNN and Transformers 

Evaluated Metrics Traditional CNN Transformer Model 

Accuracy 95.6387 98.4194 

Precision 0.9432 0.9667 

F1-score 0.9523 0.9617 

Recall 0.9317 0.9491 

Specificity 0.9338 0.9594 

 

In terms of accuracy, the transformer model outperformed the 

traditional CNN, achieving an accuracy rate of 98.42%, 

compared to 95.64%, resulting in a performance improvement 

of about 2.5%. The precision metric, which measures the 

accuracy of positive casting defect predictions, also favored 

the transformer model, with a precision of 0.9667, surpassing 

the traditional CNN’s precision of 0.9432 and resulting in an 

improvement of approximately 2.2%. Similarly, the F1-score, 

a harmonic mean of precision and recall, demonstrated the 

transformer model’s superiority with a score of 0.9617, while 

the traditional CNN achieved a slightly lower F1-score of 

0.9523, indicating an improvement of about 1%. 

Additionally, the recall metric, which assesses the model’s 

capability to capture true positive defect classifications, also 

favored the transformer model with a recall of 0.9491, 

outperforming the traditional CNN’s recall of 0.9317, leading 

to an improvement of about 1.7%. 
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The specificity metrics, which measure the model's ability to 

correctly identify defective and non-defective instances, 

respectively, also favored the transformer model. It achieved 

a specificity of 0.9594, outperforming the traditional CNN’s 

specificity of 0.9338 with an improvement of about 2.0% in 

specificity. Collectively, these performance metrics highlight 

the enhanced accuracy, sensitivity, and precision of the 

transformer model, showing its efficacy in the casting defect 

classification task compared to the traditional CNN. 

The confusion matrix in Figure 4.2 shows that the model 

performed very well in distinguishing between defective and 

non-defective samples, as shown by the high values of True 

Positives and True Negatives. 

 

 
Figure 4: System Confusion Matrix Plot 

 

The confusion matrix shown in the results section provides 

insights into the performance of the model by presenting a 

summary of prediction outcomes across the two classes. 

True Positives (TP): The top-left cell with a value of 421 

indicates the number of defective samples correctly classified 

as defective. 

False Positives (FP): The top-right cell with a value of 32 

represents the non-defective samples incorrectly classified as 

defective. This is also known as a Type I error. 

False Negatives (FN): The bottom-left cell has a value of 0, 

indicating that there were no defective samples misclassified 

as non-defective. This result implies that the model perfectly 

avoided Type II errors. 

True Negatives (TN): The bottom-right cell, with a value of 

262, shows the number of non-defective samples correctly 

classified as non-defective. 

The absence of False Negatives (0) is particularly noteworthy, 

as it means the model did not miss any defective samples, 

which is crucial in quality control where missing defective 

items could lead to significant losses. However, there is a 

moderate number of False Positives (32), which indicates that 

some non-defective items were mistakenly classified as 

defective, possibly leading to unnecessary re-inspection or 

rejection of quality products. This result is highly favorable 

for an automated inspection system, as it minimizes the risk 

of defective items passing through quality control while 

maintaining a high accuracy rate. 

 

Discussion 

The results of this study indicate that transformer-based 

models can provide improved performance for automated 

casting defect detection when compared with traditional 

convolutional neural networks under the evaluated 

experimental conditions. The transformer model achieved an 

overall classification accuracy of 98.4%, demonstrating its 

potential effectiveness for visual inspection tasks in 

controlled foundry environments. While this level of 

performance is encouraging, it should be interpreted in the 

context of the dataset characteristics and evaluation setup. 

Compared to the traditional CNN model, the transformer-

based approach consistently achieved higher values across all 

evaluated metrics, including accuracy, precision, recall, 

sensitivity, and specificity. Although the observed 

improvements are relatively modest in magnitude, their 

consistency suggests that the transformer architecture offers a 

more balanced classification behavior. This can be attributed 

to the self-attention mechanism employed by transformers, 

which enables the model to capture global contextual 

information across the cast surface. Such capability is 

particularly relevant for surface-related defects, such as 

porosity and blowholes, which may appear as spatially 

dispersed or irregular patterns that are not easily captured 

using purely local feature extraction. The absence of false 

negative predictions observed for the transformer model in the 

evaluated test split indicates that, under the controlled 

conditions of this experiment, defective samples were not 

misclassified as non-defective. From a quality control 

perspective, this is a desirable outcome, as false negatives 

pose a higher operational risk than false positives. However, 

this result should not be interpreted as a guarantee of error-

free performance, as deep learning models are sensitive to 

data variation, initialization, and operating conditions. Further 

evaluation using multiple data splits or larger and more 

diverse datasets would be necessary to confirm the robustness 

of this behavior in real-world deployment scenarios. Overall, 

the results suggest that the observed performance gains are 

primarily driven by architectural differences rather than 

dataset-specific artifacts. 

 

CONCLUSION 

This study investigated the application of computer vision 

based deep learning models for automated defect detection in 

cast manufacturing, with particular emphasis on comparing 

transformer-based architectures and conventional 

convolutional neural networks. The experimental evaluation, 

conducted on a dataset of 7,348 grayscale images collected 
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under controlled conditions, indicates that the transformer-

based model achieved consistently higher performance than 

the traditional CNN across multiple classification metrics, 

including accuracy, precision, recall, sensitivity, and 

specificity. The transformer model attained an overall 

accuracy of 98.4%, suggesting its potential suitability for 

visual inspection tasks in controlled foundry environments. 

While the observed performance improvements are relatively 

modest in magnitude, their consistency across evaluation 

metrics indicates that transformer architectures can provide a 

more balanced classification behavior for surface-related 

casting defects, such as porosity and blowholes. These 

findings support the potential of data-driven inspection 

systems to complement manual inspection practices by 

improving consistency and reducing subjectivity in quality 

assessment, particularly in medium-scale foundry operations. 

From a practical standpoint, the results suggest that automated 

inspection systems based on deep learning may contribute to 

improved quality control processes and reduced material 

waste when deployed under appropriate operating conditions. 

However, the findings of this study are limited to the 

evaluated dataset and experimental setup, and further 

validation using larger and more diverse datasets would be 

required to establish robustness and generalizability in real-

world industrial scenarios. Future work may focus on 

enhancing system applicability by integrating automated 

material handling mechanisms, such as conveyor-based 

inspection, incorporating controlled LED illumination to 

stabilize imaging conditions, and expanding locally sourced 

datasets through collaboration with small and medium-scale 

foundries. Increasing dataset diversity and operational 

variability would further support the evaluation of model 

robustness and facilitate broader adoption of intelligent 

inspection systems in industrial manufacturing. 
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