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ABSTRACT 

In this study, a review of the monotonicity of the hazard rate function of a probability distribution for survival 

models is presented. The conditions for monotonicity were discussed. The concept of monotonicity can be 

analytically derived and tested using the knowledge of elementary differential calculus. The New Mixture of 

Exponential-Gamma distribution was considered as a case study to illustrate the usefulness of these conditions 

on survival data analysis. 
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INTRODUCTION 

Survival analysis is a unit of statistics that is concerned with 

the study of the time to the occurrence of a particular event. 

Several disciplines have interest in the study of the time to the 

occurrence of certain event in excess of a given threshold and 

each field of application determine the name it is called. For 

instance, in Engineering, it is called reliability; in Actuaries 

science, it is called force of mortality; in Economics, it is 

called duration of event; in Sociology, it is called event of 

history; amongst others. Several probability distribution 

models such as exponential, Weibull, gamma, Logistic, 

Gompertz, Rayleigh, Lindley distributions etc., have been 

applied in the study and analysis of survival (reliability) data 

in literature.  Due to the inefficiency of some of these classical 

distributions, researchers have presented their generalized 

forms, thus leading to corresponding flexible hazard rate 

function for analysing survival data. Some of these 

generalizations include the works of Eugene et al. (2002), 

Ristic and Balakrishnan (2012), Bourguignon et al. (2014), 

Ekhosuehi et al. (2016), Ehiwario et al. (2023), Edeme and 

Okwonu (2024) etc.  

Hazard rate (HR) function is one of the probability measures 

that is of great importance in survival analysis. Its importance 

is related to the interpretation, which is concerned with the 

probability that an event will occur in a time interval ( )ttt +,  

given that it survived up to time t . It indicates how risk of 

failure varies with time. Being informed about the nature 

(monotonicity) of the hazard rate function, can help a 

researcher in terms of model selection for survival analysis. 

Some of this importance can be seen in the application of 

hazard rate (HR) concept to solve real life problems as used 

by Kiefer (1988), Bean (2001), Cleves (2008), Milly et al 

(2015), Laura and Read (2016), Alam and Almalki (2021), 

Turkson (2022), amongst others. 

 

MATERIALS AND METHODS 

Monotonicity of A Function 

In this section, the monotonicity of a function is discussed and 

considered to be the family of both monotone and non-

monotone functions.  This idea has been studied extensively 

in literature, reference can be found in Glaser (1980), Desai et 

al (2011), Ekhosuehi et al (2019), Shalki et al. (2021), Hornik 

(2024), Najafi and Marassaei (2025), Schulz and Genest 

(2025), only to mention a few. 

 

Monotone and Non-Monotone Functions 

A function 
f

 is said to be monotonic in a given interval say 
I  if the curve (graph) of the function is either completely 

increasing (non-decreasing) or decreasing (non-increasing) in

I . 

 

Definition 2.1 

Let 
f

 be the function of a random variable T, but not 

necessarily a probability density function (pdf) defined and 

differentiable in the interval I  where Itt 21,  such that

21 tt  , the followings holds 

(i) ( )tf  is monotone increasing (non-decreasing) 

function if and only if ( ) ( )21 tftf   for all 21 tt  . 

(ii) ( )tf
 is monotone decreasing (non-increasing) 

function if and only if ( ) ( )21 tftf   for all 21 tt  . 

(iii) ( )tf  is non-monotonic if its curve (graph) is either 

increasing-decreasing, decreasing-increasing or 

constant in the interval I  

Figures 1 and 2 are graphical illustrations of monotone 

decreasing and monotone increasing functions respectively. 
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Figure 1: Monotone Decreasing Function 

 

Figure 1 shows the density function of the exponential distribution, as an illustration of monotone decreasing function  

 

 
Figure 2: Monotone Increasing Function 

 

Figure 2 shows the cumulative distribution function of the 

Topp-Leone Lindley distribution, as an illustration of 

monotone increasing function. 

 

Monotonicity and Derivative 

The concept of monotonicity can easily be tested using the 

knowledge of elementary differential calculus. The test for 

monotonicity of a function can be explained as follows. 

Suppose 
f

is a function of a random variable T, continuous 

and differentiable on the interval I  where Itt 21, such 

that 21 tt   then 

(i) ( )tf  Is increasing in I  if ( ) 0 tf  for all t .  This 

implies monotone increasing function. 

(ii) ( )tf  Is decreasing in I  if ( ) 0 tf  for all t . This 

implies monotone decreasing function. 

(iii) ( )tf  Is non-monotonic in the interval I  if 

It  0  such that at
( ) 0, 00 == tftt

. This means that 

the function is either at maximum turning point, 

minimum turning point or inflexion (constant) point at

0tt = . 

 

Hazard Rate Function 

As stated in the introduction, the hazard rate is of great 

practical interest in survival analysis. The hazard rate of 

distribution function is denoted by 
( )th

 and it is defined as: 

( )
( )







 +

=
→ t

tTttTt
Limitth

t 





/Pr

0

( )
( )

( )
( )tF

tf

tS

tf

−
==

1  (1) 

where )(tS  is the survival function, )(tF  is the cumulative 

distribution function (cdf) and )(tf  is the probability density 

function (pdf). 

The hazard rate of a random variable t, is the instantaneous 

rate of failure given that the individual item (system) survived 

up to time t. ( ) tth  is the approximate probability of failure in 

the interval  )ttt +, given that it survived up to time t. This 

interpretation has drawn the interest of researchers in 

literature. Some of these can be found in Barlow et al (1963), 

Thomas et al (1971), Glaser (1980), Alam and Almalki 

(2021), Turkson (2022), and host an of others. 

 

Monotone Hazard Rate Function 

Given that ( )tf  and ( )tF  are the pdf and the cdf of random 

variable T respectively. From (1), if ( ) ( ) ( ) tFtfth −= 1/  is 
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increasing for all values of ( ) ,0t  then ( )tf  or ( )tF  has a 

monotone-increasing hazard rate (IHR). In the same way, if 
( ) ( ) ( ) tFtfth −= 1/  is decreasing for all values of ( ) ,0t  then 

( )tf  or ( )tF  has a monotone decreasing hazard rate (DHR). 

In survival analysis, probability distribution with IHR are 

useful models for fitting data from a system without 

improvement over the time. For instance, wearing of machine 

parts, aging in life organs etc. while the probability 

distribution with DHR represents a system with an 

improvement over the time. For instance, maintenance of a 

device helps to reduce failure, reduction of polio patients 

because of vaccination, and so on. 

As an illustrative example, we consider the Lindley 

Exponentiated-Exponential (LEE) distribution proposed by 

Nzei and Ekhosuehi (2017). The pdf and cdf of LEE are given 

by: 

( ) 0),(;0,1
1

)(
2

+
+

= − 


  tettf t

  (2) 

and  

( ) 0),(;0,
1

11 








+
+−= − 



  te
t

tF t

. (3) 

The hazard rate function which is of great interest in this study 

is given by: 

( )
( )

t

t
th





++

+
=

1

12

    (4) 

 

 
Figure 3: Monotone Increasing Hazard Rate of LEE Distribution 

 

 
Figure 4: Monotone Decreasing Hazard Rate of LEE Distribution 

 

Figures 3 and 4 shows the IHR and the DHR functions 

respectively of the LEE distribution. The hazard rate function 

of the LEE distribution exhibit both increasing hazard rate 

(IHR) and decreasing hazard rate (DHR) for some fixed 

values of the parameters. Hence, the LEE distribution has a 

monotone hazard function.  

 

Non-Monotone Hazard Rate 

The development of more flexible distribution model to solve 

real life problems, gave rise to a corresponding more flexible 

hazard rate in survival analysis. In this case, the hazard rate 
( )th  is not limited at some points ( ) ,0it , ,3,2,1,0=i  from 

either increasing continuously or decreasing continuously 

which forms turning points. Hence, ( )tf  or ( )tF  has a non-

monotone hazard rate. The nature of the Non-Monotone 

hazard rate function includes the Bathtub hazard rate (BTHR), 

upside down Bathtub hazard rate (UBTHR) and constant 

hazard rate (CTHR). 

 

Monotonicity of HRF 

The analytical determination of the conditions for 

monotonicity of hazard rate was considered in this section. 

The nature of the hazard rate includes IHR, DHR, BTHR, 

UBTHR and CTHR. We make the following assumptions for 

better understanding. 
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i. ( )tf  is defined and positive in ( ),0  i.e. ( ) 0tf for all 
0t  

ii. ( )tf  is continuous in ( ),0  

iii. ( )tf  is twice differentiable in 
( ),0  

 

Conditions for Monotonicity of HRF 

In this section, we discuss the conditions for the monotonicity 

of hazard rate of a probability distribution for modelling in 

survival analysis following the methodology of Glaser (1980). 

To obtain these conditions analytically, we define  ( )tZ  as the 

reciprocal of the hazard rate function, see Desai et al (2011) 

for more detail. 

( )
( )

( )
( )tf

tS

th
tZ ==

1

    (5) 

where ( ) 0tZ  and twice differentiable on the interval ( ),0 , 

so that 

( )
( )  ( ) ( )

( ) 2

2

tf

tStftf
tZ

−−
=

( ) ( )

( ) 2
1

tf

tStf 
−−=

( ) ( ) 1−= ttZ   (6) 

 where 
( )

( )
( )tf

tf
t


−=

 

To study the monotonicity of hazard rate of any survival time 

distribution model, it is sufficient to examine the behaviour of 

)(t
 which determine the shape of the hazard rate 

 
( )

( )
( )tf

tf
t


−= ( )t−=

 

Since 
( ) 

( )
( )

( )t
tf

tf
tf

dt

d
=


=ln

 

Now, 

( ) ( )tt  −=
    (7) 

where ( ) ( ) tft ln=   and ( ) ( )tt  −= .  Hence the following 

conditions holds for the hazard rate monotonicity: 

(i) If ( ) 0 t  for all 0t , then we have IHR 

(ii) If ( ) 0 t  for all 0t , then we have DHR 

(iii)  Given that there exist 00 t  such that ( ) 0 t  for all 

( )0,0 tt , 
( ) 00 = t

 and ( ) 0 t , 0tt  ,  then we have 

BTHR with minimum turning point at 0t  

(iv)  Given that there exist 00 t  such that ( ) 0 t  for all 

( )0,0 tt , 
( ) 00 = t  and ( ) 0 t , 0tt  ,  then we have 

UBTHR with maximum turning point at 0t  

(v) If ( ) 00 = t   for all 0t , then we have CTHR. 

Remark: it follows from the above conditions that a 

researcher can determine the nature of hazard rate function of 

a probability distribution with the pdf provided the that it is 

defined and twice differentiable in the given interval I. 

 

RESULTS AND DISCUSSION 

Application to New Mixture of Exponential-Gamma 

(Nmeg) Distribution. 

In this section, the application of the hazard rate monotonicity 

condition is illustrated with the New Mixture of Exponential-

Gamma (NMEG) Distribution proposed by Ekhosuehi et al 

(2020). 

The density function of the new mixture distribution is given 

as 

( )
( )
( )

0,0,0;
1

1
1

,; −
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

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t
tf

.  (8) 

Equation (5) is a mixture of exponential, ( )tf1  and gamma 
( )tf2  distributions respectively of a random variable T, with 

the mixture density given by: 

 
( ) ( ) ( ) ( )tfwtwftf 211 −+=

 

where 10  w such that +
=

1

1
w

, is the mixing proportion. 

The corresponding cumulative distribution function is given 

by: 

( )
( )
( )

1,0,0
,

1
1

1
,, 
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
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
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
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. (9) 

where 
( )t ,

 is the lower case incomplete gamma 

function and ( )  is the complete gamma function.  

 

Special Case of The NMEG Distribution 

The NMEG distribution includes some existing distributions 

as special cases:  

i. If the shape parameter 1=  , then the NMEG reduces 

to exponential distribution with density function  

( ) 0,0;; −=  ttetEf
 

ii. If 1= , the NMEG reduces to standardized one 

parameter Lindley distribution with pdf  
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The Survival and Hazard Rate Function 

The survival (Reliability) and the hazard rate functions of the 

NMEG distribution are defined respectively as: 

( ) ( )
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Monotonicity of NMEG Hazard Rate 

In this section, the monotonicity of the NMEG distribution 

hazard rate functions in (8) is discussed using theorem 1 

below. 

Theorem 1: The monotonicity of the hazard rate function of 

the NMEG distribution can be summarized as follows: 

(i) Constant for 1= , for all 0, t  

(ii) Decreasing when 1 , for all 0, t  

(iii) Increasing when 31   , for all 0, t  

(iv) Bathtub if  
3

, 1  for all 0t  

Proof. 

Given that 
)(tf

 is the pdf of the NMEG distribution, we 

examine the behaviour of )(th  by considering the behaviour 

of 
)(t

 defined in (7) as: 

( ) )(tt  −=
 

where  

)(ln)( tft =   tt 
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     (15) 

From equation (15), using the shape parameter   as the 

determining parameter, we obtain the results as follows: 

 

(i) At 1=  and 0 , 0)( = t  for all values of t, 

hence the NMEG has a constant hazard rate (CTHR) 

function. 

 

(ii) If 1 and 0 , we can clearly see that 0)(  t  for 

all t. hence the NMEG hazard rate is decreasing 

(DHR). 

(iii) If 31   , for all 0, t , we have 0)(  t  for all 

values of t, this means that NMEG has increasing 

hazard rate (IHR). 

 

(vi)  For 3  and 1 , there exist 00 t defined in 

NMEG distribution as 
( ) 1

1

10
!2 −

− 











 −
=






t

 such that ( ) 0 t  

for all ( )0,0 tt , ( ) 00 = t  and ( ) 0 t for 0tt  . This 

means that ( )t  changes its sign from negative to 

positive as t  increases. Thus, bathtub hazard rate 

(BTHR) with minimum point at 0t  

These results are demonstrated using Figure 5. 

 

 
Figure 5: The Hazard Rate Function of NMEG distribution 

 

Figure 5 above is the graphical illustration of the 

monotonicity of the NMEG distribution as proved above 

theorem. 

 

CONCLUSION 

In this study, we discussed the useful conditions for 

determining the nature (monotonicity) of hazard rate of 

probability distribution analytically. It was established that 

the monotonicity of hazard rate function of probability 

distribution can be determine when the density function is 

defined and twice differentiable.  The NMEG distribution was 

used to illustrate the application of these conditions to HRF of 

Lifetime models. 
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