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ABSTRACT

In this study, a review of the monotonicity of the hazard rate function of a probability distribution for survival
models is presented. The conditions for monotonicity were discussed. The concept of monotonicity can be
analytically derived and tested using the knowledge of elementary differential calculus. The New Mixture of
Exponential-Gamma distribution was considered as a case study to illustrate the usefulness of these conditions

on survival data analysis.
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INTRODUCTION

Survival analysis is a unit of statistics that is concerned with
the study of the time to the occurrence of a particular event.
Several disciplines have interest in the study of the time to the
occurrence of certain event in excess of a given threshold and
each field of application determine the name it is called. For
instance, in Engineering, it is called reliability; in Actuaries
science, it is called force of mortality; in Economics, it is
called duration of event; in Sociology, it is called event of
history; amongst others. Several probability distribution
models such as exponential, Weibull, gamma, Logistic,
Gompertz, Rayleigh, Lindley distributions etc., have been
applied in the study and analysis of survival (reliability) data
in literature. Due to the inefficiency of some of these classical
distributions, researchers have presented their generalized
forms, thus leading to corresponding flexible hazard rate
function for analysing survival data. Some of these
generalizations include the works of Eugene et al. (2002),
Ristic and Balakrishnan (2012), Bourguignon et al. (2014),
Ekhosuehi et al. (2016), Ehiwario et al. (2023), Edeme and
Okwonu (2024) etc.

Hazard rate (HR) function is one of the probability measures
that is of great importance in survival analysis. Its importance
is related to the interpretation, which is concerned with the

probability that an event will occur in a time interval (t t+a)

given that it survived up to time L. 1t indicates how risk of
failure varies with time. Being informed about the nature
(monotonicity) of the hazard rate function, can help a
researcher in terms of model selection for survival analysis.
Some of this importance can be seen in the application of
hazard rate (HR) concept to solve real life problems as used
by Kiefer (1988), Bean (2001), Cleves (2008), Milly et al
(2015), Laura and Read (2016), Alam and Almalki (2021),
Turkson (2022), amongst others.

MATERIALS AND METHODS

Monotonicity of A Function

In this section, the monotonicity of a function is discussed and
considered to be the family of both monotone and non-
monotone functions. This idea has been studied extensively
in literature, reference can be found in Glaser (1980), Desai et
al (2011), Ekhosuehi et al (2019), Shalki et al. (2021), Hornik
(2024), Najafi and Marassaei (2025), Schulz and Genest
(2025), only to mention a few.

Monotone and Non-Monotone Functions

A function f is said to be monotonic in a given interval say
I €M if the curve (graph) of the function is either completely
increasing (non-decreasing) or decreasing (non-increasing) in
.

Definition 2.1
Let f be the function of a random variable T, but not
necessarily a probability density function (pdf) defined and
differentiable in the interval | €® where w2 €1 sych that
4 <12 the followings holds
(i) f(t) is monotone increasing (non-decreasing)
function if and only if ()< f(t2) forants <tz
(i) f(t) is monotone decreasing (non-increasing)
function if and only if ()= f(t2) for qi L <tz
(iii) f(t) is non-monotonic if its curve (graph) is either
increasing-decreasing,  decreasing-increasing  or

constant in the interval I
Figures 1 and 2 are graphical illustrations of monotone
decreasing and monotone increasing functions respectively.
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Figure 1: Monotone Decreasing Function

Figure 1 shows the density function of the exponential distribution, as an illustration of monotone decreasing function
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Figure 2: Monotone Increasing Function

Figure 2 shows the cumulative distribution function of the
Topp-Leone Lindley distribution, as an illustration of
monotone increasing function.

Monotonicity and Derivative

The concept of monotonicity can easily be tested using the
knowledge of elementary differential calculus. The test for
monotonicity of a function can be explained as follows.

Suppose f is a function of a random variable T, continuous
and differentiable on the interval | €® where W2 €1 sych
that 1 <2 then

() O 1s increasing in | €% if >0 for ant. This
implies monotone increasing function.

i) 0 1s decreasing in 1<% if F®<0 for anl. This
implies monotone decreasing function.
(iii) f(t) Is non-monotonic in the interval | €N i

3 to €l guch that att=tor ®0)=0_ This means that
the function is either at maximum turning point,
minimum turning point or inflexion (constant) point at
t=tg

Hazard Rate Function
As stated in the introduction, the hazard rate is of great
practical interest in survival analysis. The hazard rate of

distribution function is denoted by h(t) and it is defined as:
o (prtsT <t a2y _fH)_ ()
-y FEEEE SR

where S(®) is the survival function, F® is the cumulative
distribution function (cdf) and f® is the probability density
function (pdf).

The hazard rate of a random variable t, is the instantaneous
rate of failure given that the individual item (system) survived
up to time t. "t9tjs the approximate probability of failure in

the interval [t t+ ®)given that it survived up to time t. This
interpretation has drawn the interest of researchers in
literature. Some of these can be found in Barlow et al (1963),
Thomas et al (1971), Glaser (1980), Alam and Almalki
(2021), Turkson (2022), and host an of others.

Monotone Hazard Rate Function
Given that f®) and F(t) are the pdf and the cdf of random
variable T respectively. From (1), if h(t)= f (t)/fL- F (1) is
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increasing for all values of t<0.) then 1) or F(t) has a
monotone-increasing hazard rate (IHR). In the same way, if

h(t)=f (/11— F(0)] is decreasing for all values of t<(0.%) then

) or F(t) has a monotone decreasing hazard rate (DHR).
In survival analysis, probability distribution with IHR are
useful models for fitting data from a system without
improvement over the time. For instance, wearing of machine
parts, aging in life organs etc. while the probability
distribution with DHR represents a system with an
improvement over the time. For instance, maintenance of a
device helps to reduce failure, reduction of polio patients
because of vaccination, and so on.

Nzei et al.,

FJS

As an illustrative example, we consider the Lindley
Exponentiated-Exponential (LEE) distribution proposed by
Nzei and Ekhosuehi (2017). The pdf and cdf of LEE are given
by:

_po* -Bot :
f(t)fl+9(1+ﬁt)e ,1>0; (8,60)>0 @
and

_1_(1.B0t).-pot .

F(t)=1 [1+1+9)e L t>0; (9,/3)>o. @
The hazard rate function which is of great interest in this study
is given by:
)= 020+ £Y)
140+ ft
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Figure 4: Monotone Decreasing Hazard Rate of LEE Distribution

Figures 3 and 4 shows the IHR and the DHR functions
respectively of the LEE distribution. The hazard rate function
of the LEE distribution exhibit both increasing hazard rate
(IHR) and decreasing hazard rate (DHR) for some fixed
values of the parameters. Hence, the LEE distribution has a
monotone hazard function.

Non-Monotone Hazard Rate

The development of more flexible distribution model to solve
real life problems, gave rise to a corresponding more flexible
hazard rate in survival analysis. In this case, the hazard rate

h(t) s not limited at some pointstie(o"’o), i=0123.... from
either increasing continuously or decreasing continuously

which forms turning points. Hence, f®) or F(t) has a non-
monotone hazard rate. The nature of the Non-Monotone
hazard rate function includes the Bathtub hazard rate (BTHR),
upside down Bathtub hazard rate (UBTHR) and constant
hazard rate (CTHR).

Monotonicity of HRF

The analytical determination of the conditions for
monotonicity of hazard rate was considered in this section.
The nature of the hazard rate includes IHR, DHR, BTHR,
UBTHR and CTHR. We make the following assumptions for
better understanding.
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i. T is defined and positive in ©=) je. f(U)>0for 4
t>0
i. T is continuous in (0:=)

ii. ) is twice differentiable in (0°)

Conditions for Monotonicity of HRF

In this section, we discuss the conditions for the monotonicity
of hazard rate of a probability distribution for modelling in
survival analysis following the methodology of Glaser (1980).

To obtain these conditions analytically, we define Z(t) asthe
reciprocal of the hazard rate function, see Desai et al (2011)
for more detail.

2(1)--L S0

h(t) f(t) ©)

where Z(t)>0 and twice differentiable on the interval (O’OO),
so that
(o —FOP - 0s@) __,_ f'Ust)
PO Tor =zl 1
f1(t)
plt)=-—=
where f(t)
To study the monotonicity of hazard rate of any survival time
distribution model, it is sufficient to examine the behaviour of

(6)

¢(t) which determine the shape of the hazard rate
oy-—0_
i =—7'()
d f'(t)
—In[f(t)]=— =)
Since dt f(t)
Now,
#'(t)=—n"(t) @
where 70=I[TO] ang 90 =70 Hence the following
conditions holds for the hazard rate monotonicity:
) 1 #©>0 forall t>0, then we have IHR

(i) 1F#®<0 forall t>0, then we have DHR

(iii)  Given that there exist to >0 guch that #'(t)<0 for all
te©to) #(to)=0 gng #0>0 t>to then we have
BTHR with minimum turning point at tO

(iv)  Given that there exist ©0 > © such that #'1)>0 for ail

te(0 1) #(to)=0 4ng #t<0 t>t  then we have

UBTHR with maximum turning point at tO
(v) 1f #t)=0 forallt>0, then we have CTHR.
Remark: it follows from the above conditions that a
researcher can determine the nature of hazard rate function of
a probability distribution with the pdf provided the that it is
defined and twice differentiable in the given interval I.

RESULTS AND DISCUSSION

Application to New Mixture of Exponential-Gamma
(Nmeg) Distribution.

In this section, the application of the hazard rate monotonicity
condition is illustrated with the New Mixture of Exponential-
Gamma (NMEG) Distribution proposed by Ekhosuehi et al
(2020).

The density function of the new mixture distribution is given
as

f(t ﬂ,i):ﬁ{h ﬂ(?‘();{l

}e*ﬂ;r>o,,1>o,,5>o

®)
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Equation (5) is a mixture of exponential, f(t) and gamma

f2(t) distributions respectively of a random variable T, with
the mixture density given by:

FO)=wi1(O)+@-w)fa(t)

-
where 0 SW<Iguchthat 1+, is the mixing proportion.
The corresponding cumulative distribution function is given
by:

F(t,ﬂ,i):i{l—e_ﬂ +ﬁ7(ﬂ’ﬂ)} t>0, >0, f>1

1+p F(ﬂ) (9)

where }/(ﬂ,ﬁt) is the lower case incomplete gamma
function and r() is the complete gamma function.

Special Case of The NMEG Distribution
The NMEG distribution includes some existing distributions
as special cases:
i. If the shape parameterﬁ =1 then the NMEG reduces
to exponential distribution with density function
fe(t )= 150,450

i, 1fA=1 , the NMEG reduces to standardized one
parameter Lindley distribution with pdf

_ 1 AL .
fSL(t)fﬁ[h- 05 }e 1t>0,8>0

The Survival and Hazard Rate Function
The survival (Reliability) and the hazard rate functions of the
NMEG distribution are defined respectively as:

S(t; 1, p)=1- F(t;i,ﬂ):l—i{nﬂy(ﬂ'ﬂ)—e’)'t}

1+ r(p) (10)
and
1{“%@71}97&
RO 2 I N B
h(t: 2.5)= 5(’)71%7{“%*9_1{}
a0 (1)

Monotonicity of NMEG Hazard Rate

In this section, the monotonicity of the NMEG distribution
hazard rate functions in (8) is discussed using theorem 1
below.

Theorem 1: The monotonicity of the hazard rate function of
the NMEG distribution can be summarized as follows:

() constant for # =1 foran 4 t>0

(i) Decreasing when B <1, forall 4 t>0
(iii)  Increasing when 1<A <3 foran 4 t>0
(v) Bathwbif #=3 1>1grqn t>0
Proof.

Given that f (t) is the pdf of the NMEG distribution, we
examine the behaviour of "® by considering the behaviour

of ¢'(t) defined in (7) as:

#t)=-n"®

where

_ A A-Lp-1]_,
() =1In f(t) Jn{m]nn[ﬂﬁﬂﬁl A1t
_ BB P2

" )
"0y g

(12)
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7' = [l"(/’) +ﬂiﬁ*11ﬁfllg(ﬁ,1)(/3, PSS [/3(/1—1);/3*115*2]2
)+ pip 181

) (13)
Thus
o)== 2~ LLD 2

; 'y +ﬂlﬂ’ltﬂ’l (14)
an

I Y N M VY e
[r(p) v piP ’]1/”’1]2

#(t)=-n"()

(15)
From equation (15), using the shape parameter B as the
determining parameter, we obtain the results as follows:

(i) At B=1 ang A >0, #®=0 tor all values of t,
hence the NMEG has a constant hazard rate (CTHR)
function.

Nzei et al.,
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(i) If B <:I'and/l > 0, we can clearly see that #'1<0 for
all t. hence the NMEG hazard rate is decreasing
(DHR).

IF1<A<3 for all#t>0 we have #® >0 for all
values of t, this means that NMEG has increasing
hazard rate (IHR).

(iii)

For 823 and 4>1 there exist ' >0 defined in

lo:[(ﬁ%)ﬂ!]ﬁ ,
NMEG distribution as ° 77 )  such that #t)<0

for all t=@t) ¢(0)=0 ang #1)>0 for t>to  This
means that #(t) changes its sign from negative to
positive as t increases. Thus, bathtub hazard rate

(vi)

(BTHR) with minimum point at tO
These results are demonstrated using Figure 5.
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Figure 5: The Hazard Rate Function of NMEG distribution

Figure 5 above is the graphical illustration of the
monotonicity of the NMEG distribution as proved above
theorem.

CONCLUSION

In this study, we discussed the useful conditions for
determining the nature (monotonicity) of hazard rate of
probability distribution analytically. It was established that
the monotonicity of hazard rate function of probability
distribution can be determine when the density function is
defined and twice differentiable. The NMEG distribution was
used to illustrate the application of these conditions to HRF of
Lifetime models.
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