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ABSTRACT

In this research, a three-step class of numerically stable block integrators based on top order methods was
developed for solutions of stiff chemical kinetic problems. Firstly, the discrete schemes of the method were
obtained from the same continuous formulation using the multistep collocation approach as block integrators.
Secondly, Stability analysis of the newly derived method was carried out and it has shown to be consistent,
zero-stable and A-stable. Numerical results were generated to investigate the influence of top order methods on
stiff chemical kinetics problems. the results showed that the new method compare favorably with existing

methods in the literature.
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INTRODUCTION

The foundation of many scientific and technical fields is
chemical kinetics, which is the study of the rates and
mechanisms of chemical reactions. The ability to precisely
model and anticipate the temporal evolution of chemical
systems is essential for understanding everything from
intricate biochemical pathways in live beings to combustion
processes in automobile engines. (Lambert, 1991; Fatunla,
1988). However, a significant challenge arises when dealing
with what are known as "stiff" problems in chemical kinetics.
Stiff  differential equations typically involve multiple
components that change at vastly different rates (multiple
timescales). A common definition states that a differential
equation is stiff if it contains some components with very
small-time constants (fast-changing) alongside others with
much larger time constants (slow-changing). The stiff
equation is of the form:

¥ =f0y),y'(x0) =yo xela,b],yeR ()

Where f: R X R™ - R™,y,y, € R™,m > 1 is a continuous
and differentiable function, the jacobian of the equation (1)
vary slowly and the eigen values have negative real parts. The
function f in equation (1) is assumed to satisfy the conditions
of existence and uniqueness of the solution in the interval
[a, b]. (Joshua, 2022; Yelwa, I. A., et al., 2025).

MATERIALS AND METHODS

Generally, numerical methods for solving stiff ODEs have
been widely used but some suffer from limitations that impact
their effectiveness in certain areas. However, Second
derivative methods have been known to be stable, convergent
and suitable for numerical integration of stiff systems of
ordinary differential equations. A lot of methods have been
proposed for in the literature for the solution of stiff systems.
Notably among them are Bakari, Skwame & Kumleng, (2018)
proposed an application of second derivative backward
differentiation formulae hybrid block method on stiff ordinary
differential equations, Adoghe, Ukpebor & Akhanolu, (2024)
developed a second derivative methods with hybrid predictors
for solving stiff and non-stiff ordinary differential equations.
Brugnano & Trigiante (1998) introduced Top order methods
as Boundary Value Methods (BVMs) which belongs to the
group of symmetric schemes. According to the authors, TOM
methods cannot be obtained from the same continuous
formulation hence, the need for additional methods as initial

method and final methods. Top order methods have specific
characteristics such as; symmetric schemes, possible order of
2k and they have odd step numbers of k =2v —1,v > 1.
Other scholars who have worked on top order methods
(TOMs) include Awari, Taparki & Kumleng, (2021), they
developed a second derivative block type top order method
(SDBTOM) using the Rodriguez polynomial as a basis
function.

In this paper, we derived all the discrete schemes from the
same continuous formulation using multistep collocation
approach as basis function to avoid the need of self-starters
and pairing with any other method by evaluating the
continuous formulation and their second derivatives at some
grid points to obtain the discrete schemes that will be used in
block form as Block Top Order Methods.

Definition 1: (Butcher, 2016)

A linear multistep method (LMM) is a numerical technique
used to approximate the solutions of ordinary differential
equations (ODEs). Mathematically, a LMM for solving initial
value problem (1) can be written as:

0@ Yne; = XS0 Bifn+) 2

Where a; and ; are the unknown coefficients of the method.
Definition 2: (Brugnano & Trigiante, 1998)

A linear multi-step method LMM (2), is said to be symmetric
if the coefficients a; and B; of the polynomials p(z) and o (z)
respectively are symmetric (bilateral).

Definition 3: (Omar & Suleiman, 2005)

Block methods are the set of LMMs applied simultaneously
to a problem in order to yield a better approximation.
Definition 4: (Lambert, 1991)

A numerical method is said to be A-stable if its region of
absolute stability contains the whole of the left-hand plane
(RehA < 0).

Derivation of the Method

we shall derive the continuous formulae of the generalized k-
step top order method using the multistep collocation
approach by Onumanyi, et al., (1994). Here, the number of
interpolation points t = k and colocation points m = k + 1,
the generalized continuous formula of a k — step Top Order
Method is given in the form:

y() = 523 0 (0Oynsj + RS0 B farj ()
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where x € [x,, x,.4x] and a;(x) and B;(x) are the continuous
coefficients of the method and defined as:

aj(x) =X e xt, j=01, .t - 1
hB;(x) = X B jaax’, j=0,1,..,m—1
using matrix equation of the form
DC =1 4)
1 x, 0t .. X, bt
(1 Xn+1 Xnar? . EAT j
D= Xpat-1 Xnie-1° - Xyt 1t+m ! | (5)

(t +m— Dx,t+m2 )

|1
\0 1 2,
0 1 21 t+m-2

t+m—Dxpq

Qo1 a1t Q1 hpBo,1 hBm-1.1
a a R h hBm—

c= ?,z 12 t:1,2 ﬂ:o,z ﬂm: 1,2 (6)
Qot+m  Ait+m  *° Xe—1t4m hBotsm hﬁm—l,H—m

It follows from (6) that the columns of C = D1, gives the
continuous coefficients a;(x) and g;(x). Block top order
methods for k = 3 was derived.

To derive the method for k=3, we shall obtain the continuous
formula from the generalized K-step continuous formula as:
y() = ag(X)yn + a1 () Yne1 + @2 (Dynyz + B (O fn +
B1(0) fr1 + B2 () frz + B3 (X) fras] (7

The D-matrix for k=3 was extracted from the K-step D-
matrix using the multlstep collocatlon approach as:

1 x, x2, x,° Xt x,° X,°
3 4 5 6
1 Xper ¥ P X g XS

1 Xz ¥z %Pz e Care *Cape
D=10 1 2x,  3x%, 4x%, 5x%,  6x%, (8)
| 0 1 2xyyq 3x%nyy 4%y Sxtny 6x%hy
\0 1 2xn4z 3X%n42 4x%n4n 5x*hin 6Xsn+2/
0 1 2xyy3 3x%n43 4x%n43 Sxtns 6x°n3

The continuous coefficients a; (x) and B; (x) were obtained
from the column of the inverse matrix € multiplied with a
rowmatrix [1 x x2 x3 x* x5 x©]asfollows:
ao(x) = agy + g 2x + @gax? + @gax® + agsx* +

@o6x° + g x°

ay(x) = @pq + apox + @y 3%% + @p0x3 + agsxt +

ay 6x° + g 7x°

ay(x) = agq + Ap X + Ay 3x? + Ay 4x3 + ay5x* +

a6x° + a7 x°

hBo(x) = hBo1 + hBoyx + hPo3x* + hBoax® + hBysx* +
hBoex> + hfo 7 %6

hB;(x) = hPy 1 + hByox + hPy3x% 4+ hPy 4x + hPy sx* +
hBy6x° + hpy 7x°

hB(x) = hPyq + hBypx + hPy3x* + By ax® 4+ hfy sx* +
hBaex° + hpBy 7x®

hBs(x) = hBsq + hPsox + hP33x% + AP 4x3 + hPssx* +
hBsex® + hpBs ;x®

The continuous coefficients of (6) are obtained as follows

2712 | 457 157 | 978 70
o _ise o)

(T +xn) = (1 T 4h3 ,2ht | an3  ans

@, (T +x,) = (361 2073 1275 2:6)
1 n 11h2  11h3 11h4 11h5  11h6
@ (T +x,) = (1531’ _4151’ 1957* 14775 1916)
2 n 44h2 44h3 22h* 44h5 ~ 44h®
10972 1831 82t* | 3175 57°
Bot+x,) = (1 - : )
33h 44h T 33n3 | a4n 66h
1451’ 4677t | 797° 1976
)= (-8 o _ 1ort)
B n) 11n 11n2 “4an? aznt 44h5
2772 1511 37t* | 597 27°
Ba(t+x,) = (- - -=)
22h 44h2 11h3  44h*  11hS
3 137% 5 76
)= (S ) ©
Bs( n) = 33k 11h% | 132h3 224 ' 13245 ©)

Substituting the coefficients into (7) yields the continuous
formulation of the method as

2712 4573 157*  97° 76
x)=(1-— — z _) +
y() ( 4h2  4h3 2nt " ans  ane) In
(361’2 207 15t* | 1278 21° ) (15312 41573
11h2  11h%® 11h*  11h5  11h® Yn+1 44h? 44h3
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19574 14715+1916) _l_(_[ 109t? | 183t 821t
22n*  aans | aans) Yn+2 33h ' 44h?  33h3
317° 57° )f ( 631’2+145‘r3 467t*  797°
44h*  66h5/ 7T 11h  11h?  44h3 = 22h*
197 27t | 15173 37¢* | 59¢%  21¢

B0 fon + (SR Sy
44h 22n ' 44h?  11n® ' a4kt 11h

72 73 137* 75 76

BB S 10
(33h 11h2  132h3  22h* = 132h5 fr+3 (10)

Where T = x — x,

Equation (10) was evaluated at 7 = 3h, and its second
derivative at points T = 3h, 2h to yield the three-step Block
Top order method as:

Yn+3 = Vn + 11yn+1
thn+2 + thn+3

3 27
11y‘n+2 + thn + thn+1 +

yZZ;Z = ﬁimshz —32312—; hfnes + o2 hfner + o hfoney +
2619 fn1+ o Y1 +—J/n .

Yn+1 = 55€n+2h2 11180 hfn+3 hfn+2 - Ehfn+1 -
Z hfo 2 Yz — oy (11)

The three step block top order method derived is now a second
derivative method because we evaluated at the second
derivative of the continuous formula.

Analysis and Implementation

In this subsection, the analysis of basic properties of the newly
derived method shall be carried out. These properties include
local truncation error, order, consistence, zero stability,
convergence and stability regions. The convergence of the
new block methods is determined using the approach of
Fatunla, (1995) and Bakari et al., (2018).

Order and Error Constant
Adopting the approach of [3], we associate the linear
difference operator £ defined by

LIy(x); h] = Xk olajy(x + jh) — hB;y' (x + jh) —
h?y;y" (x + jh)] (12)
Where y(x) is an arbitrary function, continuously

differentiable on an interval [a, b]. If we assume that y(x) has
as many higher derivatives as we require, then on Taylor
expanding about the point x, we obtain

LIy(x); h] = coy(x) + cthy” + -+ chIy @ (x) + -
where

Co=ag+a;+-ag

¢ = (ag +2a; + - +kay) = (Bo + fr + -+ Bi)

ki) = (By + 2B, + -+ KBy)

(13)

€ = 5(0(1 +2%a, +

1 1
C3 = ;(0(1 + 230(2 + -+ k3ak) _;(,81 + 22,81 + -+
K2Bi) = (1 +2y; + -+ ki)
Cq = ;(0(1 + anz + -+ kqak) - 1)' (,31 + Z(q 1)ﬁ2

+ k(q—l)ﬁk) — (]/ 4 20— 2)}’2 4o 4 k- Z)Vk)
qg=23,.. (14)
According to [8], the method in equation (11) has order p if
Co=0C =0Cp..=Cp=0,cp41 =0butcy,, #0.Thency,,
is called the error constant and c,,,hP*2y®*+2(x,) is the

principal local truncation error at the point x,,. Therefore, the
three-step block integrators based on top order method has

(q- 2)‘

uniform order p =5 and error constant is ¢, =
—1.95%x 1073
l—7.94 X 10‘4]

3.09 x 10™*

Consistency
The LMM is said to be consistent if it has order at least one,
p = 1. The three-step block integrators based on top order
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method are said to be consistent since the order is greater than
one. According to Lambert, (1991)It is important to note that
consistency controls the magnitude of the local truncation
error committed at each stage of the computation.

Zero Stability

For a block method, the method is said to be zero-stable if the
roots & s =1,2,...k of its first characteristic polynomial
p(&) = det(A©® — E) satisfy & <1, and any root with
modulus one has multiplicity not exceeding the order of the
differential equation [7]. The main consequence of zero-
stability is to control the propagation of the error as the
integration progresses. To determine the zero stability of the
new method, using the approach of [11]. The derived method
can be written in block form as

A<1)Yw+1 = A(o)yw—l + hBF,4
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The roots of the first characteristic equation p(¢) are obtained
& =1¢6=§=0

Convergence

Theorem 1 (Dahlquist, 1963)

The Dahlquist theorem of convergence states that for a
LMM applied to a sufficiently smooth differential equation,
convergence of the numerical solution to the exact solution
occurs if and only if the method is consistent and zero-
stable.

Region of Absolute Stability

The test equation vy’ = Ay as used by Yatim et al., (2012) was
inserted in the block methods to determine the regions of
absolute stability. The equation y’ = Ay and y” = A%y which
is equivalent to f, = Ay, fue1 = Wnir o frork = Wntro

Whose first characteristics polynomial is given as and g = A2V, Gnet = 22Vnats oo Gk = AYner Was
p(&) = det[¢A — B] substituted in the new method.
The first characteristic polynomial of the three-step block top  The stability polynomial, p(r) = det(rA — B)
order method (11) is given as: =2 3,5, 5 2,38 5 | 187 5.2, 187 2.3,
1164 291 1746 1746 6984
J27 00 -1 2L g2ga y 805 12, 517 13,2 Mi3ys A4
1 1 1 1 354—592 5 1746 1746 72 873
33 2017
4= _o4 1 0lp:= 00 97 Is differentiated with respect to z to give
9 ’ =35 34 38502 10,2, f 187 p2p2 4 M g2y
11 60é164 517 1746 1 873 176 2328 873
1 _20 00 a8 e 3—ﬁr3z+—r32——r3z3
48 The stability polynomial with its derivative are inserted into
-2 T f+1 MATLAB code to plot the stability region as shown in the
p(§) = det(§4 - B) = |- ¢ ¢ ; =B B figure.
¢ "% Tm
) 1
4 T T T !
1t .’/r__d_ ____‘EL\-R E
- ‘ ‘_\_‘_\\
T 1
]S e ,-f/// 4
_4 | 1 1 | |
-1 0 1 2 3 B 3

Figure 1: Region of Absolute St
Implementation
The three step block integrators based on top order methods
derived in this research was implemented efficiently without
requiring starting values and predictors. The implementation
of the method was carried out with the aid of 2021 MATLAB
programming language while the derivation of the method
was carried out with the aid of maple 18.

RESULTS AND DISCUSSION

In this section, some numerical and graphical results for some
stiff chemical kinetic problems shall be presented using the
newly derived 3SBITOM. This is intended to show the
performance of the methods on stiff chemical problems.

The following notations shall be used in the tables 1-3 and
figure 2-3.

3SBITOM: newly derived three-step block integrators based
on top order method.

EHPS: two-step second derivative method with equidistant
hybrid point space by [9]

4SSDM: four-step hybrid block extended second derivative
backward differentiation formula by [1].

2z 1
ability of 3SBITOM

Problem 1

Consider the Non-linear stiff chemical system in classical
dynamics given by

y; = —1002y, + 1000y2

¥z =1~ Y2(1+y2)

y:1(0) =1,y,(0) =1

This problem which is solved in the range 0 < x < 1 has the
exact solution,

y1(x) = exp(—2x),y,(x) = exp(—x)

The numerical and graphical results for problem 1 are
presented in table 1 and figure 2 respectively.

Problem 2.

Consider the stiff linear chemical kinetic problem given by
y1 = —100y; +9.901y,

¥z =0.1y; —y,

y1(0) = 1,,(0) = 10

Exact soln: y; (x) = e=%9%%,y,(x) = 1009

The numerical and graphical results for problem 2 are
presented in table 2-3 and figure 3 respectively.
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Figure 2: Solution Curve of 3SBITOM for Problem1
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Figure 3. Solution Curve of 3SBITOM for Problem 2
Table 1: Showing the Absolute Errors for Problem 1
H Vi 4SSDM EHPS 3SBITOM
0.01 V1 8.8401e-02 2.409e — 03 2.1720e — 07
Vo 9.7066e-02 3.7287e — 04 1.4625e — 09
0.05 V1 3.139e-02 6.9821e — 04 3.9503e — 05
Vo 7.9153e-02 9.1071e — 05 1.0154e — 08
0.001 V1 7.6391e — 02 1.3262e — 05 2.0928e — 06
Vs 5.4312e — 02 3.5891e — 06 2.3542e — 09
0.005 V1 5.8924e — 02 2.2883e — 06 2.3542e — 09
Vs 9.0635e — 02 8.9613e — 07 2.3542e - 10
Table 2: Solutions of Problem 2
X Num y1 Num y2 Exact y1 Exact y2
0 1 10 1 10
0.1 0.905743 9.057427 0.905743 9.057427
0.2 0.82037 8.203699 0.82037 8.203699
0.3 0.743044 7.43044 0.743044 7.43044
0.4 0.673007 6.730067 0.673007 6.730067
0.5 0.609571 6.095709 0.609571 6.095709
0.6 0.552114 5.521144 0.552114 5.521144
0.7 0.500074 5.000736 0.500074 5.000736
0.8 0.452938 452938 0.452938 4.52938
0.9 0.410245 4.102453 0.410245 4.102453
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Table 3: Showing the Absolute Errors for Problem 2

Katniyon and Kumleng
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X Erroryl Error y2
0 0 0

0.1 2.59E-10 2.59E-09
0.2 4.69E-10 4.69E-09
0.3 6.37E-10 6.37E-09
0.4 7.69E-10 7.69E-09
0.5 8.71E-10 8.71E-09
0.6 9.46E-10 9.46E-09
0.7 1.00E-09 1.00E-08
0.8 1.04E-09 1.04E-08
0.9 1.05E-09 1.05E-08

A class of three-step block integrator based on top order
methods was derived for the solutions of stiff chemical kinetic
problems using the multistep collocation as basis function.
We obtained the main scheme and the corresponding schemes
from the same continuous formula thereby, eradicating the
need for starting values associated with top order methods.
The method have uniform order of 5 thus, consistent. The
newly derived method is convergent and A-stable.

The method was implemented on two chemical kinetic
problems, and from table 1 and 3, the method is
computationally reliable.

CONCLUSION

Here, we have another configuration of TOM for the solution
of stiff chemical kinetic problems is now available. It has a
uniform order of 2k — 1, is zero stable and convergent. The
method’s efficacy and accuracy were demonstrated by
comparing the method’s results to those acquired using other
existing methods.
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