
THREE-STEP BLOCK INTEGRATORS …     Katniyon and Kumleng FJS 

FUDMA Journal of Sciences (FJS) Vol. 10 No. 1, January, 2026, pp 316 – 320 316 

8 

 

THREE-STEP BLOCK INTEGRATORS BASED ON TOP ORDER METHODS FOR SOLUTIONS OF STIFF 

CHEMICAL KINETICS PROBLEMS 

 

Katniyon, Anne Felix and Kumleng, Geoffrey Micah 

 

Department of Mathematics, University of Jos, Nigeria. 

 

*Corresponding authors’ email: katniyonanne@gmail.com  

 

ABSTRACT 

In this research, a three-step class of numerically stable block integrators based on top order methods was 

developed for solutions of stiff chemical kinetic problems. Firstly, the discrete schemes of the method were 

obtained from the same continuous formulation using the multistep collocation approach as block integrators. 

Secondly, Stability analysis of the newly derived method was carried out and it has shown to be consistent, 

zero-stable and A-stable. Numerical results were generated to investigate the influence of top order methods on 

stiff chemical kinetics problems. the results showed that the new method compare favorably with existing 

methods in the literature.   
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INTRODUCTION 

The foundation of many scientific and technical fields is 

chemical kinetics, which is the study of the rates and 

mechanisms of chemical reactions. The ability to precisely 

model and anticipate the temporal evolution of chemical 

systems is essential for understanding everything from 

intricate biochemical pathways in live beings to combustion 

processes in automobile engines. (Lambert, 1991; Fatunla, 

1988). However, a significant challenge arises when dealing 

with what are known as "stiff" problems in chemical kinetics. 

Stiff differential equations typically involve multiple 

components that change at vastly different rates (multiple 

timescales). A common definition states that a differential 

equation is stiff if it contains some components with very 

small-time constants (fast-changing) alongside others with 

much larger time constants (slow-changing). The stiff 

equation is of the form:  

𝑦′ = 𝑓(𝑥, 𝑦), 𝑦′(𝑥0) = 𝑦0   𝑥𝜖[𝑎, 𝑏], 𝑦𝜖ℝ  (1) 

Where 𝑓:ℝ × ℝ𝑚 → ℝ𝑚, 𝑦, 𝑦0 ∈ ℝ
𝑚, 𝑚 ≥ 1 is a continuous 

and differentiable function, the jacobian of the equation (1) 

vary slowly and the eigen values have negative real parts. The 

function 𝑓 in equation (1) is assumed to satisfy the conditions 

of existence and uniqueness of the solution in the interval 
[𝑎, 𝑏]. (Joshua, 2022; Yelwa, I. A., et al., 2025).  

 

MATERIALS AND METHODS 

Generally, numerical methods for solving stiff ODEs have 

been widely used but some suffer from limitations that impact 

their effectiveness in certain areas. However, Second 

derivative methods have been known to be stable, convergent 

and suitable for numerical integration of stiff systems of 

ordinary differential equations. A lot of methods have been 

proposed for in the literature for the solution of stiff systems. 

Notably among them are Bakari, Skwame & Kumleng, (2018) 

proposed an application of second derivative backward 

differentiation formulae hybrid block method on stiff ordinary 

differential equations, Adoghe, Ukpebor & Akhanolu, (2024) 

developed a second derivative methods with hybrid predictors 

for solving stiff and non-stiff ordinary differential equations. 

Brugnano & Trigiante (1998) introduced Top order methods 

as Boundary Value Methods (BVMs) which belongs to the 

group of symmetric schemes. According to the authors, TOM 

methods cannot be obtained from the same continuous 

formulation hence, the need for additional methods as initial 

method and final methods. Top order methods have specific 

characteristics such as; symmetric schemes, possible order of 

2𝑘 and they have odd step numbers of 𝑘 = 2𝑣 − 1, 𝑣 ≥ 1. 
Other scholars who have worked on top order methods 

(TOMs) include Awari, Taparki & Kumleng, (2021), they 

developed a second derivative block type top order method 

(SDBTOM) using the Rodriguez polynomial as a basis 

function. 

In this paper, we derived all the discrete schemes from the 

same continuous formulation using multistep collocation 

approach as basis function to avoid the need of self-starters 

and pairing with any other method by evaluating the 

continuous formulation and their second derivatives at some 

grid points to obtain the discrete schemes that will be used in 

block form as Block Top Order Methods. 

 

Definition 1: (Butcher, 2016)  

A linear multistep method (LMM) is a numerical technique 

used to approximate the solutions of ordinary differential 

equations (ODEs). Mathematically, a LMM for solving initial 

value problem (1) can be written as:   

∑ 𝛼𝑗𝑦𝑛+𝑗
𝑘
𝑗=0 = ℎ∑ 𝛽𝑗𝑓𝑛+𝑗

𝑘
𝑗=0    (2) 

Where 𝛼𝑗 𝑎𝑛𝑑 𝛽𝑗 are the unknown coefficients of the method.  

Definition 2: (Brugnano & Trigiante, 1998) 

A linear multi-step method LMM (2), is said to be symmetric 

if the coefficients 𝛼𝑗  and 𝛽𝑗  of the polynomials 𝜌(𝑧) and 𝜎(𝑧) 

respectively are symmetric (bilateral). 

Definition 3: (Omar & Suleiman, 2005) 

Block methods are the set of LMMs applied simultaneously 

to a problem in order to yield a better approximation. 

Definition 4: (Lambert, 1991)  

A numerical method is said to be A-stable if its region of 

absolute stability contains the whole of the left-hand plane 
(𝑅𝑒ℎ𝜆 < 0).  
 

Derivation of the Method 

we shall derive the continuous formulae of the generalized k-

step top order method using the multistep collocation 

approach by Onumanyi, et al., (1994). Here, the number of 

interpolation points 𝑡 = 𝑘 and colocation points 𝑚 = 𝑘 + 1, 

the generalized continuous formula of a 𝑘 − 𝑠𝑡𝑒𝑝 Top Order 

Method is given in the form: 

𝑦(𝑥) = ∑ 𝛼𝑗(𝑥)𝑦𝑛+𝑗
𝑘−1
𝑗=0 + ℎ∑ 𝛽𝑗(𝑥)𝑓𝑛+𝑗

𝑘
𝑗=0        (3) 
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where 𝑥 ∈ [𝑥𝑛, 𝑥𝑛+𝑘] and 𝛼𝑗(𝑥) and 𝛽𝑗(𝑥) are the continuous 

coefficients of the method and defined as: 

𝛼𝑗(𝑥) = ∑ 𝛼𝑗,𝑖+1𝑥
𝑖 ,𝑡+𝑚−1

𝑖=0  𝑗 = 0,1, … , 𝑡 − 1;  

ℎ𝛽𝑗(𝑥) = ∑ 𝛽𝑗,𝑖+1𝑥
𝑖 ,𝑡+𝑚−1

𝑖=0  𝑗 = 0,1,… ,𝑚 − 1  

using matrix equation of the form 

𝐷𝐶 = 𝐼     (4) 

𝐷 =

(

 
 
 
 
 

1 𝑥𝑛 𝑥𝑛
2 . . . 𝑥𝑛

𝑡+𝑚−1

1 𝑥𝑛+1 𝑥𝑛+1
2 . . . 𝑥𝑛+1

𝑡+𝑚−1

⋮ ⋮ ⋮ . . . ⋮
1 𝑥𝑛+𝑡−1 𝑥𝑛+𝑡−1

2 . . . 𝑥𝑛+𝑡−1
𝑡+𝑚−1

0 1 2𝑥0 . . . (𝑡 + 𝑚 − 1)𝑥0
𝑡+𝑚−2

⋮ ⋮ ⋮ . . . ⋮
0 1 2𝑥𝑚−1 . . . (𝑡 + 𝑚 − 1)𝑥𝑚−1

𝑡+𝑚−2)

 
 
 
 
 

 (5) 

And 

𝐶 = (

𝛼0,1 𝛼1,1 ⋯ 𝛼𝑡−1,1 ℎ𝛽0,1 ⋯ ℎ𝛽𝑚−1,1
𝛼0,2 𝛼1,2 ⋯ 𝛼𝑡−1,2 ℎ𝛽0,2 ⋯ ℎ𝛽𝑚−1,2
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮

𝛼0,𝑡+𝑚 𝛼1,𝑡+𝑚 ⋯ 𝛼𝑡−1,𝑡+𝑚 ℎ𝛽0,𝑡+𝑚 ⋯ ℎ𝛽𝑚−1,𝑡+𝑚

) (6) 

It follows from (6) that the columns of 𝐶 = 𝐷−1, gives the 

continuous coefficients 𝛼𝑗(𝑥) and 𝛽𝑗(𝑥). Block top order 

methods for 𝑘 = 3 was derived. 

To derive the method for k=3, we shall obtain the continuous 

formula from the generalized K-step continuous formula as: 

𝑦(𝑥) = 𝛼0(𝑥)𝑦𝑛 + 𝛼1(𝑥)𝑦𝑛+1 + 𝛼2(𝑥)𝑦𝑛+2 + ℎ[𝛽0(𝑥)𝑓𝑛 +
𝛽1(𝑥)𝑓𝑛+1 + 𝛽2(𝑥)𝑓𝑛+2 + 𝛽3(𝑥)𝑓𝑛+3]   (7) 

The D-matrix for k=3 was extracted from the K-step D-

matrix using the multistep collocation approach as: 

𝐷 =

(

 
 
 
 
 

1 𝑥𝑛 𝑥2𝑛 𝑥𝑛
3 𝑥𝑛

4 𝑥𝑛
5 𝑥𝑛

6

1 𝑥𝑛+1 𝑥2𝑛+1 𝑥3𝑛+1 𝑥4𝑛+1 𝑥5𝑛+1 𝑥6𝑛+1
1 𝑥𝑛+2 𝑥2𝑛+2 𝑥3𝑛+2 𝑥4𝑛+2 𝑥5𝑛+2 𝑥6𝑛+2
0 1 2𝑥𝑛 3𝑥2𝑛 4𝑥3𝑛 5𝑥4𝑛 6𝑥5𝑛
0 1 2𝑥𝑛+1 3𝑥2𝑛+1 4𝑥3𝑛+1 5𝑥4𝑛+1 6𝑥5𝑛+1
0 1 2𝑥𝑛+2 3𝑥2𝑛+2 4𝑥3𝑛+2 5𝑥4𝑛+2 6𝑥5𝑛+2
0 1 2𝑥𝑛+3 3𝑥2𝑛+3 4𝑥3𝑛+3 5𝑥4𝑛+3 6𝑥5𝑛+3)

 
 
 
 
 

  (8) 

The continuous coefficients 𝛼𝑗(𝑥) and 𝛽𝑗(𝑥) were obtained 

from the column of the inverse matrix 𝐶 multiplied with a 

row matrix [1 𝑥 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6] as follows: 

𝛼0(𝑥) = 𝛼0,1 + 𝛼0,2𝑥 + 𝛼0,3𝑥
2 + 𝛼0,4𝑥

3 + 𝛼0,5𝑥
4 +

𝛼0,6𝑥
5 + 𝛼0,7𝑥

6  

𝛼1(𝑥) = 𝛼1,1 + 𝛼1,2𝑥 + 𝛼1,3𝑥
2 + 𝛼1,4𝑥

3 + 𝛼1,5𝑥
4 +

𝛼1,6𝑥
5 + 𝛼1,7𝑥

6  

𝛼2(𝑥) = 𝛼2,1 + 𝛼2,2𝑥 + 𝛼2,3𝑥
2 + 𝛼2,4𝑥

3 + 𝛼2,5𝑥
4 +

𝛼2,6𝑥
5 + 𝛼2,7𝑥

6  

ℎ𝛽0(𝑥) = ℎ𝛽0,1 + ℎ𝛽0,2𝑥 + ℎ𝛽0,3𝑥
2 + ℎ𝛽0,4𝑥

3 + ℎ𝛽0,5𝑥
4 +

ℎ𝛽0,6𝑥
5 + ℎ𝛽0,7𝑥

6  

ℎ𝛽1(𝑥) = ℎ𝛽1,1 + ℎ𝛽1,2𝑥 + ℎ𝛽1,3𝑥
2 + ℎ𝛽1,4𝑥

3 + ℎ𝛽1,5𝑥
4 +

ℎ𝛽1,6𝑥
5 + ℎ𝛽1,7𝑥

6  

ℎ𝛽2(𝑥) = ℎ𝛽2,1 + ℎ𝛽2,2𝑥 + ℎ𝛽2,3𝑥
2 + ℎ𝛽2,4𝑥

3 + ℎ𝛽2,5𝑥
4 +

ℎ𝛽2,6𝑥
5 + ℎ𝛽2,7𝑥

6  

ℎ𝛽3(𝑥) = ℎ𝛽3,1 + ℎ𝛽3,2𝑥 + ℎ𝛽3,3𝑥
2 + ℎ𝛽3,4𝑥

3 + ℎ𝛽3,5𝑥
4 +

ℎ𝛽3,6𝑥
5 + ℎ𝛽3,7𝑥

6  

The continuous coefficients of (6) are obtained as follows 

𝛼0(𝜏 + 𝑥𝑛) = (1 −
27𝜏2

4ℎ2
+
45𝜏3

4ℎ3
−
15𝜏4

2ℎ4
+
9𝜏5

4ℎ3
−

𝜏6

4ℎ6
)  

𝛼1(𝜏 + 𝑥𝑛) = (
36𝜏2

11ℎ2
−
20𝜏3

11ℎ3
−
15𝜏4

11ℎ4
+
12𝜏5

11ℎ5
−

2𝜏6

11ℎ6
)  

𝛼2(𝜏 + 𝑥𝑛) = (
153𝜏2

44ℎ2
−
415𝜏3

44ℎ3
+
195𝜏4

22ℎ4
−
147𝜏5

44ℎ5
+
19𝜏6

44ℎ6
)  

𝛽0(𝜏 + 𝑥𝑛) = (𝜏 −
109𝜏2

33ℎ
+
183𝜏3

44ℎ2
−
82𝜏4

33ℎ3
+
31𝜏5

44ℎ4
−

5𝜏6

66ℎ5
)                  

  

𝛽1(𝜏 + 𝑥𝑛) = (−
63𝜏2

11ℎ
+
145𝜏3

11ℎ2
−
467𝜏4

44ℎ3
+
79𝜏5

22ℎ4
−
19𝜏6

44ℎ5
)  

𝛽2(𝜏 + 𝑥𝑛) = (−
27𝜏2

22ℎ
+
151𝜏3

44ℎ2
−
37𝜏4

11ℎ3
+
59𝜏5

44ℎ4
−

2𝜏6

11ℎ5
)   

𝛽3(𝜏 + 𝑥𝑛) = (
𝜏2

33ℎ
−

𝜏3

11ℎ2
+

13𝜏4

132ℎ3
−

𝜏5

22ℎ4
+

𝜏6

132ℎ5
) (9) 

Substituting the coefficients into (7) yields the continuous 

formulation of the method as  

𝑦(𝑥) = (1 −
27𝜏2

4ℎ2
+
45𝜏3

4ℎ3
−
15𝜏4

2ℎ4
+
9𝜏5

4ℎ3
−

𝜏6

4ℎ6
) 𝑦𝑛 +

(
36𝜏2

11ℎ2
−
20𝜏3

11ℎ3
−
15𝜏4

11ℎ4
+
12𝜏5

11ℎ5
−

2𝜏6

11ℎ6
) 𝑦𝑛+1 + (

153𝜏2

44ℎ2
−
415𝜏3

44ℎ3
+

195𝜏4

22ℎ4
−
147𝜏5

44ℎ5
+
19𝜏6

44ℎ6
) 𝑦𝑛+2 + (𝜏 −

109𝜏2

33ℎ
+
183𝜏3

44ℎ2
−
82𝜏4

33ℎ3
+

31𝜏5

44ℎ4
−

5𝜏6

66ℎ5
) 𝑓𝑛 + (−

63𝜏2

11ℎ
+
145𝜏3

11ℎ2
−
467𝜏4

44ℎ3
+
79𝜏5

22ℎ4
−

19𝜏6

44ℎ5
) 𝑓𝑛+1 + (−

27𝜏2

22ℎ
+
151𝜏3

44ℎ2
−
37𝜏4

11ℎ3
+
59𝜏5

44ℎ4
−

2𝜏6

11ℎ5
) 𝑓𝑛+2 +

(
𝜏2

33ℎ
−

𝜏3

11ℎ2
+

13𝜏4

132ℎ3
−

𝜏5

22ℎ4
+

𝜏6

132ℎ5
) 𝑓𝑛+3  (10) 

Where 𝜏 = 𝑥 − 𝑥𝑛 

Equation (10) was evaluated at 𝜏 = 3ℎ, and its second 

derivative at points  𝜏 = 3ℎ, 2ℎ  to yield the three-step Block 

Top order method as: 

𝑦𝑛+3 = 𝑦𝑛 +
27

11
𝑦𝑛+1 −

27

11
𝑦𝑛+2 +

3

11
ℎ𝑓𝑛 +

27

11
ℎ𝑓𝑛+1 +

27

11
ℎ𝑓𝑛+2 +

3

11
ℎ𝑓𝑛+3   

𝑦𝑛+2 =
22

873
𝑔𝑛+3ℎ

2 −
193

2619
ℎ𝑓𝑛+3 +

53

97
ℎ𝑓𝑛+2 +

75

97
ℎ𝑓𝑛+1 +

247

2619
ℎ𝑓𝑛 +

64

97
𝑦𝑛+1 +

33

97
𝑦𝑛  

𝑦𝑛+1 =
11

72
𝑔𝑛+2ℎ

2 −
1

180
ℎ𝑓𝑛+3 −

25

36
ℎ𝑓𝑛+2 −

25

36
ℎ𝑓𝑛+1 −

13

216
ℎ𝑓𝑛 +

59

48
𝑦𝑛+2 −

11

48
𝑦𝑛       (11) 

The three step block top order method derived is now a second 

derivative method because we evaluated at the second 

derivative of the continuous formula. 

 

Analysis and Implementation 

In this subsection, the analysis of basic properties of the newly 

derived method shall be carried out. These properties include 

local truncation error, order, consistence, zero stability, 

convergence  and stability regions. The convergence of the 

new block methods is determined using the approach of 

Fatunla, (1995) and Bakari et al., (2018). 

 

Order and Error Constant  

Adopting the approach of [3], we associate the linear 

difference operator ℒ defined by 

ℒ[𝑦(𝑥); ℎ] = ∑ [𝛼𝑗𝑦(𝑥 + 𝑗ℎ) − ℎ𝛽𝑗𝑦
′(𝑥 + 𝑗ℎ) −𝑘

𝑗=0

ℎ2𝛾𝑗𝑦
′′(𝑥 + 𝑗ℎ)]     (12) 

Where 𝑦(𝑥) is an arbitrary function, continuously 

differentiable on an interval [𝑎, 𝑏]. If we assume that 𝑦(𝑥) has 

as many higher derivatives as we require, then on Taylor 

expanding about the point x, we obtain  

ℒ[𝑦(𝑥); ℎ] = 𝑐0𝑦(𝑥) + 𝑐1ℎ𝑦
′ +⋯+ 𝑐𝑞ℎ

𝑞𝑦(𝑞)(𝑥) + ⋯  (13) 

where 

𝑐0 = 𝛼0 + 𝛼1 +⋯𝛼𝑘 

𝑐1 = (𝛼1 + 2𝛼2 +⋯+ k𝛼𝑘) − (𝛽0 + 𝛽1 +⋯+ 𝛽𝑘) 

𝑐2 =
1

2!
(𝛼1 + 2

2𝛼2 +⋯+ k
2𝛼𝑘) − (𝛽1 + 2𝛽2 +⋯+ k𝛽𝑘) 

𝑐3 =
1

3!
(𝛼1 + 2

3𝛼2 +⋯+ k
3𝛼𝑘) −

1

2!
(𝛽1 + 2

2𝛽1 +⋯+

𝑘2𝛽𝑘) − (𝛾1 + 2𝛾2 +⋯+ k𝛾𝑘)  

𝑐q =
1

𝑞!
(𝛼1 + 2

𝑞𝛼2 +⋯+ 𝑘
𝑞𝛼𝑘) −

1

(𝑞−1)!
(𝛽1 + 2

(𝑞−1)𝛽2 +

⋯+ 𝑘(𝑞−1)𝛽𝑘) −
1

(𝑞−2)!
(𝛾1 + 2

(𝑞−2)𝛾2 +⋯+ 𝑘
(𝑞−2)𝛾k),

𝑞 = 2,3, …     (14) 

According to [8], the method in equation (11) has order p if 

𝑐0 = 𝑐1 = 𝑐2… = 𝑐𝑝 = 0, 𝑐𝑝+1 = 0 but 𝑐𝑝+2 ≠ 0. Then 𝑐𝑝+2 

is called the error constant and 𝑐𝑝+2ℎ
𝑝+2𝑦(𝑝+2)(𝑥𝑛) is the 

principal local truncation error at the point 𝑥𝑛. Therefore, the 

three-step block integrators based on top order method has 

uniform order 𝑝 = 5 and error constant is 𝑐7⃗⃗  ⃗ =

[
−1.95 × 10−3

−7.94 × 10−4

3.09 × 10−4
] 

 

Consistency 

The LMM is said to be consistent if it has order at least one, 

𝑝 ≥ 1. The three-step block integrators based on top order 
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method are said to be consistent since the order is greater than 

one. According to Lambert, (1991)It is important to note that 

consistency controls the magnitude of the local truncation 

error committed at each stage of the computation. 

 

Zero Stability  

For a block method, the method is said to be zero-stable if the 

roots 𝜉𝑠 𝑠 = 1,2, …𝑘 of its first characteristic polynomial 

𝜌(𝜉) = det (𝜉𝐴(0) − 𝐸) satisfy 𝜉𝑠 ≤ 1, and any root with 

modulus one has multiplicity not exceeding the order of the 

differential equation [7]. The main consequence of zero-

stability is to control the propagation of the error as the 

integration progresses. To determine the zero stability of the 

new method, using the approach of [11]. The derived method 

can be written in block form as 

𝐴(1)𝑌𝑤+1 = 𝐴
(0)𝑌𝑤−1 + ℎ𝐵𝐹𝑤+1   

Whose first characteristics polynomial is given as 

𝜌(𝜉) = det [𝜉𝐴 − 𝐵]  
The first characteristic polynomial of the three-step block top 

order method (11) is given as: 

 

𝜌(𝜉) = 𝑑𝑒𝑡(𝜉𝐴 − 𝐵) = |
|

−
27

11
𝜉

27

11
𝜉 𝜉 + 1

−
64

97
𝜉 𝜉

33

97

𝜉 −
59

48
𝜉 −

11

48

|
| = −

55

291
𝜉2 −

55

291
𝜉3   

The roots of the first characteristic equation 𝜌(𝜉) are obtained 

as 𝜉1 = 1, 𝜉2 = 𝜉3 =  0 

 

Convergence 

Theorem 1 (Dahlquist, 1963) 

The Dahlquist theorem of convergence states that for a 

LMM applied to a sufficiently smooth differential equation, 

convergence of the numerical solution to the exact solution 

occurs if and only if the method is consistent and zero-

stable.  

 

Region of Absolute Stability  

The test equation 𝑦′ = 𝜆𝑦 as used by Yatim et al., (2012) was 

inserted in the block methods to determine the regions of 

absolute stability. The equation 𝑦′ = 𝜆𝑦  and 𝑦′′ = 𝜆2𝑦 which 

is equivalent to 𝑓𝑛 = 𝜆𝑦𝑛, 𝑓𝑛+1 = 𝜆𝑦𝑛+1, … 𝑓𝑛+𝑘 = 𝜆𝑦𝑛+𝑘 ,  
and 𝑔𝑛 = 𝜆

2𝑦𝑛 , 𝑔𝑛+1 = 𝜆
2𝑦𝑛+1, … 𝑔𝑛+𝑘 = 𝜆

2𝑦𝑛+𝑘 was 

substituted in the new method.  

The stability polynomial, 𝜌(𝑟) = det(𝑟𝐴 − 𝐵) 

=
11

1164
𝑟3𝑧5 +

55

291
𝑟2 +

385

1746
𝑟2𝑧 +

187

1746
𝑟2𝑧2 +

187

6984
𝑟2𝑧3 +

11

3492
𝑟2𝑧4 +

605

1746
𝑟2𝑧 −

517

1746
𝑟3𝑧2 +

11

72
𝑟3𝑧3 −

44

873
𝑟3𝑧4 −

55

291
𝑟3  

Is differentiated with respect to z to give  

=
55

1164
𝑟3𝑧4 +

385

1746
𝑟2 +

187

873
𝑟2𝑧 +

187

2328
𝑟2𝑧2 +

11

873
𝑟2𝑧3 +

605

1746
𝑟3 −

517

873
𝑟3𝑧 +

11

24
𝑟3𝑧2 −

176

873
𝑟3𝑧3   

The stability polynomial with its derivative are inserted into 

MATLAB code to plot the stability region as shown in the 

figure.  

 

 
Figure 1: Region of Absolute Stability of 3SBITOM 

Implementation 

The three step block integrators based on top order methods 

derived in this research was implemented efficiently without 

requiring starting values and predictors. The implementation 

of the method was carried out with the aid of 2021 MATLAB 

programming language while the derivation of the method 

was carried out with the aid of maple 18. 

 

RESULTS AND DISCUSSION 

In this section, some numerical and graphical results for some 

stiff chemical kinetic problems shall be presented using the 

newly derived 3SBITOM. This is intended to show the 

performance of the methods on stiff chemical problems.  

The following notations shall be used in the tables 1-3 and 

figure 2-3. 

3SBITOM: newly derived three-step block integrators based 

on top order method. 

EHPS: two-step second derivative method with equidistant 

hybrid point space by [9] 

4SSDM: four-step hybrid block extended second derivative 

backward differentiation formula by [1].  

 

Problem 1 

Consider the Non-linear stiff chemical system in classical 

dynamics given by 

𝑦1
′ = −1002𝑦1 + 1000𝑦2

2  

𝑦2
′ = 𝑦1 − 𝑦2(1 + 𝑦2)  

𝑦1(0) = 1, 𝑦2(0) = 1  

This problem which is solved in the range 0 ≤ 𝑥 ≤ 1 has the 

exact solution, 

 𝑦1(𝑥) = exp(−2𝑥) , 𝑦2(𝑥) = exp(−𝑥) 
The numerical and graphical results for problem 1 are 

presented in table 1 and figure 2 respectively. 

Problem 2. 

Consider the stiff linear chemical kinetic problem given by 

𝑦1
′ = −100𝑦1 + 9.901𝑦2  

𝑦2
′ = 0.1𝑦1 − 𝑦2  

𝑦1(0) = 1, 𝑦2(0) = 10  

Exact soln: 𝑦1(x) = 𝑒
−0.99𝑥, 𝑦2(x) = 10𝑒

−0.99𝑥 

The numerical and graphical results for problem 2 are 

presented in table 2-3 and figure 3 respectively. 
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Figure 2: Solution Curve of 3SBITOM for Problem1 

 

 
Figure 3. Solution Curve of 3SBITOM for Problem 2 

 

Table 1: Showing the Absolute Errors for Problem 1 

H 𝒚𝒌 4SSDM EHPS 3SBITOM 

0.01 𝑦1 8.8401e-02 2.409𝑒 − 03 2.1720𝑒 − 07 

 𝑦2 9.7066e-02 3.7287𝑒 − 04 1.4625𝑒 − 09 

0.05 𝑦1 3.139e-02 6.9821𝑒 − 04 3.9503𝑒 − 05 

 𝑦2 7.9153e-02 9.1071𝑒 − 05 1.0154𝑒 − 08 

0.001 𝑦1 7.6391𝑒 − 02 1.3262𝑒 − 05 2.0928𝑒 − 06 

 𝑦2 5.4312𝑒 − 02 3.5891𝑒 − 06 2.3542𝑒 − 09 

0.005 𝑦1 5.8924𝑒 − 02 2.2883𝑒 − 06 2.3542𝑒 − 09 

 𝑦2 9.0635𝑒 − 02 8.9613𝑒 − 07 2.3542𝑒 − 10 

 

Table 2: Solutions of Problem 2 

x Num y1 Num y2 Exact y1 Exact y2 

0 1 10 1 10 

0.1 0.905743 9.057427 0.905743 9.057427 

0.2 0.82037 8.203699 0.82037 8.203699 

0.3 0.743044 7.43044 0.743044 7.43044 

0.4 0.673007 6.730067 0.673007 6.730067 

0.5 0.609571 6.095709 0.609571 6.095709 

0.6 0.552114 5.521144 0.552114 5.521144 

0.7 0.500074 5.000736 0.500074 5.000736 

0.8 0.452938 4.52938 0.452938 4.52938 

0.9 0.410245 4.102453 0.410245 4.102453 
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Table 3: Showing the Absolute Errors for Problem 2 

x Error y1 Error y2 

0 0 0 

0.1 2.59E-10 2.59E-09 

0.2 4.69E-10 4.69E-09 

0.3 6.37E-10 6.37E-09 

0.4 7.69E-10 7.69E-09 

0.5 8.71E-10 8.71E-09 

0.6 9.46E-10 9.46E-09 

0.7 1.00E-09 1.00E-08 

0.8 1.04E-09 1.04E-08 

0.9 1.05E-09 1.05E-08 

 

A class of three-step block integrator based on top order 

methods was derived for the solutions of stiff chemical kinetic 

problems using the multistep collocation as basis function. 

We obtained the main scheme and the corresponding schemes 

from the same continuous formula thereby, eradicating the 

need for starting values associated with top order methods. 

The method have uniform order of 5 thus, consistent. The 

newly derived method is convergent and A-stable. 

The method was implemented on two chemical kinetic 

problems, and from table 1 and 3, the method is 

computationally reliable. 

 

CONCLUSION 

Here, we have another configuration of TOM for the solution 

of stiff chemical kinetic problems is now available. It has a 

uniform order of 2𝑘 − 1, is zero stable and convergent. The 

method’s efficacy and accuracy were demonstrated by 

comparing the method’s results to those acquired using other 

existing methods.  
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