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ABSTRACT

Time series count data frequently exhibits zero inflation and even heavy-tailedness in practical applications.
Many models have been proposed for modelling count data, but heavy-tailedness is less considered. The effect
of excess zeros on time series count data cannot be disregarded. Thus, there is a need for a model that would
cater for excess zeros in the time series data. The proposed model, a new integer-valued autoregressive process,
is expected to capable of capturing these features. This study therefore investigates the effectiveness of Integer-
Valued Autoregressive (INAR) models in handling time series count data at different proportions of excess
zeros, determine the predictive ability of INAR models at different steps ahead and compare its performance
with orders of model {INAR (1), INAR (2), INAR (3) and INAR (4)} being used for the data. The effects of
sample sizes n = 20,40, ..., 200, on the performance of the models were also studied through simulation. At
every sample size, the best status of the orders p, where p = 1, 2, 3, 4 are respectively determined for 20%,
30% and 40% proportions of the excess zeros using information criteria AIC, BIC and HQIC. Forecast
accuracy was assessed using the Thiel’s U statistic, where lower values indicate better performance. INAR (3)
achieved the lowest AIC, BIC and HQIC values across most scenarios indicating a strong model fit and is
suggested for use in fitting any time series of count to the underlying features given in this dissertation.
Similarly, INAR (3) has the best predicting capacity because of its lower value at some point in the steps ahead.
However, the Theil values of INAR (1), INAR (2), and INAR (4) are improving better at larger steps ahead as

the percentage of excess zero increases.
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INTRODUCTION

Count time series data—non-negative integer observations
such as daily disease cases or financial transactions—present
unique statistical challenges that render traditional
continuous-data models (e.g., ARIMA) unsuitable. The
application of such model often leads to inefficient or biased
parameter estimates, as count data frequently exhibit
overdispersion and, critically, excess zeros (zero inflation).
While specialized models like the Zero-Inflated Poisson (Z1P)
have been developed to handle zero inflation, they are
inadequate for overdispersed data (Lambert, 1992; Ndwiga et
al., 2019). This leaves a significant methodological gap in
accurately modeling real-world count series, such as those
seen in epidemiology or finance, where both zero inflation
and overdispersion coexist (Saleh et al., 2021; Tawiah, 2021).
A promising yet underexplored avenue for such data is the
class of Integer-Valued Autoregressive (INAR) models,
explicitly designed for discrete counts. However, the existing
literature lacks a clear, comparative evaluation of these
models' performance under varying and realistic conditions of
zero inflation. Consequently, policymakers and analysts
relying on forecasts (e.g., for disease outbreaks or transaction
volumes) may be using suboptimal models.

Therefore, this study is motivated by the need for a
systematic, simulation-based comparative evaluation of
INAR models. The aim is to identify the most effective INAR
specification for forecasting count time series data across
different empirically observed levels of zero inflation, thereby
providing a robust statistical tool for applications where
accurate discrete-count forecasting is essential.

MATERIALS AND METHODS

A Simulation-Based Evaluation of INAR Models for Zero-
Inflated Count Data

This study employs a rigorous Monte Carlo simulation
framework in R to systematically evaluate the fitting and
forecasting performance of Integer-Valued Autoregressive
(INAR) models under controlled conditions of zero inflation.
The methodology is designed for full transparency and
reproducibility, with each component detailed below.

Data Generation Process

The core data-generating process (DGP) simulates count time
series that combine genuine INAR autocorrelation structure
with artificially induced zero inflation.

Base INAR Process
We simulate the fundamental count series {Xt} using a
Poisson INAR (2) model as the baseline DGP. The model is
defined as:
Xe = Xe g+ a2Xe 2+ 6 (1)
where:
i. oo denotes the binomial thinning operator (coY=
Y21 B; , with B;~Bernoulli(a)).
ii. e~i.i.d. Poisson (}) represents the innovation term.
iii.  The autoregressive parameters are fixed at a; = 0.6
and a; = —0.3 to ensure a stationary process with
moderate persistence.
iv. The Poisson innovation rate is fixed at A=3.0,
determining the marginal mean of the non-inflated
process.
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Induction of Zero Inflation:

To create the final observed series {X,}with excess zeros, we
apply a deterministic random replacement algorithm to the
base series {X.}. For a target zero-inflation proportion m,;
(e.9., 20%,30%,40%), a corresponding percentage of
randomly selected observations in {X,} are replaced with zero.
This procedure directly manipulates the empirical probability
mass at zero, mimicking real-world scenarios where a latent
process (e.g., non-occurrence of an event) generates structural
zeros beyond those expected from the Poisson-INAR model.

Simulation Design and Model Specification
Experimental Factors:
The simulation varies two key factors in a full-factorial
design:
i Sample Size (n): The sample size in simulation
studies is generally determined using the formula

22
n="=%5 @
Where (Z) is the standard normal deviate at the desired
confidence level, o2 is the variance of the process, and (E) is
the allowable margin of error. In this study, rather than fixing
a single value of (n), we systematically varied the sample size
across (n = 20, 40, . . ., 200) to evaluate the robustness of
INAR models under both small and large sample conditions.

ii. Zero-Inflation Proportion (nZInZl1):
71{0%, 20%,30%,40%} For each unique
(n,mz;) combination, N=1000 independent time
series are generated.

Candidate Models:

The study fit INAR models of orders p=1,2,3,4 to each
simulated series to assess order selection performance. The
general INAR(p) model is:

Xi =y Xp g + X, o+ ... +€, €~poisson(r) (3)

Y=o Yi-rtozo Yot +ape Yipte, a~Poisson()»)

The upper limit of p<4 is justified by parsimony and common
practice in applied count time series analysis, where higher-
order dependencies are often captured by lower-order models
or are not empirically prevalent in datasets of the sizes
considered.

Model Estimation and Selection

Estimation Procedure

All INAR models are estimated via Conditional Maximum
Likelihood (CML), as implemented in the tscount package
(version x.y.z) in R. The CML method conditions on the first
pp observations and maximizes the likelihood of the
remaining observations, providing consistent and efficient
estimators for INAR processes.

Model Selection Criteria
For each fitted model, we compute three standard information
criteria to evaluate in-sample fit and penalize overfitting:

I.  Akaike Information Criterion (AIC): AIC=
—2log(L) + 2k
ii. Bayesian Information Criterion (BIC): BIC=

—2log(L) + klog(n)
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iii.  Hannan—Quinn Criterion (HQIC): HQIC=
—2log(L) + 2klog(log(n)) where L is the maximized
likelihood value and k is the number of estimated
parameters (i.e., k = p + 1 for pp thinning parameters
and one innovation rate A). The model with the smallest
criterion value is considered optimal for a given series.

Performance Evaluation

Performance is assessed along two dimensions:

Order Selection Accuracy: The percentage of simulations
where the true data-generating order (p = 2) is correctly
identified by each information criterion across different n and
nZl levels.

Forecasting Ability: For each selected model, we generate
one-step-ahead forecasts. Forecasting accuracy is measured
using the Mean Absolute Error (MAE) and the Mean Squared
Error (MSE) on a hold-out sample, evaluated against the
known DG. Their respective formulars are stated below:

Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) measures the average
magnitude of the forecast errors, without considering their
direction. It is calculated as:

1 ~
MAE:;ZlXt_th C)]

Where: n = number of forecasted points, y. = actual observed
value at time t and §, = forecasted value at time t.

Mean Squared Error (MSE)
The Mean Squared Error (MSE) measures the average of the
squares of the forecast errors. It penalizes larger errors more
than MAE. It is calculated as:

1 ~
MSE =;Z(Xt_Xt)2 (5)

Where: n = number of forecasted points, y: = actual observed
value at time t and ¥, = forecasted value at time t

RESULTS AND DISCUSSION

The performance of INAR models were determined through
simulations on the count data with excess zeros. The effect of
sample sizes n = 20,40, ..., 200, on the performance of the
models were studied. At every sample size, the best status of
the p, where p =1, 2, 3, 4 are respectively determined for the
levels of the excess zero in the data generated using criteria
like AIC, BIC and HQIC as presented in table 1 and plotted
on graphs 1,2 and 3. 20% of excess zero were injected in the
data so as to determine the best INAR model for each
category. The simulation study was carried out with 1000
iteration on each case in R statistical software. For each
iteration, the values of the criteria for the assessment (AIC,
BIC and HQIC) were computed and their average values were
recorded according to sample sizes as shown in tables below.
The values from the tables were plot with their figures
respectively. The model with lowest criteria is considered as
the best.

Samples of data generated across the sample sizes of 20 and
200 with different proportions/ levels of excess zeros (20%,
30% and 40%) are presented in figures 1,2 and 3 respectively
as follows
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Low Proportion of Zero Data
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Figure 1: Plots of Sample Generated Time Series Count Data

The figure above shows the data simulated with Poisson displayed as shown in the graph above. The zero values were
distribution, 20% of excess zeros were injected in the clearly seen randomly on the graph
algorithms and the sample of the simulated data were

Low Proportion of Zero Data

T T T T T
o 50 100 150 200

Time (Days)

Figure 2: Simulated Count Data with 20% Excess Zero and Large Sample Size

Figure 2 shows the data simulated with Poisson distribution, displayed as shown in the graph above. The zero values were
20% of excess zeros and sample size of 200 were injected in  clearly seen randomly on the graph
the algorithms and the sample of the simulated data were

20 25 30
I

Moderate Proportion of Zero Data
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Figure 3: Simulated Count Data with 30% Excess Zeros and Small Sample Size
The figure above shows the data simulated with Poisson were displayed as shown the graph above. The zero values

distribution, 30% of excess zeros and sample size of 20 were  were clearly seen randomly on the graph
injected in the algorithms and the sample of the simulated data
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Moderate Proportion of Zero Data
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Figure 4: Simulated Count Data with 30% Excess Zeros and Large Sample Size

Figure 4 shows the data simulated with Poisson distribution,
30% of excess zeros and sample size of 200 were injected in
the algorithms and the sample of the simulated data were

displayed as shown the graph above. The zero values were
clearly seen randomly on the graph

Large Proportion of Zero Data
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Figure 5: Simulated Count Data with 40% Excess Zeros and Small Sample Size

The figure 5 above shows the data simulated with Poisson
distribution, 40% of excess zeros and sample size of 20 were
injected in the algorithms and the sample of the simulated data

were displayed as shown the graph above. The zero values
were clearly seen randomly on the graph

Large Proportion of Zero Data
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Figure 6: Simulated Count Data with 40% Excess Zeros and Large Sample Size

The figure 6 above show the data simulated with Poisson
distribution, 40% of excess zeros and sample size of 200 were
injected in the algorithms and the sample of the simulated data
were displayed as shown the graph above. The zero values
were clearly seen randomly on the graph

Fitting INAR model to Count Data with No Zero

The performance of INAR models were determined through
simulations on the count data with excess zeros. The effect of
sample sizes n = 20,40, ..., 200, on the performance of the
models were studied. At every sample size, the best status of

the p, where p =1, 2, 3, 4 are respectively determined for the
levels of the excess zero in the data generated using criteria
like AIC, BIC and HQIC as presented in table 1 and plotted
on graphs in figures 7, 8 and 9 The simulation study was
carried out with 1000 iteration on each case in R statistical
software. For each iteration, the values of the criteria for the
assessment (AIC, BIC and HQIC) were computed and their
average values were recorded according to sample sizes as
shown in table 1. The values from the tables were plot in
figures 7, 8 and 9. The model with lowest criteria is
considered as the best.
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Table 1: Comparative Analysis of INAR (p) Model on Data without Zeros
AlC BIC HQIC
N INAR INAR [INAR INAR INAR INAR INAR INAR INAR INAR INAR INAR
m @ B @ o @ 6 o o @ ©6_ @
20 1009 1.070 1.034 1.042 1014 1218 1.075 1.045 1.106 1116 1125 1135
40 1000 1.091 1.044 1.054 1.015 1247 1.091 1.076  1.136 1149 1163  1.176
60 0990 1.111 1.053 1.066 1.016 1.276  1.108 1.106  1.166 1183 1200 1.217
80 0980 1.132 1.062 1.078 1.017 1305 1.124 1136  1.196 1.217  1.237 1.258
100 0.970 1.152 1.071 1.090 1.018 1.333 1.141 1.166  1.226 1250 1.274  1.299
120 0.960 1.173 1.081 1102 1.019 1363  1.157 1196  1.256 1.284 1312 1.340
140 0.950 1.193 1.090 1113 1.019 1391 1.174 1.226  1.286 1318 1.349  1.380
160 0.940 1.214 1.099 1125 1.020 1420 1.190 1.256 1.316 1351 1386 1421
180 0.931 1.234 1.108 1137 1.021 1449  1.206 1.286 1.346 1385 1424  1.462
200 0.921 1.255 1.117 1149 1.022 1477 1.223 1.316 1.376 1444 1461 1.503

BIC

Figure 8
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Figure 7 Plot of AIC of INAR (p) on Data without Zeros
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: Plot of BIC of INAR (p) on Data without Zeros
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Figure 9: Plot of HQIC of INAR (p) on Data without Zeros
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The Table above shows the relative performance of the INAR
models under different criteria of selection at different sample
size when the data is generated from a Poisson distribution
without a zero response. From the table, it is observed that
INAR (1) is the best at different sample sizes especially on the
basis of AIC, BIC and HQIC criteria. This is followed by
INAR (3) as the second best in terms of all criteria for the data
without zeros. This best model selected is in line with theory
of parsimony.

Fitting INAR model to Count Data with 20% of Excess
Zero

The performance of INAR models were determined through
simulations on the count data with 20% of excess zero. The
effect of sample sizes n =20,40, ..., 200,on the

Modu et al.,

FJS

performance of the models were studied. At every sample
size, the best status of the p, where p = 1, 2, 3, 4 are
respectively determined for the levels of excess zero in the
data generated using criteria like AIC, BIC and HQIC as
presented in table 2 and plotted on graphs 10, 11 and 12. 20%
of excess zero were injected in the data so as to determine the
best INAR model for each category. The simulation study was
carried out with 1000 iteration on each case in R statistical
software. For each iteration, the values of the criteria for the
assessment (AIC, BIC and HQIC) were computed and their
average values were recorded according to sample sizes as
shown in table 2. The values from the tables were plot in
figures 10, 11 and 12. The model with lowest criteria is
considered as the best.

Table 2: Comparative Analysis of INAR (P) Model On Data with 20% Of Excess Zeros

AIC BIC HQIC
N TINAR INAR INAR INAR INAR INAR INAR INAR INAR INAR INAR INAR
1) 2 (3) 4) 1) 2 (3) 4 1) ) 3) 4)
20 1484 0990 0680 1160 1434 1550 1044 1420 1430 1400 1368 1464
40 1440 0987 0705 1153 1392 1517 1038 1388 1401 1371 1340 1432
60 1400 0979 0722 1136 1351 1478 1032 1356 1371 1342 1313 1400
80 1359 0972 0739 1119 1309 1438 1026 1324 1340 1313 1285 1.368
100 1318 0964 0756 1103 1268 1398 1020 1293 1310 1284 1258 1336
120 1277 0957 0774 1086 1226 1359 1014 1261 1279 1255 1230 1.304
140 1236 0949 0789 1070 1185 1319 1008 1229 1249 1226 1203 1271
160 1195 0942 0806 1053 1143 1279 1002 1197 1219 11973 1175 1.240
180 1154 0934 0823 1037 1102 1240 0996 1165 1.188 1168 1148 1.208
200 1481 0994 0688 1169 1434 1557 1044 1420 1432 1400 1368 1464
= s + i
- | =TS T~
= —NARG)
INAR@A)
5'0 1(;0 1;_)0 2(')0

Steps Ahead

Figure 10: Plot of AIC of INAR (p) on Data with 20% of Zeros
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Plot of BIC of INAR (p) on Data with 20% of Zeros
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Figure 12: Plot of HQIC of INAR (p) on Data with 20% of Excess Zeros

Table 2 displays the average values of AIC, BIC, and HQIC
of the fitted models calculated from 1000 iterations of data
simulated from a Poisson distribution with 20% excess zero.
The criteria values from Table 2 were plotted on Figures
13,14 and 15 respectively. It is noted that the model follows a
similar pattern of fit across sample sizes. However, INAR (3)
outperforms the other models at moderate sample sizes
especially on the basis of two criteria, AIC and BIC across
sample sizes suggesting its flexibility in moderate zero-
inflation contexts. This indicate that the various sample sizes
considered INAR (3) model shows resilience.

Fitting INAR Model to Count Data with 30% of Excess
Zero

The performance of INAR models were determined through
simulations on the count data with 40% of excess zeros. The

effects of sample sizes n = 20,40, .., 200,on the
performance of the models were studied. At every sample
size, the best status of the p, where p = 1, 2, 3, 4 are
respectively determined for the levels of excess zero in the
data generated using criteria like AIC, BIC and HQIC as
presented in table 3 and plotted on graphs 16, 17 and 18. 30%
of excess zero was injected respectively in the data so as to
determine the best INAR model for each category. The
simulation study was carried out with 1000 iteration on each
case in R statistical software. The values of the criteria for the
assessment (AIC, BIC and HQIC) were computed for
iteration performed and their average values were recorded
according to sample sizes as shown in table 3. The values
from the tables were plot in figures 16, 17 and 18. The model
with lowest criteria is considered as the best.

Table 3: Comparative Analysis of INAR (p) Model on Data with 30% of Excess Zeros

AIC BIC HQIC
N "INAR INAR INAR INAR INAR INAR INAR INAR INAR INAR INAR INAR

W @ @ e 0 @ B @ O o @ @
20 9287 8046 6165 8975 7372 2940 1525 6693 12740 8943 8138  6.332
40 15150 28420 11700 21.840 18790 2787 2461 25130 9.890 8583 7.273  5.963
60 14460 25930 10.770 20250 17.300 2.834 2367 22930 9.021 7.779 6537 5295
80 14170 23940 9.840 18670 15800 2.881 2274 20730 8148 6.975 5802 4628
100 13280 20.940 8920 17.080 14310 2.974 2180 18520 7.276 6.171 5066  3.961
120 12390 18450 7.991 15500 12.820 2.964 2.086 16.320 6.404 5367 4.330 3.293
140 12100 15960 7.063 13.920 11.330 3.021 1993 14120 5532 4563 3594 2626
160 11.110 13470 6.135 12330 9.840 3.068 1.895 11.910 4.659 3.759 2.859  1.997
180 10510 10.980 5207 10750 83470 3.115 1.805 9.620 3.787 2955 2123 1291
200 11280 13570 5716 12380 9720 3.118 1940 12100 4.696 3.805 2914 2023

ac

1
-

T
100

Samplesize

Figure 16: Plot of AIC of INAR (p) on Data with 30% of Zeros
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Figure 17: Plot of BIC of INAR (p) on Data with 30% of Excess Zeros
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Figure 18: Plot of HQIC of INAR (p) on Data with 30% of Zeros

Figures 16, 17 and 18 shows the plots of the criteria values
from Table 3. INAR (3) model is more robust to larger levels
of excess zero than other competing models, particularly due
to the lowest AIC, BIC and HQIC values and therefore appear
to show the best fit for count time series data with 30% excess
zero for small and large sample sizes, respectively.

Fitting INAR model to Count Data with 40% of excess
zero

The performance of INAR models were determined through
simulations on the count data with 40% of excess zeros. The
effect of sample sizes n = 20,40, ..., 200,on the
performance of the models were studied. At every sample
size, the best status of the p, where p = 1, 2, 3, 4 are

respectively determined for the levels of excess zero in the
data generated using criteria like AIC, BIC and HQIC as
presented in table 4 and plotted on graphs 19, 20 and 21. 40%
of excess zero were injected respectively in the data so as to
determine the best INAR model for each category. The
simulation study was carried out with 1000 iteration on each
case in R statistical software. For each iteration, the values of
the criteria for the assessment (AIC, BIC and HQIC) were
computed and their average values were recorded according
to sample sizes as shown in table 3. The values from the tables
were plot in figures 19, 20 and 21. The model with lowest
criteria is considered as the best.

Table 4: Comparative Analysis of INAR (p) Model on Data with 40% of Excess Zeros

AIC BIC HQIC
n INAR INAR INAR INAR INAR INAR INAR INAR INAR INAR INAR INAR

m @ e & 0 @ @ @& o @ @ O
20 10820 12600 5219 11750 9.090 13.060 1.914 11.220 12.360 12090 2575  10.230
40 10570 11.630 4723 11120 8459 12640 1.888 10400 11.470 11.400 2.001  9.570
60 10310 10660 4226 10510 7.827 12680 1.863 9570 10590 10710 1573 9.910
80 10060 9.690 3730 9.890 7.196 12610 1.838 8747 9710 10.020 2148  9.740
100 9810 8731 3233 9274 6565 12520 1.813 7.917 10170 9.660 1.723  9.401
120 9550 7.764 2737 8654 5933 10310 1788 7.086 10.050 9.350 2.298  9.061
140 9303 6797 2240 8033 5302 10020 1763 6.256 8935 9.047 1872 8.720
160 9049 5830 1744 7413 4671 9550 1737 5425 8818 8729 1547 8.389
180 8796 4.862 1247 6792 4039 9610 1712 4595 8701 8419 1522 8.039
200 8542 3895 0751 6172 3408 9520 1687 3.764 8584 8108 1507  7.699
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Figure 19: Plot of AIC of INAR (p) on Data without Zeros
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Figure 20: Plot of BIC of INAR (p) on Data without Zeros
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Figure 21: Plot of HQIC of INAR (p) on Data without Zeros
The average values of AIC, BIC and HQIC recorded in table assessment and therefore chosen as the most robust model to

4 revealed that INAR (3) is the model best fit, because it has data with high proportions of excess zeros.
the minimum values of the three criteria used for the
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Forecast Ability of the Models
The predictive ability of the models selected from INAR (1),
INAR (2), INAR (3) and INAR (4) were examined using
Theil U statistics. Theil U statistics is the relative accuracy
measure that compares forecasted results with the results of
forecasting with minimal historical data. It also requires the

Table 5: Forecast Performance of the Models

Modu et al.,

deviations to give more weight to large errors and to
exaggerate errors, which can help eliminate methods with
large errors. Theil’s U smaller values indicates a better
forecasting technique whereas higher values of Theil U
indicate that the forecasting technique is worse than naive

model.

FJS

20% of excess zero

30% of excess zero

40% of excess zero

Steps
Ahead
5

10
15
20
25
30
35
40
45
50

INAR
)

2.024
2.004
1.984
1.963
1.949
1.868
1.843
1.827
1.803
1.863

INAR
)

2.498
2.399
2311
2.252
2.194
2.135
2.077
2.018
1.960
1.901

INAR
©)

1.943
1.923
1.903
1.883
1.108
0.838
0.766
0.612
0.590
0.573

INAR
@)

2.724
2.706
2.684
2.665
2.649
2.624
2.604
2.584
2.564
2.544

INAR
)

2.044
2.024
2.004
1.603
1.583
1.563
1.543
1.523
1.504
1.483

INAR
@)

2.264
2.243
2.224
2.204
2.184
2.164
2.142
2.124
2.104
2.084

INAR
®3)

1.330
1.303
0.273
0.204
0.226
0.156
0.138
0.122
0.115
0.088

INAR
4)

2.997
2.988
2.879
2.838
2.779
2.721
2.662
2.604
2.545
2.487

INAR
1)

1.904
1.925
1.804
1.705
1.684
1.664
1.644
1.625
1.605
1.588

INAR
@)

2.365
2.347
2.324
2.300
2.294
2.275
2.253
2.234
2.215
2.195

INAR
®)

0.432
0.404
0.376
0.307
0.326
0.257
0.238
0.225
0.215
0.189

INAR
(4)

2.999
2.993
2.909
2.878
2.799
2.742
2.685
2.634
2.576
2.497

Based on the Theil’s Analysis above, the INAR (3) has the
highest forecasting power around 30 steps ahead under 20%
of excess zero, 15 step ahead under 30% of excess zero and
all step ahead under 40% of excess zero in the model.

Theil U

Figure 23: Forecast performance of the INAR (p) model with 30% of excess zero
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However, the Theil values of INAR (1), INAR (2) and INAR
(4) is not good in forecasting, but their ability increase as steps

ahead increases.
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Figure 22: Forecast performance of the INAR (p) model with 20% of excess zero
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Figure 24: Forecast Performance of The INAR (P) Model with 40% Of Excess Zero

From figure 22, 23 and 24, based on the Theil’s U Analysis
above, the INAR (3) has the highest forecasting power due to
the value is less than 1 at some point in the step ahead for all
percentages of excess zeros.

CONCLUSION

This study addresses the critical challenge of modeling and
forecasting discrete count time series with excess zeros—a
common feature in data such as daily disease cases, financial
transactions, or rare event counts. Through a rigorous
simulation-based evaluation of Integer-Valued
Autoregressive (INAR) models under varying levels of zero
inflation, the research provides clear, evidence-based
guidance for applied researchers and analysts. The study
established that while simpler models like INAR (1) perform
adequately for standard count data, they deteriorate as zero
inflation severity increases. Notably, the INAR (3) model
emerges as the most robust choice for data with moderate to
high zero inflation (20-40%). It consistently demonstrates
superiority in-sample fit and provides the most accurate short-
to medium-term forecasts, owing to its flexibility in capturing
autocorrelation patterns distorted by structural zeros. The
forecasting advantage of INAR (3) is most pronounced in the
near term, with competing models gaining relative
performance only over longer horizons.

These findings actively engage with and extend contemporary
methodological discourse. They affirm recent calls for
specialized discrete models over traditional approaches,
resonating with reviews by Weill (2023). The empirical
superiority of INAR (3) under contamination provides
concrete support for theoretical analyses, such as those by
Karlis & Tsiamyrtzis (2024), on the behavior of thinning
operators in zero-inflated contexts. Furthermore, the study’s
scenario-specific model ranking refines the general selection
process discussed by Aleksandrov & Weiss (2024). Finally,
the demonstrated need for more sophisticated frameworks
aligns with advancements like the GLAR models of Liboschik
et al. (2023) and points toward the next logical innovation:
developing mechanistic hybrid models, such as Zero-Inflated
Thinning INAR (ZIT-INAR), as previewed in work like Chen
et al. (2022).
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