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ABSTRACT 

Time series count data frequently exhibits zero inflation and even heavy-tailedness in practical applications. 

Many models have been proposed for modelling count data, but heavy-tailedness is less considered. The effect 

of excess zeros on time series count data cannot be disregarded. Thus, there is a need for a model that would 

cater for excess zeros in the time series data. The proposed model, a new integer-valued autoregressive process, 

is expected to capable of capturing these features. This study therefore investigates the effectiveness of Integer-

Valued Autoregressive (INAR) models in handling time series count data at different proportions of excess 

zeros, determine the predictive ability of   INAR models at different steps ahead and compare its performance 

with orders of model {INAR (1), INAR (2), INAR (3) and INAR (4)} being used for the data. The effects of 

sample sizes n = 20, 40, … , 200, on the performance of the models were also studied through simulation. At 

every sample size, the best status of the orders p, where p = 1, 2, 3, 4 are respectively determined for   20%, 

30% and 40% proportions of the excess zeros using information criteria AIC, BIC and HQIC.  Forecast 

accuracy was assessed using the Thiel’s U statistic, where lower values indicate better performance. INAR (3) 

achieved the lowest AIC, BIC and HQIC values across most scenarios indicating a strong model fit and is 

suggested for use in fitting any time series of count to the underlying features given in this dissertation. 

Similarly, INAR (3) has the best predicting capacity because of its lower value at some point in the steps ahead. 

However, the Theil values of INAR (1), INAR (2), and INAR (4) are improving better at larger steps ahead as 

the percentage of excess zero increases. 
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INTRODUCTION 

Count time series data—non-negative integer observations 

such as daily disease cases or financial transactions—present 

unique statistical challenges that render traditional 

continuous-data models (e.g., ARIMA) unsuitable. The 

application of such model often leads to inefficient or biased 

parameter estimates, as count data frequently exhibit 

overdispersion and, critically, excess zeros (zero inflation). 

While specialized models like the Zero-Inflated Poisson (ZIP) 

have been developed to handle zero inflation, they are 

inadequate for overdispersed data (Lambert, 1992; Ndwiga et 

al., 2019). This leaves a significant methodological gap in 

accurately modeling real-world count series, such as those 

seen in epidemiology or finance, where both zero inflation 

and overdispersion coexist (Saleh et al., 2021; Tawiah, 2021). 

A promising yet underexplored avenue for such data is the 

class of Integer-Valued Autoregressive (INAR) models, 

explicitly designed for discrete counts. However, the existing 

literature lacks a clear, comparative evaluation of these 

models' performance under varying and realistic conditions of 

zero inflation. Consequently, policymakers and analysts 

relying on forecasts (e.g., for disease outbreaks or transaction 

volumes) may be using suboptimal models. 

Therefore, this study is motivated by the need for a 

systematic, simulation-based comparative evaluation of 

INAR models. The aim is to identify the most effective INAR 

specification for forecasting count time series data across 

different empirically observed levels of zero inflation, thereby 

providing a robust statistical tool for applications where 

accurate discrete-count forecasting is essential. 

 

 

 

 

MATERIALS AND METHODS 

A Simulation-Based Evaluation of INAR Models for Zero-

Inflated Count Data 

This study employs a rigorous Monte Carlo simulation 

framework in R to systematically evaluate the fitting and 

forecasting performance of Integer-Valued Autoregressive 

(INAR) models under controlled conditions of zero inflation. 

The methodology is designed for full transparency and 

reproducibility, with each component detailed below. 

 

Data Generation Process 

The core data-generating process (DGP) simulates count time 

series that combine genuine INAR autocorrelation structure 

with artificially induced zero inflation. 

 

Base INAR Process 

We simulate the fundamental count series {Xt} using a 

Poisson INAR (2) model as the baseline DGP. The model is 

defined as: 

𝑋𝑡 = 𝛼1𝑋𝑡−1 + 𝛼2𝑋𝑡−2 + 𝜖𝑡   (1) 

where:  

i. ∘∘ denotes the binomial thinning operator (α∘Y=
∑ 𝐵𝑖

𝑥
𝑖=1  , with 𝐵𝑖∼Bernoulli(α)). 

ii. ϵt∼i.i.d. Poisson (λ) represents the innovation term. 

iii. The autoregressive parameters are fixed at 𝛼1 = 0.6 

and 𝛼1 = −0.3 to ensure a stationary process with 

moderate persistence. 

iv. The Poisson innovation rate is fixed at λ=3.0, 

determining the marginal mean of the non-inflated 

process. 
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Induction of Zero Inflation: 

To create the final observed series {𝑋𝑡}with excess zeros, we 

apply a deterministic random replacement algorithm to the 

base series {𝑋𝑡}. For a target zero-inflation proportion 𝜋𝑧𝐼 

(e.g., 20%, 30%, 40%), a corresponding percentage of 

randomly selected observations in {𝑋𝑡} are replaced with zero. 

This procedure directly manipulates the empirical probability 

mass at zero, mimicking real-world scenarios where a latent 

process (e.g., non-occurrence of an event) generates structural 

zeros beyond those expected from the Poisson-INAR model. 

 

Simulation Design and Model Specification 

Experimental Factors: 

The simulation varies two key factors in a full-factorial 

design: 

i. Sample Size (n): The sample size in simulation 

studies is generally determined using the formula  

n =
Z2σ2

E2      (2) 

Where (Z) is the standard normal deviate at the desired 

confidence level, σ2 is the variance of the process, and (E) is 

the allowable margin of error. In this study, rather than fixing 

a single value of (n), we systematically varied the sample size 

across (n = 20, 40, . . ., 200) to evaluate the robustness of 

INAR models under both small and large sample conditions. 

 

ii.  Zero-Inflation Proportion (πZIπZI): 

𝜋𝑍𝐼{0%, 20%, 30%, 40%} For each unique 

(𝑛, 𝜋𝑍𝐼) combination, N=1000 independent time 

series are generated. 

 

Candidate Models: 

The study fit INAR models of orders p=1,2,3,4 to each 

simulated series to assess order selection performance. The 

general INAR(p) model is: 

𝑋𝑡 = α1𝑋𝑡−1 + α2𝑋𝑡−2+ . . . +ϵ𝑡,    ϵ𝑡~𝑝𝑜𝑖𝑠𝑠𝑜𝑛(λ)  (3) 

Yt=α1∘Yt−1+α2∘Yt−2+⋯+αp∘Yt−p+ϵt, ϵt∼Poisson(λ)  

The upper limit of p≤4 is justified by parsimony and common 

practice in applied count time series analysis, where higher-

order dependencies are often captured by lower-order models 

or are not empirically prevalent in datasets of the sizes 

considered. 

 

Model Estimation and Selection 

Estimation Procedure 

All INAR models are estimated via Conditional Maximum 

Likelihood (CML), as implemented in the tscount package 

(version x.y.z) in R. The CML method conditions on the first 

pp observations and maximizes the likelihood of the 

remaining observations, providing consistent and efficient 

estimators for INAR processes. 

 

Model Selection Criteria 

For each fitted model, we compute three standard information 

criteria to evaluate in-sample fit and penalize overfitting: 

i. Akaike Information Criterion (AIC): AIC=
−2𝑙𝑜𝑔(𝐿) + 2𝑘 

ii. Bayesian Information Criterion (BIC): BIC=
−2𝑙𝑜𝑔(𝐿) + 𝑘𝑙𝑜𝑔(𝑛) 

iii. Hannan–Quinn Criterion (HQIC): HQIC=
−2𝑙𝑜𝑔(𝐿) + 2𝑘𝑙𝑜𝑔(𝑙𝑜𝑔(𝑛)) where L is the maximized 

likelihood value and k is the number of estimated 

parameters (i.e., 𝑘 = 𝑝 + 1 for pp thinning parameters 

and one innovation rate λ). The model with the smallest 

criterion value is considered optimal for a given series. 

 

Performance Evaluation 

Performance is assessed along two dimensions: 

Order Selection Accuracy: The percentage of simulations 

where the true data-generating order (𝑝 = 2) is correctly 

identified by each information criterion across different n and 

πZI  levels. 

 

Forecasting Ability: For each selected model, we generate 

one-step-ahead forecasts. Forecasting accuracy is measured 

using the Mean Absolute Error (MAE) and the Mean Squared 

Error (MSE) on a hold-out sample, evaluated against the 

known DG. Their respective formulars are stated below: 

 

Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) measures the average 

magnitude of the forecast errors, without considering their 

direction. It is calculated as: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑋𝑡 − 𝑋̂𝑡 |     (4) 

Where: n = number of forecasted points, yₜ = actual observed 

value at time t and ŷₜ = forecasted value at time t. 

 

Mean Squared Error (MSE) 

The Mean Squared Error (MSE) measures the average of the 

squares of the forecast errors. It penalizes larger errors more 

than MAE. It is calculated as: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑋𝑡 − 𝑋̂𝑡)2   (5) 

Where: n = number of forecasted points, yₜ = actual observed 

value at time t and ŷₜ = forecasted value at time t 

 

RESULTS AND DISCUSSION 

The performance of INAR models were determined through 

simulations on the count data with excess zeros. The effect of 

sample sizes 𝑛 = 20, 40, … , 200, on the performance of the 

models were studied. At every sample size, the best status of 

the p, where p = 1, 2, 3, 4 are respectively determined for the 

levels of the excess zero in the data generated using criteria 

like AIC, BIC and HQIC as presented in table 1 and plotted 

on graphs 1,2 and 3. 20% of excess zero were injected in the 

data so as to determine the best INAR model for each 

category. The simulation study was carried out with 1000 

iteration on each case in R statistical software. For each 

iteration, the values of the criteria for the assessment (AIC, 

BIC and HQIC) were computed and their average values were 

recorded according to sample sizes as shown in tables below. 

The values from the tables were plot with their figures 

respectively. The model with lowest criteria is considered as 

the best.  

Samples of data generated across the sample sizes of 20 and 

200 with different proportions/ levels of excess zeros (20%, 

30% and 40%) are presented in figures 1,2 and 3 respectively 

as follows 
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Figure 1: Plots of Sample Generated Time Series Count Data 

 

The figure above shows the data simulated with Poisson 

distribution, 20% of excess zeros were injected in the 

algorithms and the sample of the simulated data were 

displayed as shown in the graph above. The zero values were 

clearly seen randomly on the graph 

 

 
Figure 2: Simulated Count Data with 20% Excess Zero and Large Sample Size 

 

Figure 2 shows the data simulated with Poisson distribution, 

20% of excess zeros and sample size of 200 were injected in 

the algorithms and the sample of the simulated data were 

displayed as shown in the graph above. The zero values were 

clearly seen randomly on the graph 

 

 
Figure 3: Simulated Count Data with 30% Excess Zeros and Small Sample Size 

 

The figure above shows the data simulated with Poisson 

distribution, 30% of excess zeros and sample size of 20 were 

injected in the algorithms and the sample of the simulated data 

were displayed as shown the graph above. The zero values 

were clearly seen randomly on the graph 
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Figure 4: Simulated Count Data with 30% Excess Zeros and Large Sample Size 

 

Figure 4 shows the data simulated with Poisson distribution, 

30% of excess zeros and sample size of 200 were injected in 

the algorithms and the sample of the simulated data were 

displayed as shown the graph above. The zero values were 

clearly seen randomly on the graph 

 

 
Figure 5: Simulated Count Data with 40% Excess Zeros and Small Sample Size 

 

The figure 5 above shows the data simulated with Poisson 

distribution, 40% of excess zeros and sample size of 20 were 

injected in the algorithms and the sample of the simulated data 

were displayed as shown the graph above. The zero values 

were clearly seen randomly on the graph 

 

 
Figure 6: Simulated Count Data with 40% Excess Zeros and Large Sample Size 

 

The figure 6 above show the data simulated with Poisson 

distribution, 40% of excess zeros and sample size of 200 were 

injected in the algorithms and the sample of the simulated data 

were displayed as shown the graph above. The zero values 

were clearly seen randomly on the graph 

 

Fitting INAR model to Count Data with No Zero  

The performance of INAR models were determined through 

simulations on the count data with excess zeros. The effect of 

sample sizes 𝑛 = 20, 40, … , 200, on the performance of the 

models were studied. At every sample size, the best status of 

the p, where p = 1, 2, 3, 4 are respectively determined for the 

levels of the excess zero in the data generated using criteria 

like AIC, BIC and HQIC as presented in table 1 and plotted 

on graphs in figures 7, 8 and 9 The simulation study was 

carried out with 1000 iteration on each case in R statistical 

software. For each iteration, the values of the criteria for the 

assessment (AIC, BIC and HQIC) were computed and their 

average values were recorded according to sample sizes as 

shown in table 1. The values from the tables were plot in 

figures 7, 8 and 9. The model with lowest criteria is 

considered as the best. 
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Table 1: Comparative Analysis of INAR (p) Model on Data without Zeros 

 

N 

AIC BIC HQIC 

INAR 

(1) 

INAR 

(2) 

INAR 

(3) 

INAR 

(4) 

INAR 

(1) 

INAR 

(2) 

INAR 

(3) 

INAR 

(4) 

INAR 

(1) 

INAR 

(2) 

INAR 

(3) 

INAR 

(4) 

20 1.009 1.070 1.034 1.042 1.014 1.218 1.075 1.045 1.106 1.116 1.125 1.135 

40 1.000 1.091 1.044 1.054 1.015 1.247 1.091 1.076 1.136 1.149 1.163 1.176 

60 0.990 1.111 1.053 1.066 1.016 1.276 1.108 1.106 1.166 1.183 1.200 1.217 

80 0.980 1.132 1.062 1.078 1.017 1.305 1.124 1.136 1.196 1.217 1.237 1.258 

100 0.970 1.152 1.071 1.090 1.018 1.333 1.141 1.166 1.226 1.250 1.274 1.299 

120 0.960 1.173 1.081 1.102 1.019 1.363 1.157 1.196 1.256 1.284 1.312 1.340 

140 0.950 1.193 1.090 1.113 1.019 1.391 1.174 1.226 1.286 1.318 1.349 1.380 

160 0.940 1.214 1.099 1.125 1.020 1.420 1.190 1.256 1.316 1.351 1.386 1.421 

180 0.931 1.234 1.108 1.137 1.021 1.449 1.206 1.286 1.346 1.385 1.424 1.462 

200 0.921 1.255 1.117 1.149 1.022 1.477 1.223 1.316 1.376 1.444 1.461 1.503 

 

 
Figure 7 Plot of AIC of INAR (p) on Data without Zeros 

 

 
Figure 8: Plot of BIC of INAR (p) on Data without Zeros 

 

 
Figure 9: Plot of HQIC of INAR (p) on Data without Zeros 
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The Table above shows the relative performance of the INAR 

models under different criteria of selection at different sample 

size when the data is generated from a Poisson distribution 

without a zero response. From the table, it is observed that 

INAR (1) is the best at different sample sizes especially on the 

basis of AIC, BIC and HQIC criteria. This is followed by 

INAR (3) as the second best in terms of all criteria for the data 

without zeros. This best model selected is in line with theory 

of parsimony.  

 

Fitting INAR model to Count Data with 20% of Excess 

Zero 

The performance of INAR models were determined through 

simulations on the count data with 20% of excess zero. The 

effect of sample sizes 𝑛 = 20, 40, … , 200, on the 

performance of the models were studied. At every sample 

size, the best status of the p, where p = 1, 2, 3, 4 are 

respectively determined for the levels of excess zero in the 

data generated using criteria like AIC, BIC and HQIC as 

presented in table 2 and plotted on graphs 10, 11 and 12. 20% 

of excess zero were injected in the data so as to determine the 

best INAR model for each category. The simulation study was 

carried out with 1000 iteration on each case in R statistical 

software. For each iteration, the values of the criteria for the 

assessment (AIC, BIC and HQIC) were computed and their 

average values were recorded according to sample sizes as 

shown in table 2. The values from the tables were plot in 

figures 10, 11 and 12. The model with lowest criteria is 

considered as the best. 

 

Table 2: Comparative Analysis of INAR (P) Model On Data with 20% Of Excess Zeros 

 

N 

AIC BIC HQIC 

INAR 

(1) 

INAR 

(2) 

INAR 

(3) 

INAR 

(4) 

INAR 

(1) 

INAR 

(2) 

INAR 

(3) 

INAR 

(4) 

INAR 

(1) 

INAR 

(2) 

INAR 

(3) 

INAR 

(4) 

20 1.484 0.990 0.680 1.160 1.434 1.550 1.044 1.420 1.430 1.400 1.368 1.464 

40 1.440 0.987 0.705 1.153 1.392 1.517 1.038 1.388 1.401 1.371 1.340 1.432 

60 1.400 0.979 0.722 1.136 1.351 1.478 1.032 1.356 1.371 1.342 1.313 1.400 

80 1.359 0.972 0.739 1.119 1.309 1.438 1.026 1.324 1.340 1.313 1.285 1.368 

100 1.318 0.964 0.756 1.103 1.268 1.398 1.020 1.293 1.310 1.284 1.258 1.336 

120 1.277 0.957 0.774 1.086 1.226 1.359 1.014 1.261 1.279 1.255 1.230 1.304 

140 1.236 0.949 0.789 1.070 1.185 1.319 1.008 1.229 1.249 1.226 1.203 1.271 

160 1.195 0.942 0.806 1.053 1.143 1.279 1.002 1.197 1.219 1.1973 1.175 1.240 

180 1.154 0.934 0.823 1.037 1.102 1.240 0.996 1.165 1.188 1.168 1.148 1.208 

200 1.481 0.994 0.688 1.169 1.434 1.557 1.044 1.420 1.432 1.400 1.368 1.464 

 

 
Figure 10: Plot of AIC of INAR (p) on Data with 20% of Zeros 

 

 
Figure 11: Plot of BIC of INAR (p) on Data with 20% of Zeros 
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Figure 12: Plot of HQIC of INAR (p) on Data with 20% of Excess Zeros 

 

Table 2 displays the average values of AIC, BIC, and HQIC 

of the fitted models calculated from 1000 iterations of data 

simulated from a Poisson distribution with 20% excess zero. 

The criteria values from Table 2 were plotted on Figures 

13,14 and 15 respectively. It is noted that the model follows a 

similar pattern of fit across sample sizes. However, INAR (3) 

outperforms the other models at moderate sample sizes 

especially on the basis of two criteria, AIC and BIC across 

sample sizes suggesting its flexibility in moderate zero-

inflation contexts. This indicate that the various sample sizes 

considered INAR (3) model shows resilience. 

 

Fitting INAR Model to Count Data with 30% of Excess 

Zero 

The performance of INAR models were determined through 

simulations on the count data with 40% of excess zeros. The 

effects of sample sizes 𝑛 = 20, 40, … , 200, on the 

performance of the models were studied. At every sample 

size, the best status of the p, where p = 1, 2, 3, 4 are 

respectively determined for the levels of excess zero in the 

data generated using criteria like AIC, BIC and HQIC as 

presented in table 3 and plotted on graphs 16, 17 and 18. 30% 

of excess zero was injected respectively in the data so as to 

determine the best INAR model for each category. The 

simulation study was carried out with 1000 iteration on each 

case in R statistical software. The values of the criteria for the 

assessment (AIC, BIC and HQIC) were computed for 

iteration performed and their average values were recorded 

according to sample sizes as shown in table 3. The values 

from the tables were plot in figures 16, 17 and 18. The model 

with lowest criteria is considered as the best. 

 

Table 3: Comparative Analysis of INAR (p) Model on Data with 30% of Excess Zeros 

 

N 

AIC BIC HQIC 

INAR 

(1) 

INAR 

(2) 

INAR 

(3) 

INAR 

(4) 

INAR 

(1) 

INAR 

(2) 

INAR 

(3) 

INAR 

(4) 

INAR 

(1) 

INAR 

(2) 

INAR 

(3) 

INAR 

(4) 

20 9.287 8.046 6.165 8.975 7.372 2.940 1.525 6.693 12.740 8.943 8.138 6.332 

40 15.150 28.420 11.700 21.840 18.790 2.787 2.461 25.130 9.890 8.583 7.273 5.963 

60 14.460 25.930 10.770 20.250 17.300 2.834 2.367 22.930 9.021 7.779 6.537 5.295 

80 14.170 23.940 9.840 18.670 15.800 2.881 2.274 20.730 8.148 6.975 5.802 4.628 

100 13.280 20.940 8.920 17.080 14.310 2.974 2.180 18.520 7.276 6.171 5.066 3.961 

120 12.390 18.450 7.991 15.500 12.820 2.964 2.086 16.320 6.404 5.367 4.330 3.293 

140 12.100 15.960 7.063 13.920 11.330 3.021 1.993 14.120 5.532 4.563 3.594 2.626 

160 11.110 13.470 6.135 12.330 9.840 3.068 1.895 11.910 4.659 3.759 2.859 1.997 

180 10.510 10.980 5.207 10.750 8.3470 3.115 1.805 9.620 3.787 2.955 2.123 1.291 

200 11.280 13.570 5.716 12.380 9.720 3.118 1.940 12.100 4.696 3.805 2.914 2.023 

 

 
Figure 16: Plot of AIC of INAR (p) on Data with 30% of Zeros 
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Figure 17: Plot of BIC of INAR (p) on Data with 30% of Excess Zeros 

 

 
Figure 18: Plot of HQIC of INAR (p) on Data with 30% of Zeros 

 

Figures 16, 17 and 18 shows the plots of the criteria values 

from Table 3. INAR (3) model is more robust to larger levels 

of excess zero than other competing models, particularly due 

to the lowest AIC, BIC and HQIC values and therefore appear 

to show the best fit for count time series data with 30% excess 

zero for small and large sample sizes, respectively. 

 

Fitting INAR model to Count Data with 40% of excess 

zero 

The performance of INAR models were determined through 

simulations on the count data with 40% of excess zeros. The 

effect of sample sizes 𝑛 = 20, 40, … , 200, on the 

performance of the models were studied. At every sample 

size, the best status of the p, where p = 1, 2, 3, 4 are 

respectively determined for the levels of excess zero in the 

data generated using criteria like AIC, BIC and HQIC as 

presented in table 4 and plotted on graphs 19, 20 and 21. 40% 

of excess zero were injected respectively in the data so as to 

determine the best INAR model for each category. The 

simulation study was carried out with 1000 iteration on each 

case in R statistical software. For each iteration, the values of 

the criteria for the assessment (AIC, BIC and HQIC) were 

computed and their average values were recorded according 

to sample sizes as shown in table 3. The values from the tables 

were plot in figures 19, 20 and 21. The model with lowest 

criteria is considered as the best. 

 

Table 4: Comparative Analysis of INAR (p) Model on Data with 40% of Excess Zeros 

 

n 

 

AIC BIC HQIC 

INAR 

(1) 

INAR 

(2) 

INAR 

(3) 

INAR 

(4) 

INAR 

(1) 

INAR 

(2) 

INAR 

(3) 

INAR 

(4) 

INAR 

(1) 

INAR 

(2) 

INAR 

(3) 

INAR 

(4) 

20 10.820 12.600 5.219 11.750 9.090 13.060 1.914 11.220 12.360 12.090 2.575 10.230 

40 10.570 11.630 4.723 11.120 8.459 12.640 1.888 10.400 11.470 11.400 2.001 9.570 

60 10.310 10.660 4.226 10.510 7.827 12.680 1.863 9.570 10.590 10.710 1.573 9.910 

80 10.060 9.690 3.730 9.890 7.196 12.610 1.838 8.747 9.710 10.020 2.148 9.740 

100 9.810 8.731 3.233 9.274 6.565 12.520 1.813 7.917 10.170 9.660 1.723 9.401 

120 9.550 7.764 2.737 8.654 5.933 10.310 1.788 7.086 10.050 9.350 2.298 9.061 

140 9.303 6.797 2.240 8.033 5.302 10.020 1.763 6.256 8.935 9.047 1.872 8.720 

160 9.049 5.830 1.744 7.413 4.671 9.550 1.737 5.425 8.818 8.729 1.547 8.389 

180 8.796 4.862 1.247 6.792 4.039 9.610 1.712 4.595 8.701 8.419 1.522 8.039 

200 8.542 3.895 0.751 6.172 3.408 9.520 1.687 3.764 8.584 8.108 1.507 7.699 
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Figure 19: Plot of AIC of INAR (p) on Data without Zeros 

 

 
Figure 20: Plot of BIC of INAR (p) on Data without Zeros 

 

 
Figure 21: Plot of HQIC of INAR (p) on Data without Zeros 

 

The average values of AIC, BIC and HQIC recorded in table 

4 revealed that INAR (3) is the model best fit, because it has 

the minimum values of the three criteria used for the 

assessment and therefore chosen as the most robust model to 

data with high proportions of excess zeros. 
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Forecast Ability of the Models  

The predictive ability of the models selected from INAR (1), 

INAR (2), INAR (3) and INAR (4) were examined using 

Theil U statistics. Theil U statistics is the relative accuracy 

measure that compares forecasted results with the results of 

forecasting with minimal historical data. It also requires the 

deviations to give more weight to large errors and to 

exaggerate errors, which can help eliminate methods with 

large errors. Theil’s U smaller values indicates a better 

forecasting technique whereas higher values of Theil U 

indicate that the forecasting technique is worse than naive 

model.  

 

Table 5: Forecast Performance of the Models 

 20% of excess zero 30% of excess zero 40% of excess zero 

Steps 

Ahead 

INAR 

(1) 

INAR 

(2) 

INAR 

(3) 

INAR 

(4) 

INAR 

(1) 

INAR 

(2) 

INAR 

(3) 

INAR 

(4) 

INAR 

(1)  

INAR 

(2)  

INAR 

(3)  

INAR 

(4) 

5 2.024 2.498 1.943 2.724 2.044 2.264 1.330 2.997 1.904 2.365 0.432 2.999 

10 2.004 2.399 1.923 2.706 2.024 2.243 1.303 2.988 1.925 2.347 0.404 2.993 

15 1.984 2.311 1.903 2.684 2.004 2.224 0.273 2.879 1.804 2.324 0.376 2.909 

20 1.963 2.252 1.883 2.665 1.603 2.204 0.204 2.838 1.705 2.300 0.307 2.878 

25 1.949 2.194 1.108 2.649 1.583 2.184 0.226 2.779 1.684 2.294 0.326 2.799 

30 1.868 2.135 0.838 2.624 1.563 2.164 0.156 2.721 1.664 2.275 0.257 2.742 

35 1.843 2.077 0.766 2.604 1.543 2.142 0.138 2.662 1.644 2.253 0.238 2.685 

40 1.827 2.018 0.612 2.584 1.523 2.124 0.122 2.604 1.625 2.234 0.225 2.634 

45 1.803 1.960 0.590 2.564 1.504 2.104 0.115 2.545 1.605 2.215 0.215 2.576 

50 1.863 1.901 0.573 2.544 1.483 2.084 0.088 2.487 1.588 2.195 0.189 2.497 

 

Based on the Theil’s Analysis above, the INAR (3) has the 

highest forecasting power around 30 steps ahead under 20% 

of excess zero, 15 step ahead under 30% of excess zero and 

all step ahead under 40% of excess zero in the model. 

However, the Theil values of INAR (1), INAR (2) and INAR 

(4) is not good in forecasting, but their ability increase as steps 

ahead increases.  

 

 
Figure 22: Forecast performance of the INAR (p) model with 20% of excess zero 

 

 
Figure 23: Forecast performance of the INAR (p) model with 30% of excess zero 
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Figure 24: Forecast Performance of The INAR (P) Model with 40% Of Excess Zero 

 

From figure 22, 23 and 24, based on the Theil’s U Analysis 

above, the INAR (3) has the highest forecasting power due to 

the value is less than 1 at some point in the step ahead for all 

percentages of excess zeros.  

 

CONCLUSION 

This study addresses the critical challenge of modeling and 

forecasting discrete count time series with excess zeros—a 

common feature in data such as daily disease cases, financial 

transactions, or rare event counts. Through a rigorous 

simulation-based evaluation of Integer-Valued 

Autoregressive (INAR) models under varying levels of zero 

inflation, the research provides clear, evidence-based 

guidance for applied researchers and analysts. The study 

established that while simpler models like INAR (1) perform 

adequately for standard count data, they deteriorate as zero 

inflation severity increases. Notably, the INAR (3) model 

emerges as the most robust choice for data with moderate to 

high zero inflation (20–40%). It consistently demonstrates 

superiority in-sample fit and provides the most accurate short-

to medium-term forecasts, owing to its flexibility in capturing 

autocorrelation patterns distorted by structural zeros. The 

forecasting advantage of INAR (3) is most pronounced in the 

near term, with competing models gaining relative 

performance only over longer horizons. 

These findings actively engage with and extend contemporary 

methodological discourse. They affirm recent calls for 

specialized discrete models over traditional approaches, 

resonating with reviews by Weiß (2023). The empirical 

superiority of INAR (3) under contamination provides 

concrete support for theoretical analyses, such as those by 

Karlis & Tsiamyrtzis (2024), on the behavior of thinning 

operators in zero-inflated contexts. Furthermore, the study’s 

scenario-specific model ranking refines the general selection 

process discussed by Aleksandrov & Weiss (2024). Finally, 

the demonstrated need for more sophisticated frameworks 

aligns with advancements like the GLAR models of Liboschik 

et al. (2023) and points toward the next logical innovation: 

developing mechanistic hybrid models, such as Zero-Inflated 

Thinning INAR (ZIT-INAR), as previewed in work like Chen 

et al. (2022). 
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