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ABSTRACT 

Air pollution, particularly fine particulate matter (PM₂.₅), poses significant environmental and health risks. This 

study compares satellite-derived PM₂.₅ data with ground-based measurements at different heights (2m, 5m, and 

10m) to evaluate their accuracy and seasonal variations. Results indicate that during the dry season (Harmattan), 

PM₂.₅ concentrations reached 270 µg/m³, 117.11µg/m³ and 90µg/m³ highlighting increased pollution due to 

dust transport and atmospheric stability. In contrast, during the rainy season, PM₂.₅ levels dropped significantly 

to 6.59µg/m³, 12.5µg/m³, 14.2µg/m³ and 15.42µg/m³ demonstrating the effect of wet deposition. The study 

underscores the importance of integrating satellite and ground-based PM₂.₅ data for accurate air quality 

assessments and policy-making. It delves into the effects of particulate matter, sources of particulate matter on 

satellite data and elucidates meteorology and meteorological parameters used for describing and quantifying 

atmospheric conditions. 

 

Keywords: Ground-based measurements, Harmattan (dry season), Meteorological parameters particulate 

matter, Satellite-derived data. 

 

INTRODUCTION 

The impact of air pollutants in the ambient air is of high 

concern due to their adverse effect on human health and the 

environment. Air pollutants are hazardous substances in the 

air that are produced from natural sources such as radon gas 

or from anthropogenic sources (man-made) such as 

combustion for energy production in industry, internal 

combustion engines and standby generators (Idris et al., 

2022). 

Pollution is the release of harmful or toxic substances into the 

environment, which leads to adverse effects on ecosystems, 

human health, and natural resources. These harmful 

substances, known as pollutants, can originate from various 

sources and come in different forms, such as chemicals, 

particles, noise, or energy. Pollution occurs when these 

contaminants exceed the environment’s natural capacity to 

absorb and neutralize them, thereby causing harm or 

imbalances (Idris, et al., 2020). 

Particulate matter (PM) refers to tiny particles or droplets in 

the air that vary in size and composition. These particles are 

usually a mix of dust, dirt, soot, smoke, and liquid droplets. 

Particulate matter or particle pollution are mixture of 

microscopic solid and liquid particles present in air. The 

presence of PM in air can be monitored through modern 

devices known as air quality sensors (Lawal et al., 2023). 

Particulate matter can originate from various sources, 

including vehicle exhaust, industrial emissions, construction 

activities, and natural processes like wildfires or volcanic 

eruptions. It is typically classified into two types, particulate 

matter 2.5 and particulate matter 10. 

In today’s industrialized and heavily populated world, 

pollution is one of the most significant environmental 

challenges. The rapid growth of industries, transportation, 

urbanization, and agricultural practices has accelerated the 

release of pollutants into air, water, and soil. These pollutants 

not only degrade the quality of life but also threaten 

biodiversity, contribute to climate change, and cause long-

term ecological damage. 

This study examined the relationship between ground-based 

and satellite-derived PM₂.₅ data at different heights (2m, 5m, 

and 10m) to evaluate their accuracy and seasonal variations in 

Kano State, Nigeria, over a 12-month period from July 2021 

to July 2022. The research also identified notable seasonal 

patterns, showing significantly higher PM₂.₅ concentrations 

during the Harmattan season. 

 

Literature Review 

Cohen et al., (2017) carried out an experiment which 

estimated that exposure to outdoor air pollution is responsible 

for about 4 million premature deaths annually with about 

another 3-4 million resulting from exposure to indoor air 

pollution; that is, air pollution is responsible for about 1 in 9 

deaths worldwide. The majority of deaths are associated with 

fine particulate matter of less than 2.5 µm in width (PM2.5). 

Knowledge of both PM2.5 concentrations and the 

concentrations of a number of pollutants is required to devise 

effective mitigation strategies for PM2.5 since it is directly 

emitted to the atmosphere, such as in the form of smoke and 

dust, which also form in the atmosphere through chemical 

reactions that transform gaseous pollutants (e.g., sulfur 

dioxide (SO2), ammonia (NH3), nitrogen dioxide (NO2)) to 

particles (i.e., gas to particle conversion). 

Zang et al., (2021) investigated how the adverse effects from 

exposure to particulate matter 2.5 μm in diameter (P𝑀2.5 ) on 

health-related outcomes have been found in a range of 

experimental and epidemiological studies. It was aimed at 

assessing the significance, validity, and reliability of the 

relationship between long-term P𝑀2.5   exposure and various 

health outcomes. 

Hongye Zhou et al., (2022) investigated how the background 

of P𝑀2.5   concentration represents the combined emissions 

from natural domestic and foreign sources, which has 

implications for the maximum effect, in terms of air-quality 

control, that can be achieved by reducing emissions. 

However, estimating the background P𝑀2.5 concentrations 

via background monitoring sites for a densely populated 
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region (e.g., Taiwan) has been a challenge. In this study, we 

compared two statistical methods of estimating the 

background concentration using an 11-year time series 

(2005–2016) of data from three air-quality stations in Taiwan. 

Sheng-Hsiang Wang et al., (2020) carried out a study that 

plays a crucial role in the understanding that air quality model 

solves the mathematical equations of chemical and physical 

processes in pollution transportation numerically. While the 

data-driven model, as another scientific research paradigm 

with powerful extraction of complex high-level abstractions, 

has shown unique advantages in the P𝑀2.5   prediction 

applications. In this paper, to combine the two advantages of 

strong interpretability and feature extraction capability. 

 

Theoretical Background 

Tropospheric aerosols can be characterized through ground-

based and satellite-based measurements. This involves the use 

of interpretation and inversions of electromagnetic radiance 

measurements by which the radiation is characterized at 

specific wavelength that is sensitive to the object of interest. 

Thus, the method requires the use of radiative transfer theory 

and the fundamentals of light scattering.  

Most radiation utilize for aerosol retrieval methodology is 

either emitted by the sun or objects in the earth’s atmosphere 

or on/near earth’s surface and this is generally affected either 

scattering or absorption.  

𝛽𝜆(𝑇) =
2ℎ𝑐2

𝜆5

1

𝑒ℎ𝑐/𝜆𝑘𝑇−1
           (1) 

Equation (1) is Plank’s law in terms of wavelength (𝜆) given 

as the intensity of radiation per unit area per unit wavelength 

from a black body at a temperature(𝑇), where the k is 

Boltzmann constant, h is Plank’s constant, and c is the speed 

of light with values 1.38 x 10-23 m2kg-2k-1, 6.626 x 10-34 m2 

kgs-1 and 3 x 108 ms-1 respectively. 

From radiative transfer theory of a black body is a perfect 

absorber and a perfect emitter obeying Kirchhoff’s law 

equation (2) which states emissivity (𝜆) of an object is 

exactly equal to its absorptivity(𝛼𝜆) . 

𝐿𝑖𝜆 = 𝐿𝑟𝜆 + 𝐿𝛼𝜆 + 𝐿𝑇𝜆              (2) 

where is 𝐿𝑖𝜆 is the incident radiant flux at a specific 

wavelength (𝜆), 𝑟𝜆 is the spectral hemispherical reflectance, 

𝛼𝜆 is the spectral hemispherical absorptance and 𝑇𝜆 is the 

spectral hemispherical transmittance. 

The wavelength of maximum emission (𝜆𝑚) can be described 

by Wein’s law equation (3) as constant divided by black 

body’s temperature (𝑇). 

𝜆𝑚𝑇 = 2897.9 µmK   (3) 

The theory of Rayleigh scattering suggested that the scattering 

of electromagnetic radiation such as solar energy by air 

molecules or particles in the air varies with wavelengths 

equation (4) (Musa, 2010) . 

𝜎𝑎(𝜆) = 𝐶/𝜆4                (4) 

where 𝐶 is a parameter depending on wavelengths (𝜆)   

The radiance observe at the satellite is whatever comes from 

the surface plus the sources along the path to the satellite 

caused by absorption and scattering minus the sinks caused 

by absorption and scattering. The change in radiance (𝑑𝐿) 

will be the radiance at the top of the atmosphere (𝐿𝑡𝑜𝑝)where 

the satellite is minus the radiance in the atmosphere 

(𝐿)equation (5). 

𝑑𝐿 = 𝐿𝑡𝑜𝑝 − 𝐿                 (5) 

Since we are interested in the change in radiance in the 

atmosphere (𝑑𝐿) at a point X, the change in radiance is the 

function of location and a direction along the path towards the 

satellite (r) as described by Schwarzchild’s equation (6). 

𝑑𝐿(𝑋, 𝑟) = −𝜎𝑒,𝜆(𝑋)𝐿𝜆(𝑋, 𝑟) + 𝐽𝜆(𝑋, 𝑟)              (6) 

where 𝐿𝜆(𝑋, 𝑟) is the initial radiance at point X in the direction 

r and 𝐽𝜆(𝑋, 𝑟) is the total source radiance at point X in the 

direction r and  𝜎𝑒,𝜆(𝑋) is the volume extinction at the point 

X usually referred as beam attenuation coefficient given by 

equation (7). 

𝜎𝑒,𝜆(𝑋) = 𝜎𝑎,𝜆 + 𝜎𝑠,𝜆               (7) 

where 𝜎𝑎,𝜆 is the volume absorption coefficient and 𝜎𝑠,𝜆 is the 

volume scattering coefficient. 

The probability of interaction between the radiance photon 

and the aerosol’s particle been a scattering interaction is given 

by Single Scattering Albedo (𝜔0) which is the ratio of 

scattering efficiency (𝜎𝑠,𝜆) to total extinction efficiency(𝜎𝑒,𝜆) 

equation (8). 

𝜔0 =
𝜎𝑠,𝜆(𝑋)

𝜎𝑒,𝜆(𝑋)
             (8) 

For sources of radiation 𝐽𝜆(𝑋, 𝑟) in equation (6): 

𝐽𝜆(𝑋, 𝑟) = 𝐽𝑡ℎ(𝑋, 𝑟) + 𝐽𝑠𝑐𝑎𝑡(𝑋, 𝑟)            (9) 

where 𝐽𝑡ℎ(𝑋, 𝑟) is the sources from thermal and 

𝐽𝑠𝑐𝑎𝑡(𝑋, 𝑟) sources from scattering and the thermal source is 

given by equations (10) and (11). 

𝐽𝑡ℎ(𝑋, 𝑟) = 𝜎𝑎,𝜆  𝐵𝜆(𝑇(𝑋))                  (10) 

𝐽𝑠𝑐𝑎𝑡(𝑋, 𝑟) = ∫ 𝛾𝑠,𝜆4𝜋
(𝑟, 𝑟′, 𝑋)𝐿𝜆(𝑟′𝑋)𝑑Ω′       (11) 

Recall from Kirchhoff’s law 𝜎𝑎,𝜆 at a given temperature we 

have equation (12). 

|𝜎𝑎,𝜆  | = 𝜆              (12) 

 

Optical Depth  

Optical depth is the unit less quantity showing how much 

absorption and scattering of radiation occurs at some specified 

wavelength along the path mathematically given as equation 

(13) (Lazrak et al., 2019). 

𝛿𝜆(𝑧) =  ∫ 𝜎𝑒,𝜆(𝑧′)𝑑𝑧′∞

𝑧
                (13) 

where z is 0, and the integral is from 0 to for optical depth of 

the atmosphere. Hence, Atmospheric aerosol optical depth 

tells us how much direct sunlight is prevented from reaching 

the ground by these aerosol particles Liu et al., (2005): 

Direct Transmittance also called transmissivity is given by 

equation (14).  

𝑇𝑑 =  𝑒𝛿𝜆(𝑧′)/µ          (14) 

where µ = 𝑐𝑜𝑠𝜃, and  𝜃 is the slant path angle of radiation. 

Then finally, the path optical depth is given as: 

𝛿𝑠(𝑠) =  ∫ 𝜎𝑒,𝜆(𝑠′)𝑑𝑠′𝑠2

𝑠1
   (15) 

where 𝑠′ is the coordinate along the path maybe larger than 

the optical depth of the atmosphere, hence, the direct 

transmittance along the path will be lower.  

As such,     

𝛿𝑠(𝑠) =  ∫ 𝜎𝑒,𝜆(𝑠′)𝑑𝑠′𝑠2

𝑠1
=

1

µ
∫ 𝜎𝑒,𝜆(𝑧′)𝑑𝑧′∞

0
 (16)  

Assuming no sources of radiation happen along the path, then 

equation (5) becomes equation (17).  

𝑑𝐿(𝑠, 𝑟) = −𝜎𝑒,𝜆(𝑠)𝐿𝜆(𝑠, 𝑟)              (17) 

And this gives Beer’s law equation (18) that states that the 

radiance at the end of the path is the radiance at the beginning 

of the path multiplied by the direct transmittance. 

𝐿(𝑠1) = 𝐿(𝑠)𝑒𝛿(𝑠)              (18) 

where 𝐿(𝑠) is the initial radiance, 𝐿(𝑠1) is the final radiance 

and 𝑒𝛿(𝑠) is the direct transmittance from point 𝑠 to the 

boundary 𝑠1 respectively. 

Experimentally, the voltage (V) measured by a sun 

photometer is proportional to the spectral irradiance reaching 

the instrument at the surface. The estimated top of the 

atmosphere spectral irradiance in terms of voltage (Vo) is 

obtained by sun photometer measurements such that the total 

optical depth (τtotal) can be obtained using equation (19) 

according to equation (18) as:  
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𝑉(λ) = 𝑉𝑂𝑑2exp [−𝜏(λ)𝑡𝑜𝑡𝑎𝑙 ∗ 𝑚]           (19) 

where V is the digital voltage measured at wavelength λ, 𝑉𝑂 is 

the extraterrestrial voltage, d is the ratio of the average to the 

actual earth-sun distance, τtotal is the total optical depth, and m 

is the optical air mass (Holben et al., 1998). 

To obtain the aerosol component, optical depth due to water 

vapor, Rayleigh scattering, and other wavelength-dependent 

trace gases must be subtracted from the total optical depth 

equation (20):  

τ(λ)Aerosol = τ(λ)total - τ(λ)water - τ(λ)Rayleigh - τ(λ)O3 - 

τ(λ)NO2 - τ(λ)CO2 - τ(λ)CH4       (20) 

The Ängström exponent, (α), provides basic information on 

the aerosol size distribution. The spectral variations of AOD 

and α, both are observed corresponding to the aerosol 

characteristics equation (21) (Holben et al., 2001; Eck et al., 

2010).  

𝜏𝜆 = 𝛽𝜆−𝛼𝐴                (21) 

where 𝜏𝜆 is aerosol optical thickness or depth at the 

wavelength (𝜆 in micrometers), while β and α are the 

Ängström’s turbidity coefficient and the Ängström exponent 

respectively. The Angstrom exponent is often used to give an 

indication of the relative magnitude of the fine and coarse 

mode contributions to the total extinction AOD (Eck et al., 

2010). 

 

Relationship Between AOD and PM 

Some parameters used to describe atmospheric physical 

conditions change much more in the vertical direction than the 

horizontal direction. Consequently, it is often assumed that 

the atmosphere has a structure in which the horizontal 

direction is uniform and the vertical direction is layered (Xu 

& Id, 2020). Therefore, for a single homogeneous 

atmospheric layer containing spherical aerosol particles. The 

mass concentration at the particular surface is obtained after 

drying the sampled air, and is represented by equation (22) 

(Koelemeijer et al., 2006): 

PM =
4

3
𝜋𝜌 ∫ 𝑟3 𝑛(𝑟)𝑑𝑟    (22) 

where ρ denotes the density of aerosol particles (g/m3) and 

n(r) describes the aerosol size distribution spectrum under dry 

conditions. The AOD of the layer with height H is given by 

equation (23) (Koelemeijer et al., 2006): 

AOD = 𝜋 ∫ ∫ 𝑄𝑒𝑥𝑡,𝑎𝑚𝑏(𝑟)𝑛𝑎𝑚𝑏𝑟2∞

0
𝑛(𝑟)𝑑𝑟𝑑𝑧

𝐻

0
  (23) 

AOD = 𝜋𝑓(𝑅𝐻) ∫ ∫ 𝑄𝑒𝑥𝑡,𝑑𝑟𝑦(𝑟)𝑛(𝑟)𝑟2∞

0
𝑛(𝑟)𝑑𝑟𝑑𝑧

𝐻

0
 (24) 

where namb(r) the size distribution under ambient relative 

humidity conditions, Qext,amb is the extinction efficiency under 

ambient conditions, Qext,dry the extinction efficiency under dry 

conditions, and the hygroscopic growth factor f(RH), which 

represent the ratio between these (size-distribution integrated) 

extinction efficiencies.  

The size-distribution integrated extinction efficiency 〈Qext〉 is 
defined as equation (25) (Koelemeijer et al., 2006). 

〈Qext〉 =
∫ 𝑟2Qext(𝑟)𝑛(𝑟)𝑑𝑟

∫ 𝑟2𝑛(𝑟)𝑑𝑟
               (25) 

Effective Radius (reff) is an area weighted mean radius of the 

aerosol particles given as equation (26) by (Koelemeijer et al., 

2006): 

𝑟𝑒𝑓𝑓 =
𝑟3(𝑟)𝑛(𝑟)𝑑𝑟

∫ 𝑟2𝑛(𝑟)𝑑𝑟
            (26) 

Hence, substituting equations (24), (25), (26) into (23) will 

produce equation (27) (Koelemeijer et al., 2006; Li, 2015): 

AOD = PM ∙ 𝐻 ∙ 𝑓(RH)
3(Qext,dry )

4𝜌𝑟𝑒𝑓𝑓
          (27)  

where 𝐻 is the height of the aerosols and all the terms retain 

their usual meanings as above. 

 

Models Performance Indicators 

Performance Indicator (PI) measures two things: (1) accuracy 

measure and (2) error measure. The accuracy measures 

evaluate values from 0 to 1, whereby the best model is 

considered when the evaluated values are close to 1, while the 

best model for error measures will be selected if the evaluated 

value is close to 0s (Ahmat et al., 2015; Abdullah et al., 2019). 

Performance indicators for statistical analysis: 

i. Correlation Coefficient (R2):   

 𝑅2 = (
∑ (𝑃𝑖−𝑃̅)(𝑂𝑖−𝑂̅|𝑛

𝑖=1

𝑛.𝑆𝑝𝑟𝑒𝑑 𝑆𝑜𝑏𝑠
)

2

   (35) 

ii. Root Mean Square Error (RMSE):  

 𝑅𝑀𝑆𝐸 = [(
1

𝑛−1
) ∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖−1 ]
1

2⁄
  (36) 

iii. Mean Bias Error (MBE):          

𝑀𝐵𝐸 =
1

𝑛
∑ (𝑃𝑒𝑠𝑡 − 𝑃𝑜𝑏𝑠)𝑛

𝑖=1      (37) 

iv. Normalized Absolute Error (NAE):   

 𝑁𝐴𝐸 =
∑ |𝑃𝑖−𝑂𝑖|𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

    (38) 

v. Prediction Accuracy (PA):   

𝑃𝐴 = ∑
(𝑃𝑖−𝑃̅)(𝑂𝑖−𝑂̅)

(𝑛−1)𝑆𝑝𝑟𝑒𝑑𝑆𝑜𝑏𝑠

𝑛
𝑖=1    (39) 

where n = total number measurements at a particular site, Pest 

= calculated values, Pobs = observed values Pi = forecasted 

values, Oi = observed values, P = mean of forecasted values, 

O = mean of observed values, Spred = standard deviation of 

forecasted values and Sobs = standard deviation of the 

observed values.  

 

MATERIALS AND METHODS 

The materials used in conducting the research work comprises 

of; Satellite data obtained from clarity data and purple air 

devices, Ground data obtained from air quality station, 

Microsoft excel for sorting, analyzing and comparing data, 

Internet connection for downloading and accessing websites 

necessary for the project. 

 

Study Area 

Kano is a historic and commercial city in northern Nigeria and 

serves as the capital of Kano State. It is one of the largest and 

most economically significant cities in the country, known for 

its rich cultural heritage, ancient trade routes, and vibrant 

industries. Located at approximately latitude 12.0022° N and 

longitude 8.5919° E, Kano has a semi-arid climate with 

distinct dry and rainy seasons. The city has long been a centre 

for commerce, agriculture, and Islamic scholarship, playing a 

vital role in West African trade for centuries.

 



COMPARISON OF PARTICULATE MATTER…        Idris et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 9 No. 12, December (Special Issue), 2025, pp 621 – 628 624 

 
Figure 1: Map of Kano State, Nigeria (Google map, 2025) 

 

Methods 

When comparing ground data and satellite data, we need 

methods that assess their agreement, accuracy, and reliability. 

Some of the suitable methods are listed below:  

 

Data Collection  

PM2.5 ground data was obtained from Clarity Data and Purple 

Air (SWAP lab, department of Physics, BUK) for the period 

of 12 months and PM2.5 Satellite data was obtained from 

NASA for the period of 12months. 

 

Data Pre-processing 

i. Ground Data Processing: Standardizing units, handling 

missing values, and ensuring consistency. 

ii. Satellite Data Processing: Applying radiometric and 

geometric corrections, resampling, and filtering. 

 

Statistical Analysis 

GIS Mapping: Visualizes spatial differences and interpolates 

missing data 

 

Data Visualization 

i. Scatter Plots: Show correlation strength between 

ground and satellite data. 

ii. Time-Series Graphs: Compare trends over time for both 

datasets. 

iii. Histograms & Box Plots: Display data distribution and 

detect anomalies. 

 

Procedure 

This section explains the procedure taken to carry out the 

analysis which includes data collection, pre-processing, 

statistical analysis, visualization, and interpretation. The first 

step is to collect ground-based PM2.5 data from Clarity data 

(μg/m³) and Purple Air which use low-cost sensors to measure 

air pollution in real time. Satellite-derived PM2.5 estimates 

can be accessed from sources like NASA’s Giovanni platform 

and Google Earth Engine, which provide remote sensing data, 

including Aerosol Optical Depth (AOD), a parameter often 

converted into PM2.5 using regression models. Purple Air also 

provides satellite-calibrated PM2.5  estimates, which was used 

directly for comparison. 

After collecting the data, pre-processing ensures consistency 

between the datasets. Since satellite observations capture 

large-scale air quality trends while ground sensors provide 

localized measurements, the data must be spatially and 

temporally aligned. First, the locations of satellite and ground 

stations must match to ensure meaningful comparisons. 

Additionally, satellite data was collected at specific overpass 

times, while ground sensors record continuously, so 

timestamps must be synchronized (Zhang et al., 2021). It was 

ensured that both datasets report PM2.5  concentrations in 

micrograms per cubic meter (µg/m³).  

When the data was processed, statistical analysis was 

performed to assess how well the satellite-derived PM2.5  

estimates match ground-based measurements. A key metric is 

the Pearson correlation coefficient (r), which measures the 

strength of the relationship between the two datasets. A value 

close to 1 indicates a strong correlation, suggesting that 

satellite data accurately represents PM2.5  levels on the 

ground. Additionally, error metrics such as the Root Mean 

Square Error (RMSE) and Mean Bias Error (MBE) quantify 

the level of deviation between satellite and ground values, 

helping to identify systematic overestimations or 

underestimations (Zhang et al., 2021). Further, regression 

analysis was conducted, where a strong agreement was 

indicated if the slope of the regression line is close to 1 and 

the intercept is near 0. 

To better understand the relationship between ground and 

satellite data, visualization techniques were used. A scatter 

plot is commonly employed to display individual 

comparisons between ground and satellite PM2.5 estimates, 

providing insight into the degree of agreement. Time series 

analysis allows for the examination of trends over different 

time periods, highlighting variations in pollution levels. 

Additionally, geospatial heat maps are useful for visualizing 

the spatial distribution of PM2.5 concentrations, revealing 
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potential differences between urban and rural areas or areas 

with varying pollution sources.  

The final step is interpretation and conclusion, where the 

reliability of satellite-derived PM2.5 estimates was assessed. 

If correlation is high (r > 0.7) and errors are low, then satellite 

data can be considered reliable for air quality monitoring in 

regions with limited ground sensors. However, if 

discrepancies exist, adjustments may be required, such as 

incorporating meteorological variables like wind speed, 

temperature, and humidity to refine the satellite-derived 

PM2.5 estimates (Zhang et al., 2021). This comparative 

analysis is essential for improving the accuracy of remote 

sensing data and enhancing air quality monitoring, 

particularly in regions where ground-based monitoring 

stations are scarse. 

 

RESULTS AND DISCUSSION 

In this research work, the relationship between ground and 

satellite data of particulate matter (PM2.5) in Kano state, 

Nigeria, covering a period of 12 months from July 2021 to 

July 2022 was investigated. The study also identified seasonal 

variations in PM2.5 concentrations, with higher levels 

observed during the Harmattan season.

 

Table 1a: Monthly comparison of PM2.5 ground and satellite data from July to December (2021) 

Month (2021) Purple air (μg/m³) Clarity data (μg/m³) Ground data(μg/m³) 

July,  21.3954 10.6095 22.3573 

August  20.6831 6.5490 13.0860 

September  26.0897 10.4376 25.4690 

October  26.6978 21.1503 34.3923 

November  39.6162 24.1696 35.5245 

December  30.1618 15.0793 89.3019 

Table 1a, Monthly Comparison of Particulate Matter(𝑃𝑀2.5) 

(July to December 2021). The monthly comparison of 

Particulate Matter (𝑃𝑀2.5) concentrations from July 2021 to 

December 2021 reveals a notable trend (Table 4.1a). The 

concentrations are relatively low, below 30 μg/m³, from July 

to October for both ground and satellite data. This is 

consistent with the rainy season in Nigeria, which typically 

occurs from May to October (Adejuwon, 2004). According to 

Adejuwon, (2004) rainfall can reduce aerosol concentrations 

by washing out particulate matter from the atmosphere. 

However, in December, the 𝑃𝑀2.5  concentrations increase, 

likely due to the onset of the Harmattan season, characterized 

by dry and windy conditions. As noted by Marticorena et al. 

(2010), the Harmattan season is associated with increased 

aerosol concentrations due to dust emissions. 

 

Table 1b: Monthly comparison of PM2.5 ground and satellite data from January to June (2022) 

Month (2022) Purple air (μg/m³) Clarity data (μg/m³) Ground data(μg/m³) 

January  28.5132 15.84 82.3693 

February  81.6732 18453 78.6971 

March  116.7944 26.0463 117.117 

April  19.7023 14.2136 50.5872 

June  22.5984 15.4248 41.1532 

Table 1b shows the monthly comparison of Particulate Matter 

(2.5) for the period of six months (January 2022 to June 2022). 

The monthly comparison of 𝑃𝑀2.5  concentrations from 

January to June 2022 shows a different trend (Table 5). The 

concentrations are high from January to March, exceeding 

100 μg/m³, consistent with the peak Harmattan period 

(Ogunjobi et al., 2017). Aerosol concentrations are typically 

higher during dry seasons due to increased dust emissions. 

However, in April and June, the PM2.5 concentrations 

decrease, likely due to the onset of the rainy season, which 

washes out particulate matter from the atmosphere 

(Adejuwon, 2004).

 

Discussion 

 
Figure 2a: Compared daily ground data and satellite data from July to December (2021) 
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The daily ground and satellite data for 𝑃𝑀2.5 concentrations 

in Kano, Nigeria, from July to December 2021 shows a 

notable trend (Figure 2a). The concentrations remain 

relatively low, below 100 μg/m³, from July to November, 

consistent with the rainy season in the region (Adejuwon, 

2004). However, in December, the concentrations increase, 

likely due to the onset of the Harmattan season, characterized 

by dry and windy conditions (Ogunjobi et al., 2017). 

 

 
Figure 2b: Compared daily ground data and satellite data from January to June (2022) 

 

The daily data for January to May 2022 reveal high 𝑃𝑀2.5 

concentrations, exceeding 200 μg/m³, particularly during the 

peak Harmattan period (January-March) (Figure 2b). This is 

consistent with previous studies, which have reported 

elevated 𝑃𝑀2.5 levels during the Harmattan season in West 

Africa (Marticorena et al., 2010). The concentrations decrease 

in April and May, coinciding with the onset of the rainy 

season. 

 

 
Figure 2c: Compared monthly ground data and satellite data from July to December (2021) 

 

The monthly data for July to December 2021 shows relatively 

low 𝑃𝑀2.5 concentrations, below 30 μg/m³, from July to 

November (Figure 2c). This is attributed to the rainy season, 

which reduces aerosol concentrations in the atmosphere 

(Andreae, 2007). However, in December, the concentrations 

increase to approximately 90 μg/m³, likely due to the 

Harmattan season. 

 

 
Figure 2d: Compared monthly ground data and satellite data from January to June (2022) 
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The monthly comparison of particulate matter (𝑃𝑀2.5) 

concentrations from January 2022 to June 2022 reveals a 

notable trend (Figure 2d). The concentrations are high from 

January to March, with values exceeding 150 μg/m³, 

consistent with the Harmattan season in West Africa 

(Ogunjobi et al., 2017). According to a study published in the 

Journal of Aerosol Science, the Harmattan season is 

characterized by high winds and dry conditions, leading to 

increased aerosol concentrations (Marticorena et al., 2010). 

As noted by Andreae (2007), aerosol concentrations are 

typically higher during dry seasons due to increased dust 

emissions. In contrast, the 𝑃𝑀2.5 concentrations decrease 

significantly in April and May, with values below 40 μg/m³, 

coinciding with the onset of the rainy season. This is 

consistent with a study published in the Journal of 

Agricultural and Rural Development, which found that 

rainfall can reduce aerosol concentrations by washing out 

particulate matter from the atmosphere (Adejuwon, 2004). 

 

CONCLUSION 

The findings of this study demonstrate the potential of 

satellite data for estimating PM2.5 concentrations in Kano 

state. The results also highlight the importance of monitoring 

air quality in the region, particularly during the Harmattan 

season when PM2.5 concentrations tend to be higher. Results 

indicate that during the dry season (Harmattan), PM₂.₅ 

concentrations reached 270 µg/m³, 117.11µg/m³ and 90µg/m³ 

highlighting increased pollution due to dust transport and 

atmospheric stability. In contrast, during the rainy season, 

PM₂.₅ levels dropped significantly to 6.59µg/m³, 12.5µg/m³, 

14.2µg/m³ and 15.42µg/m³ demonstrating the effect of wet 

deposition. Furthermore, the study findings can be used to 

raise awareness about the importance of air quality and the 

need for sustained monitoring and management efforts. 

Consistent with studies conducted in Minna, Port Harcourt, 

and Akure, PM₂.₅ levels were observed to be higher during the 

dry season due to increased atmospheric stability, lower wind 

speeds, and dust transport from the Sahara Desert 

(Arowosegbe et al., 2024; Okoro et al., 2019; Olatunde & 

Adedeji, 2022). Additionally, the Niger Delta study 

demonstrated that while satellite-derived PM₂.₅ data provide 

regional insights, local variations such as emissions from 

biomass burning and industrial activities are better captured 

by ground-based sensors (Shaibu & Weli, 2017). This aligns 

with our findings, where satellite data sometimes 

underestimated peak PM₂.₅ levels recorded by ground sensors, 

particularly during periods of intense pollution. 
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