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ABSTRACT 

Lifetime data in engineering, medical, and reliability studies often exhibit complex hazard rate and tail 

behaviors that classical distributions, such as the inverse Weibull model, cannot adequately capture. To address 

this limitation, this study proposes a new and flexible lifetime model called the Alpha-Power Exponentiated 

Topp-Leone Inverse Weibull (AP-ETLIW) distribution. The proposed model is constructed by integrating the 

exponentiation mechanism, the Topp-Leone transformation, and the alpha-power transformation into the 

inverse Weibull distribution, thus enhancing shape flexibility, hazard rate variation, and tail behavior. The 

performance of the AP-ETLIW distribution is evaluated through comparisons with existing lifetime models, 

demonstrating its superior fitting capability in various applications, including reliability analysis, survival 

analysis, engineering and medical sciences. This study contributes to the development of hybrid statistical 

distributions and provides a robust tool to model complex lifetime data. 
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INTRODUCTION 

Probability distributions play a fundamental role in statistical 

modelling, particularly in areas such as reliability analysis, 

survival analysis, and lifetime data modelling. Classical 

distributions, including exponential, Weibull, and gamma 

distributions, have long been used to model lifetime and 

failure time data (Faruk et al., 2024). However, real-world 

datasets often exhibit complex characteristics such as 

skewness, heavy tails, multimodality, and non-monotonic 

hazard rates that cannot be adequately captured by these 

traditional models. To address these limitations, recent 

research has focused on developing more flexible probability 

distributions by introducing additional shape parameters, 

transformations, and generalized extensions of existing 

models. Such advancements aim to enhance model 

adaptability and improve the goodness-of-fit for complex 

datasets. Lifetime data modelling is a cornerstone of 

reliability engineering, survival analysis, and risk 

management. Accurate models are essential for predicting 

system failures, patient survival times, and assessing risks in 

various industries. Traditional distributions such as Weibull, 

Exponential, and Gamma have been widely used due to their 

mathematical tractability and interpretability. However, these 

models often fail to capture the complexity of real-world data, 

which can exhibit heavy tails, skewness, multimodality, and 

non-monotonic hazard rates (Klakattawi, 2022; Betensky et 

al., 2023). For example, the Weibull distribution assumes a 

monotonic hazard rate, which is rarely observed in practice, 

especially in biomedical and engineering applications (Chen 

et al., 2023). To address these limitations, researchers have 

developed more flexible distributions by generalizing or 

combining existing distributions. These advanced models 

introduce additional parameters or hybrid mechanisms to 

better capture the nuances of real-world data. One such 

development is the Alpha Power Topp-Leone Weibull 

Distribution (APTLW) which integrates the flexibility of 

Alpha Power Transform, the Topp-Leone family and Weibull 

distribution (Benkhelifa, 2022). This hybrid approach has 

shown promise in modelling complex lifetime data with 

diverse characteristics (Usman et al., 2023). Traditional 

distributions such as Weibull, Exponential, and Gamma have 

been the backbone of lifetime data analysis for decades. 

However, their simplicity often comes at the cost of limited 

flexibility. For example: The Weibull distribution assumes a 

monotonic hazard rate, which is not suitable for data with 

bathtub-shaped 

or Unimodal hazard rates (Klakattawi, 2022). The exponential 

distribution is limited to constant hazard rates, making it 

inadequate for most real-world applications (Betensky et al., 

2023). The Gamma distribution, while more flexible, 

struggles with heavy-tailed data and multimodality (Mahdavi, 

2017). To overcome these limitations, researchers have 

developed generalized distributions by introducing additional 

parameters or combining multiple distributions, examples 

include the exponential Weibull distribution, which extends 

the Weibull distribution by adding a shape parameter to model 

non-monotonic hazard rates (Topp and Leone, 1955) The 

generalized inverse 

Weibull distribution, which enhances the inverse Weibull 

distribution by incorporating additional flexibility (De 

Gusmao et al., 2011). The Beta-generated family of 

distributions, which uses the Beta function to create more 

flexible models (Al-Shomrani et al., 2016). The Alpha Power 

Transform is a powerful technique for enhancing the 

flexibility of baseline distributions. By introducing an 

additional shape parameter, it allows for better modelling of 

skewness, kurtosis, and tail behavior. For example, the 

exponential distribution of the power of alpha has been used 

to model data with increasing or decreasing hazard rates 

(Mahdavi, 2017). The Alpha Power Weibull distribution has 

been applied in reliability engineering to model failure times 

with non-monotonic hazard rates. The Topp-Leone family of 

distributions is known for its ability to model data with 

bathtub shaped or increasing hazard rates. Key developments 

include: The Topp-Leone Generalized Exponential 

distribution, which has been used in survival analysis to 

model patient survival times (Al-Shomrani et al., 2016). The 

Topp-Leone Odd Log-Logistic Weibull distribution, which 

has been applied in reliability engineering to model failure 

times with complex hazard rate shapes (Mudholkar et al., 

1995). The inverse Weibull distribution is particularly useful 

for modelling heavy-tailed data, which is common in 

reliability and survival analysis. Its applications include: 

Modelling extreme values in environmental science, such as 
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the time to failure of ecological systems (De Gusmao et al., 

2011). 

 

Motivation and Background 

One of the notable developments in this direction is the 

Alpha-Power Exponentiated Topp-Leone Inverse Weibull 

(AP-ETLIW) distribution, a novel and highly flexible 

statistical model designed to accommodate diverse data 

behaviours. The AP-ETLIW distribution integrates three key 

frameworks the Alpha-Power transformation, the 

Exponentiated Topp-Leone mechanism, and the Inverse 

Weibull distribution”to yield a generalized model capable of 

describing a wide range of statistical patterns. This integration 

results in a distribution that provides superior flexibility and 

robustness when modeling lifetime data. Consequently, the 

AP-ETLIW model is particularly 

Suitable for applications in engineering reliability, medical 

survival analysis, risk assessment, and economic modeling, 

where complex data structures frequently occur. 

 

Theoretical Foundation 

The Inverse Weibull (IW) distribution, a foundational 

component of the AP-ETLIW model, is well recognized for 

its ability to model lifetime data with non-monotonic hazard 

functions. Despite this capability, the IW distribution remains 

limited when modeling highly skewed or multimodal datasets. 

To overcome these restrictions, the Topp-Leone 

transformation is incorporated to introduce additional shape 

flexibility, while the exponentiation process enhances tail 

behavior and allows for a wider range of hazard rate 

variations. 

 

MATERIALS AND METHODS 

Alpha Power Transform 

The Alpha Power Transform is a powerful technique for 

enhancing the flexibility of baseline distributions. By 

introducing an additional shape parameter, it allows for better 

modelling of skewness, kurtosis, and tail behavior. For 

example, the exponential distribution of the power of alpha 

has been used to model data with increasing or decreasing 

hazard rates (Mead et al., 2019). The Alpha Power Weibull 

distribution has been applied in reliability engineering to 

model failure times with non-monotonic hazard rates. 

 

Topp-Leone Family 

The Topp-Leone family of distributions is known for its 

ability to model data with bathtub shaped or increasing hazard 

rates. Key developments include: The Topp-Leone 

Generalized Exponential distribution, which has been used in 

survival analysis to model patient survival times (Al-

Shomrani et al., 2016). The Topp-Leone Odd Log-Logistic 

Weibull distribution, which has been applied in reliability 

engineering to model failure times with complex hazard rate 

shapes (Brito et al., 2017). 

 

Inverse Weibull Distribution 

The inverse Weibull distribution is particularly useful for 

modelling heavy-tailed data, which is common in reliability 

and survival analysis. Its applications include: Modelling 

extreme values in environmental science, such as the time to 

failure of ecological systems (De Gusmao et al., 2011). 

 

Theoretical Framework 

Baseline Distribution (Inverse Weibull) 

The inverse Weibull distribution serves as the baseline 

distribution because of its ability to model heavy-tailed data. 

Its PDF and CDF are given by: 

𝑓(𝑥; 𝜆, 𝛽) = 𝛽𝜆𝛽𝑥−𝛽−1 𝑒𝑥𝑝 [− (
𝜆

𝑥
)
𝛽
] ,  𝑥 > 0, (1) 

𝐹(𝑥; 𝜆, 𝛽) = 𝑒𝑥𝑝 [−(
𝜆

𝑥
)
𝛽
] ,   (2) 

Where λ <0, is the scale parameter and and β >0 is the shape 

parameter. 

 

Topp- Leone Transformation 

The Topp-Leone transformation is applied to the CDF of the 

inverse Weibull distribution to introduce additional 

flexibility. The transformed CDF is given by: 

𝐺(𝑥; 𝛼, 𝜆, 𝛽) = [1 − (1 − 𝐹(𝑥; 𝜆, 𝛽))2]𝛼 , (3) 

Where α >0 is an additional shape parameter. 

 

Alpha Power Transform 

The Alpha Power Transform is then applied to the Topp-

Leone-transformed CDF to further enhance the flexibility of 

the distribution. The final CDF of the APETL distribution is 

given by: 

𝐻(𝑥; 𝛼, 𝛾, 𝜆, 𝛽) =
𝛾𝐺(𝑥;𝛼,𝜆,𝛽)−1

𝛾−1
,  𝛾 > 0, 𝛾 ≠ 1, (4) 

Where γ is the Alpha power parameter 16. In this section, we 

will discuss the proposed model, its validity checks, 

mathematical properties, and parameter estimation. 

 

Cumulative Distribution Function (CDF) 

The sum of the cumulative distribution function (CDF) of the 

Alpha Power Exponentiated Topp-Leone Inverse Weibull 

(AP-ETLIW) distribution,by integrating all transformations, 

starting from the base Inverse Weibull (IW) distribution. To 

gether these CDF given in Equation 2, Equation 3 and 

Equation 4 but as If α = 1, the CDF of Eqn4.  Reduces to Eqn 

3   FAP(x) = GTL(x) 

The CDF of the AP-ETLIW Distribution Combining all 

transformations, the CDF is: 

𝐹𝐴𝑃−𝐸𝑇𝐿𝐼𝑊(𝑥) =
𝛼
(1−(1−𝑒−𝜃𝛾

𝛽𝑥−𝛽)
2
)

𝜆

−1

𝛼−1
,  𝛼 > 0, 𝛼 ≠ 1.

  

     (5) 

Verification to ensure correctness, we can check that: 
𝑑

𝑑𝑥
𝐹𝐴𝑃−𝐸𝑇𝐿𝐼𝑊(𝑥) = 𝑓𝐴𝑃−𝐸𝑇𝐿𝐼𝑊(𝑥),  (6) 

𝑓(𝑥) = 2𝛼𝜆𝜃, 𝛽𝛾𝛽𝑥−(𝛽+1)𝐺(𝑥)𝜃(1 − 𝐺(𝑥)𝜃)[1 − (1 − 𝐺(𝑥)𝜃)2]𝛼𝜆−1 

where f_AP-ETLIW(x) of Equation 6 is the derived PDF. 

𝐹𝐴𝑃−𝐸𝑇𝐿𝐼𝑊(𝑥) =
𝛼
(1−(1−𝑒−𝜃𝛾

𝛽𝑥−𝛽)
2
)

𝜆

−1

𝛼−1
,  𝛼 > 0, 𝛼 ≠ 1.

  

The CDF of the AP-ETLIW distribution is reduces to 

equation 3 as alpha =1 

𝐹𝐴𝑃−𝐸𝑇𝐿𝐼𝑊(𝑥) = (1 − (1 − 𝑒
−𝜃𝛾𝛽𝑥−𝛽)

2
)
𝜆

,  𝛼 = 1.  
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Figure 1: Plots of CDF and PDF of APETL-IW Distribution 

 

Statistical Properties 

Survival function 

Given in Equation 5 and Equation 6 above the CDF. and PDF 

respectively the Survival Function is given as: 

Survival function S(x) The survival function (reliability) is 

S(x)=1-F(x). For the Alpha-Power Exponentiated Topp-

Leone Inverse-Weibull model with parameters α, λ, θ., γ and 

β >0 we have 

𝑆(𝑥) = 1 − [ 1 − (1 − (1 − 𝑒−𝜆𝑥
−𝜃
)𝛿)2 ]𝛼𝛽 ,  𝑥 > 0.  

AS the CDF tends to 1 depending on the parameterization, 

numerical evaluation near extremes needs case. 

 

 

 
Figure 2: Plot of survival function of APETL-IW distribution 

 

Figure 2 gives the probability of survival beyond time x. 

Observed curves included: 

i. Fast decay: rapid early failures (acute medical risks, 

defective products), 

ii. Gradual decay: balanced risks across time, 

iii. Slow decay: long-lasting systems or healthier 

populations. 

In addition, survival functions adapt to early mortality, long-

term stability, and ageing effects, making them relevant for 

both patient survival and component reliability. 

 

Hazard function of the AP-ETLIW model 

For the Alpha-Power Exponentiated Topp-Leone Inverse-

Weibull (AP-ETLIW) given in equation 6 with parameters α, 

λ, θ, γ and β >0, define 

𝑡(𝑥) = 1 − 𝑒−𝜆𝑥
−𝜃

 (so 0 < 𝑡(𝑥) < 1),  𝑠(𝑥) = 𝑡(𝑥)𝛿 ,  

and  

inner(𝑥) = 1 − (1 − 𝑠(𝑥))2 = 𝑠(𝑥)(2 − 𝑠(𝑥)).  

The CDP is the inner   

𝐹(𝑥) = (inner(𝑥))𝛼𝛽  

𝑆(𝑥) = 1 − 𝐹(𝑥) = 1 − (inner(𝑥))𝛼𝛽 .  
𝑓(𝑥) = 𝛼𝛽 2𝛿𝜆𝜃 𝑥−𝜃−1 𝑒−𝜆𝑥

−𝜃
 𝑡(𝑥)𝛿−1(1 − 𝑡(𝑥)𝛿) (inner(𝑥))𝛼𝛽−1.  

 

The pdf can be written as: 

ℎ(𝑥) =
𝛼𝛽 2𝛿𝜆𝜃 𝑥−𝜃−1 𝑒−𝜆𝑥

−𝜃
 𝑡(𝑥)𝛿−1(1−𝑡(𝑥)𝛿) (inner(𝑥))𝛼𝛽−1

1−(inner(𝑥))𝛼𝛽
  

 

therefore the hazard function is 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
  

𝑡(𝑥) = 1 − 𝑒−𝜆𝑥
−𝜃

  

inner(𝑥) = 𝑠(𝑥)(2 − 𝑠(𝑥))$, $𝑠(𝑥) = 𝑡(𝑥)𝛿  

The hazard can take many shapes (increasing, decreasing, 

unimodal, bathtub) depending on parameters α, λ, θ., γ and β. 

To derive the Hazard Function h(x)  

 

 

 

Case 1:  α ≠ 1  

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
=

2𝛼𝜆𝜃𝛽𝛾𝛽𝑥−𝛽−1𝑒−𝜃𝛾
𝛽𝑥−𝛽(1−𝑒−𝜃𝛾

𝛽𝑥−𝛽)(1−(1−𝑒−𝜃𝛾
𝛽𝑥−𝛽)

2

)
𝛼𝜆−1

𝛼−𝛼
(1−(1−𝑒−𝜃𝛾

𝛽𝑥−𝛽)
2
)

𝜆

𝛼−1

  

Simplify  

ℎ(𝑥) =
2𝛼𝜆𝜃𝛽𝛾𝛽𝑥−𝛽−1𝑒−𝜃𝛾

𝛽𝑥−𝛽(1−𝑒−𝜃𝛾
𝛽𝑥−𝛽)(1−(1−𝑒−𝜃𝛾

𝛽𝑥−𝛽)
2

)
𝛼𝜆−1

(𝛼−1)

𝛼−𝛼
(1−(1−𝑒−𝜃𝛾

𝛽𝑥−𝛽)
2
)

𝜆   

case2: alpha = 1 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
=

2𝜆𝜃𝛽𝛾𝛽𝑥−𝛽−1𝑒−𝜃𝛾
𝛽𝑥−𝛽(1−𝑒−𝜃𝛾

𝛽𝑥−𝛽)(1−(1−𝑒−𝜃𝛾
𝛽𝑥−𝛽)

2

)
𝜆−1

1−(1−(1−𝑒−𝜃𝛾
𝛽𝑥−𝛽)

2
)
𝜆   
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ℎ(𝑥) =

{
  
 

  
 2𝛼𝜆𝜃𝛽𝛾𝛽𝑥−𝛽−1𝑒−𝜃𝛾

𝛽𝑥−𝛽(1−𝑒−𝜃𝛾
𝛽𝑥−𝛽)(1−(1−𝑒−𝜃𝛾

𝛽𝑥−𝛽)
2

)
𝛼𝜆−1

(𝛼−1)

𝛼−𝛼
(1−(1−𝑒−𝜃𝛾

𝛽𝑥−𝛽)
2
)

𝜆 , 𝛼 ≠ 1,

2𝜆𝜃𝛽𝛾𝛽𝑥−𝛽−1𝑒−𝜃𝛾
𝛽𝑥−𝛽(1−𝑒−𝜃𝛾

𝛽𝑥−𝛽)(1−(1−𝑒−𝜃𝛾
𝛽𝑥−𝛽)

2

)
𝜆−1

1−(1−(1−𝑒−𝜃𝛾
𝛽𝑥−𝛽)

2
)
𝜆 , 𝛼 = 1.

  

 

 
Figure 3: Plot Hazard Function of APETL-IW Distribution 

 

The Hazard Function h(x) describes the instantaneous failure 

rate at time x. 

It is useful in reliability engineering, survival analysis, and 

risk assessment. 

The shape of h(x) (increasing, decreasing, or bathtub-shaped) 

depends on the values of the parameters. 

Verification 

i. Non-negativity: Since f(x) ≥ 0 and S(x) ≥ 0, h(x) ≥ 0. 

ii. Consistency: If α = 1, the hazard function reduces to the 

simpler form, ensuring correctness. 

 

Quantile Function 

The AP-ETLIW quantile function admits a closed form (via 

algebraic inversion of the CDF). 

Start with F(x)=uE (0,1). Writing 

𝐼: = 𝑢1/(𝛼𝛽) ∈ (0,1),  𝑠: = (1 − 𝑒−𝜆𝑥
−𝜃
)𝛿 ,  

 

The CDF equation  

(1 − (1 − (1 − 𝑒−𝜆𝑥
−𝜃
)𝛿)2)𝛼𝛽 = 𝑢  

becomes  

1 − (1 − 𝑠)2 = 𝐼 � 2𝑠 − 𝑠2 = 𝐼.  

Solve the quadratic s^2-2s+I=0. The root in [0,1] is 

𝑠 = 1 − √1 − 𝐼.  

1 − 𝑒−𝜆𝑥
−𝜃
= 𝑠

1

𝛿  ⇒  𝑒−𝜆𝑥
−𝜃
= 1 − 𝑠

1

𝛿.  

Taking logs and solving for x gives the quantile: 

𝑄(𝑢) = 𝑥𝑢 = [−
1

𝜆
𝑙𝑛( 1 − (1 − √1 − 𝑢1/(𝛼𝛽))1/𝛿)]

−1/𝜃

.  

This expression is valid for 0<u<1 and α, λ, θ., γ and β >0. 

The inner arguments stay in (0,1) for valid u, so the log uses 

a number in (0,1) (log negative) and the negative sign makes 

the base positive — so Q(u)>0. 

The median is simply Q (0.5). From the quantile, you can 

generate random variates by inversion: X = Q(U) with U ~ 

unif(0,1) (fast and vectorizable). 

Let Uϵ(0,1) solve  

𝐹(𝑥) = 𝑢 or [1 − (1 − (1 − 𝑒−𝜆𝑥
−𝜃
)𝛿)2]𝛽𝛼 = 𝑢  

for x. Closed form is not simple, but a Quantiles function 

exists implicitly and can be found numerically: 

 

 

 

Moments 

The moments of the APETL-IWD are used to describe its 

central tendency, dispersion, and shape. The k-th moment 

about the origin is given by the r-th raw moment. 

𝜇𝑟 ′ = ∫ 𝑥𝑟
∞

0
𝑓(𝑥)𝑑𝑥  

which does not simplify neatly. You can express it as a series 

expansion using the binomial and power series expansions of 

the CDF core. For example: 

𝜇𝑟 ′ = ∑ 𝐶𝑚,𝑛,…𝑚,𝑛,… 𝜆−
𝑟

𝜃Γ(1 −
𝑟

𝜃
)  

with coefficients C_m,n,…. depending on parameters α, γ and 

β. 

From the first two moments, you get: 

Mean  

𝐸[𝑋] = 𝜇1′   

Variance : 

Var[𝑋] = 𝜇2′ − 𝜇1′
2 .  

 Coefficient of variation, skewness, and kurtosis similarly. 

 

Median and Mode 

Median m: F(m)=0.5.  

Mode xmode: solve f'(x)=0 numerically. 

 

RESULTS AND DISCUSSION 

This section will introduce the simulation study designed to 

examine the behavior and consistency of maximum likelihood 

estimation, as well as the application of real data to observe 

the performance of the proposed model and other competing 

models. 

 

Simulation 

The behavior of the maximum likelihood of ALPETIW -D for 

certain parameter values in the first trial (i.e α=1.4, λ=0.9, 

θ=0.8., γ=1.2 and β = 1.3) was investigated using a created 

finite sample of size n= 20, 50, 100, 200, and 500. The random 

numbers for the ALPETIW-D were generated using the 

quantile function. For 1000 repeats. The Means, Bias, and 

RMSE were then calculated. Table 1 presents the outcomes of 

the simulation. We concluded that the proposed model yields 

consistent results when predicting parameters for the model 

based on the results of the Monte Carlo simulation. 
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Table1: The Result of Simulation for Different Values of Parameters 

    α = 1.4 λ = 0.9 θ = 0.8 γ = 1 β = 1.3 

n =20 Mean 3.78E+36 8.35E-01 8.35E-01 1.76E+00 1.323257 

Bias 3.78E+36 -6.47E-02 3.53E-02 5.64E-01 2.33E-02 

RMSE 5.34E+37 1.31E+00 1.30E+00 1.56E+00 2.18E-01 

n =50 Mean 3.78E+36 8.35E-01 8.35E-01 1.76E+00 1.323257 

Bias 3.78E+36 -6.47E-02 3.53E-02 5.64E-01 2.33E-02 

RMSE 5.34E+37 1.31E+00 1.30E+00 1.56E+00 2.18E-01 

n =100 Mean 9.49E+00 7.81E-01 7.81E-01 1.560636 1.261314 

Bias 8.09E+00 -1.19E-01 -1.87E-02 3.61E-01 -3.87E-02 

RMSE 6.79E+01 1.55E-01 1.02E-01 1.009048 2.07E-01 

n =200 Mean 2.98E+43 7.90E-01 7.90E-01 2.070606 1.288546 

Bias 2.98E+43 -1.10E-01 -1.05E-02 8.71E-01 -1.15E-02 

RMSE 3.92E+44 7.31E-01 7.23E-01 1.960083 1.53E-01 

n =500 Mean 2.51E+00 7.91E-01 7.91E-01 1.402799 1.281771 

Bias 1.11E+00 -1.09E-01 -9.45E-03 2.03E-01 -1.82E-02 

RMSE 4.49E+00 1.17E-01 4.37E-02 4.33E-01 1.48E+01 

 

Application 

This data set represents the remission times (in months) of a 

sample size of 128 bladder cancer patients reported in Lee and 

Wang (2003). The data are reported below 

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 

3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 

13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 

0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 6.31, 0.81, 2.62, 3.82, 

5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 

14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 

1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 

4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 

11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 

3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 

11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 

4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 

2.07, 3.36, 6.93, 8.65, 12.63, 22.69 

 

Table 2: Information Criteria Measure and Goodness of Fit Models Using Bladder Cancer Output Data 

Distribution LL k AIC BIC KS-stat KS-P CVM-P 

IW -441.896 2 887.793 893.497 0.1412 0.0122 0.0022 

TLIW -428.962 2 861.923 867.627 0.1144 0.0702 0.0239 

ETLIW -428.869 3 863.737 872.293 0.1161 0.0633 0.0225 

APETLIW -424.808 5 859.616 873.877 0.0959 0.19 0.0797 

 

Discussion 

The analysis of the APETIW distribution demonstrated its 

efficiency in modeling real-life data. This new distribution 

outperformed its competitors, as indicated by smaller values 

of information criteria (aryal2017regression), as shown in 

Tables 1 and 2. The simulation results in 1 indicated that the 

model's performance improves as the sample size increases. 

The fitted CDF and PDF plots from the an illustrate above the 

flexibility of the proposed distribution compared to existing 

distributions. 

 

CONCLUSION 

This paper introduces a new distribution called the Alpha 

power Exponentiated Topp- Leon Inverse Weibull 

distribution. The mathematical properties were derived and 

the parameter estimation of the new distribution was 

examined using the maximum likelihood method. The 

behavior of the maximum likelihood estimation was also 

investigated to assess consistency. In conclusion, we suggest 

that the proposed distribution performs better, than existing 

distributions in terms of information criteria and goodness-of-

fit tests. 
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