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ABSTRACT

Lifetime data in engineering, medical, and reliability studies often exhibit complex hazard rate and tail
behaviors that classical distributions, such as the inverse Weibull model, cannot adequately capture. To address
this limitation, this study proposes a new and flexible lifetime model called the Alpha-Power Exponentiated
Topp-Leone Inverse Weibull (AP-ETLIW) distribution. The proposed model is constructed by integrating the
exponentiation mechanism, the Topp-Leone transformation, and the alpha-power transformation into the
inverse Weibull distribution, thus enhancing shape flexibility, hazard rate variation, and tail behavior. The
performance of the AP-ETLIW distribution is evaluated through comparisons with existing lifetime models,
demonstrating its superior fitting capability in various applications, including reliability analysis, survival
analysis, engineering and medical sciences. This study contributes to the development of hybrid statistical
distributions and provides a robust tool to model complex lifetime data.
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INTRODUCTION

Probability distributions play a fundamental role in statistical
modelling, particularly in areas such as reliability analysis,
survival analysis, and lifetime data modelling. Classical
distributions, including exponential, Weibull, and gamma
distributions, have long been used to model lifetime and
failure time data (Faruk et al., 2024). However, real-world
datasets often exhibit complex characteristics such as
skewness, heavy tails, multimodality, and non-monotonic
hazard rates that cannot be adequately captured by these
traditional models. To address these limitations, recent
research has focused on developing more flexible probability
distributions by introducing additional shape parameters,
transformations, and generalized extensions of existing
models. Such advancements aim to enhance model
adaptability and improve the goodness-of-fit for complex
datasets. Lifetime data modelling is a cornerstone of
reliability —engineering, survival analysis, and risk
management. Accurate models are essential for predicting
system failures, patient survival times, and assessing risks in
various industries. Traditional distributions such as Weibull,
Exponential, and Gamma have been widely used due to their
mathematical tractability and interpretability. However, these
models often fail to capture the complexity of real-world data,
which can exhibit heavy tails, skewness, multimodality, and
non-monotonic hazard rates (Klakattawi, 2022; Betensky et
al., 2023). For example, the Weibull distribution assumes a
monotonic hazard rate, which is rarely observed in practice,
especially in biomedical and engineering applications (Chen
et al., 2023). To address these limitations, researchers have
developed more flexible distributions by generalizing or
combining existing distributions. These advanced models
introduce additional parameters or hybrid mechanisms to
better capture the nuances of real-world data. One such
development is the Alpha Power Topp-Leone Weibull
Distribution (APTLW) which integrates the flexibility of
Alpha Power Transform, the Topp-Leone family and Weibull
distribution (Benkhelifa, 2022). This hybrid approach has
shown promise in modelling complex lifetime data with
diverse characteristics (Usman et al., 2023). Traditional
distributions such as Weibull, Exponential, and Gamma have
been the backbone of lifetime data analysis for decades.

However, their simplicity often comes at the cost of limited
flexibility. For example: The Weibull distribution assumes a
monotonic hazard rate, which is not suitable for data with
bathtub-shaped

or Unimodal hazard rates (Klakattawi, 2022). The exponential
distribution is limited to constant hazard rates, making it
inadequate for most real-world applications (Betensky ef al.,
2023). The Gamma distribution, while more flexible,
struggles with heavy-tailed data and multimodality (Mahdavi,
2017). To overcome these limitations, researchers have
developed generalized distributions by introducing additional
parameters or combining multiple distributions, examples
include the exponential Weibull distribution, which extends
the Weibull distribution by adding a shape parameter to model
non-monotonic hazard rates (Topp and Leone, 1955) The
generalized inverse

Weibull distribution, which enhances the inverse Weibull
distribution by incorporating additional flexibility (De
Gusmao et al., 2011). The Beta-generated family of
distributions, which uses the Beta function to create more
flexible models (Al-Shomrani et al., 2016). The Alpha Power
Transform is a powerful technique for enhancing the
flexibility of baseline distributions. By introducing an
additional shape parameter, it allows for better modelling of
skewness, kurtosis, and tail behavior. For example, the
exponential distribution of the power of alpha has been used
to model data with increasing or decreasing hazard rates
(Mahdavi, 2017). The Alpha Power Weibull distribution has
been applied in reliability engineering to model failure times
with non-monotonic hazard rates. The Topp-Leone family of
distributions is known for its ability to model data with
bathtub shaped or increasing hazard rates. Key developments
include: The Topp-Leone Generalized Exponential
distribution, which has been used in survival analysis to
model patient survival times (Al-Shomrani et al., 2016). The
Topp-Leone Odd Log-Logistic Weibull distribution, which
has been applied in reliability engineering to model failure
times with complex hazard rate shapes (Mudholkar et al.,
1995). The inverse Weibull distribution is particularly useful
for modelling heavy-tailed data, which is common in
reliability and survival analysis. Its applications include:
Modelling extreme values in environmental science, such as
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the time to failure of ecological systems (De Gusmao et al.,
2011).

Motivation and Background

One of the notable developments in this direction is the
Alpha-Power Exponentiated Topp-Leone Inverse Weibull
(AP-ETLIW) distribution, a novel and highly flexible
statistical model designed to accommodate diverse data
behaviours. The AP-ETLIW distribution integrates three key
frameworks the  Alpha-Power transformation, the
Exponentiated Topp-Leone mechanism, and the Inverse
Weibull distributionto yield a generalized model capable of
describing a wide range of statistical patterns. This integration
results in a distribution that provides superior flexibility and
robustness when modeling lifetime data. Consequently, the
AP-ETLIW model is particularly

Suitable for applications in engineering reliability, medical
survival analysis, risk assessment, and economic modeling,
where complex data structures frequently occur.

Theoretical Foundation

The Inverse Weibull (IW) distribution, a foundational
component of the AP-ETLIW model, is well recognized for
its ability to model lifetime data with non-monotonic hazard
functions. Despite this capability, the IW distribution remains
limited when modeling highly skewed or multimodal datasets.
To overcome these restrictions, the Topp-Leone
transformation is incorporated to introduce additional shape
flexibility, while the exponentiation process enhances tail
behavior and allows for a wider range of hazard rate
variations.

MATERIALS AND METHODS

Alpha Power Transform

The Alpha Power Transform is a powerful technique for
enhancing the flexibility of baseline distributions. By
introducing an additional shape parameter, it allows for better
modelling of skewness, kurtosis, and tail behavior. For
example, the exponential distribution of the power of alpha
has been used to model data with increasing or decreasing
hazard rates (Mead et al., 2019). The Alpha Power Weibull
distribution has been applied in reliability engineering to
model failure times with non-monotonic hazard rates.

Topp-Leone Family

The Topp-Leone family of distributions is known for its
ability to model data with bathtub shaped or increasing hazard
rates. Key developments include: The Topp-Leone
Generalized Exponential distribution, which has been used in
survival analysis to model patient survival times (Al-
Shomrani et al., 2016). The Topp-Leone Odd Log-Logistic
Weibull distribution, which has been applied in reliability
engineering to model failure times with complex hazard rate
shapes (Brito et al., 2017).

Inverse Weibull Distribution

The inverse Weibull distribution is particularly useful for
modelling heavy-tailed data, which is common in reliability
and survival analysis. Its applications include: Modelling
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extreme values in environmental science, such as the time to
failure of ecological systems (De Gusmao et al., 2011).

Theoretical Framework

Baseline Distribution (Inverse Weibull)

The inverse Weibull distribution serves as the baseline
distribution because of its ability to model heavy-tailed data.
Its PDF and CDF are given by:

fO2,B) = BAPxPTexp [— (%)ﬁ] x>0, (1)
F(x;1,B) = exp [— (%)ﬁ] , 2)

Where A <0, is the scale parameter and and 3 >0 is the shape
parameter.

Topp- Leone Transformation

The Topp-Leone transformation is applied to the CDF of the
inverse Weibull distribution to introduce additional
flexibility. The transformed CDF is given by:

G(X; a,A,,B) = [1_ (1—F(X;A,‘B))2]a, (3)

Where a >0 is an additional shape parameter.

Alpha Power Transform

The Alpha Power Transform is then applied to the Topp-
Leone-transformed CDF to further enhance the flexibility of
the distribution. The final CDF of the APETL distribution is
given by:

yEaAp) _q
Hx; a,y,4B) = — Y >0y+1 &

Where v is the Alpha power parameter 16. In this section, we
will discuss the proposed model, its validity checks,
mathematical properties, and parameter estimation.

Cumulative Distribution Function (CDF)

The sum of the cumulative distribution function (CDF) of the
Alpha Power Exponentiated Topp-Leone Inverse Weibull
(AP-ETLIW) distribution,by integrating all transformations,
starting from the base Inverse Weibull (IW) distribution. To
gether these CDF given in Equation 2, Equation 3 and
Equation 4 but as If a = 1, the CDF of Eqn4. Reduces to Eqn
3 Farwx) = GTLx)

The CDF of the AP-ETLIW Distribution Combining all
transformations, the CDF is:

(1—(1—9—0759(_6)2)1
Fap_pruw () = aa—_l_l, a>0a+1.
(5)
Verification to ensure correctness, we can check that:
;_XFAP—ETLIW(X) = fap—erLiw (%), (6)

f(0) = 2226, yPx~FDG(x)° (1 = 6(0)*)[1 = (1 - G(x)%)*]*
where f ap-eTLiw(x) of Equation 6 is the derived PDF.

2
(1—(1—e—9}'B%_6)2)
Fap_prow(x) = o , a>0,a+1.

The CDF of the AP-ETLIW distribution is reduces to
equation 3 as alpha =1

1
—oyBx-B)?
FAP—ETLIW(X)=(1_(1_3 ovPx )) , a=1

a -1

FUDMA Journal of Sciences (FJS) Vol. 10 No. 1, January, 2026, pp 21 — 26

[\®]
\S]



DEVELOPMENT OF ALPHA POWER EXPO...

Mohammed et al., FJS

g N ___-l-""---— = ]
- — 0={48=2y=1F=15i=12 &
= = w=1208=2y=12p=16i=1 =
= [=] w=170=2y=12p=16.=14 X b
- = a=158=2y=22p=15r=2| T o |
o~ a a=350=2y=22p=154L=2 I=1
= 4
= |
= T T T T T §— T T T T T
0 5 10 15 20 (1] 5 10 15 20

Figure 1: Plots of CDF and PDF of APETL-IW Distribution

Statistical Properties

Survival function

Given in Equation 5 and Equation 6 above the CDF. and PDF
respectively the Survival Function is given as:

Survival function S(x) The survival function (reliability) is
S(x)=1-F(x). For the Alpha-Power Exponentiated Topp-

Leone Inverse-Weibull model with parameters a, A, 0., y and
B >0 we have

S =1—-[1-(1—-(1—e )52 x>o.

AS the CDF tends to 1 depending on the parameterization,
numerical evaluation near extremes needs case.

o=]db=2y=1f=156ix12
a=120=27y=12p=161=1
a=170=2y=12p=161=1
o=188=27y=220=-151=2
a=35022r=2203=15.=2

':,‘_
=
X
N o
‘“—.
=

) 5_/U.D.T

Figure 2: Plot of survival function of APETL-IW distribution

Figure 2 gives the probability of survival beyond time x.
Observed curves included:
i. Fast decay: rapid early failures (acute medical risks,

defective products),

ii. Gradual decay: balanced risks across time,

iii. Slow decay: long-lasting systems or
populations.

In addition, survival functions adapt to early mortality, long-

term stability, and ageing effects, making them relevant for

both patient survival and component reliability.

healthier

Hazard function of the AP-ETLIW model

For the Alpha-Power Exponentiated Topp-Leone Inverse-
Weibull (AP-ETLIW) given in equation 6 with parameters a,
A, 0, y and B >0, define
t)=1—e*° (s00<t(x)<1),
and

inner(x) =1 — (1 — s5(x))? = s(x)(2 — s(x)).

s(x) = t(x)°,

The CDP is the inner

F(x) = (inner(x))*#

S(x) =1—F(x) = 1 — (inner(x))%A.

F(x) = aB 2620 701 o= £(x)51(1 — t(x)®) (inner(x))*F 1.

The pdf can be written as:
aB 2626 x~971 =20 ¢(x)8~1(1_£(x)®) (inner(x))*B~1

h(x) = 1—(inner(x))%#

therefore the hazard function is
C)]

h(x) = )

tx) =1—e "’

inner(x) = s(x)(2 — s(x))$, $s(x) = t(x)®

The hazard can take many shapes (increasing, decreasing,
unimodal, bathtub) depending on parameters a, A, 0., y and .
To derive the Hazard Function h(x)

Case l: a#1
al—
£ ZaAHﬁyBx_B_le'BVB"_B(l—e'GVB"_B)<1—(1—e‘973"_5)2) !
h() =55 = —a
~ (1—(1—9‘91’B" B) )
Simplify -

ai-

1

h(x) Zawﬁyﬁx_ﬁ_le_BVBX_B(l_e_eyBx_BX1‘(1—e-9"5"_5)2) (a-1)
X) =

il

a-—a
case2: alpha =1

A-
heo) =L@ = 2208721010 (10008 B (1 (1-e-0rx ) )
x) = s(x) >

1_(1_(1_9,973,,—3)2)
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Figure 3: Plot Hazard Function of APETL-IW Distribution

The Hazard Function h(x) describes the instantaneous failure

rate at time X.

It is useful in reliability engineering, survival analysis, and

risk assessment.

The shape of h(x) (increasing, decreasing, or bathtub-shaped)

depends on the values of the parameters.

Verification

i.  Non-negativity: Since f(x) > 0 and S(x) > 0, h(x) > 0.

ii. Consistency: If a = 1, the hazard function reduces to the
simpler form, ensuring correctness.

Quantile Function

The AP-ETLIW quantile function admits a closed form (via
algebraic inversion of the CDF).

Start with F(x)=uE (0,1). Writing

L=ul@B) g (0,1), s:=(1—e )3,

The CDF equation
(1-(1-QA-e ™)) =y
becomes
1-(1-s5)2=1 [ 2s—s?=1
Solve the quadratic s"2-2s+1=0. The root in [0,1] is
s=1-v1-1
1 1
1—-e ™ =55 = e =1-gs
Taking logs and solving for x gives the quantile:

Q) =x, = [-3In(1— (1 -1 ui/(aﬁ))1/5)]_1/g.

This expression is valid for O<u<1 and a, A, 0., y and § >0.
The inner arguments stay in (0,1) for valid u, so the log uses
a number in (0,1) (log negative) and the negative sign makes
the base positive — so Q(u)>0.

The median is simply Q (0.5). From the quantile, you can
generate random variates by inversion: X = Q(U) with U ~
unif(0,1) (fast and vectorizable).

Let Ue(0,1) solve

Fx)=u or [1—(1—(1-e M ")8)2pa=y

for x. Closed form is not simple, but a Quantiles function
exists implicitly and can be found numerically:

Moments

The moments of the APETL-IWD are used to describe its
central tendency, dispersion, and shape. The k-th moment
about the origin is given by the r-th raw moment.

= [y % f(x)dx

which does not simplify neatly. You can express it as a series
expansion using the binomial and power series expansions of
the CDF core. For example:

_r r
Uy = Zm,n,... Cm,n,... A er(l - 5)
with coefficients C_m,n,.... depending on parameters a, y and
B.
From the first two moments, you get:
Mean
E[X] = uy
Variance :
Var[X] = pp — #f’-
Coefficient of variation, skewness, and kurtosis similarly.

Median and Mode
Median m: F(m)=0.5.
Mode Xmode: solve f'(x)=0 numerically.

RESULTS AND DISCUSSION

This section will introduce the simulation study designed to
examine the behavior and consistency of maximum likelihood
estimation, as well as the application of real data to observe
the performance of the proposed model and other competing
models.

Simulation

The behavior of the maximum likelihood of ALPETIW -D for
certain parameter values in the first trial (i.e o=1.4, A=0.9,
6=0.8., y=1.2 and B = 1.3) was investigated using a created
finite sample of size n= 20, 50, 100, 200, and 500. The random
numbers for the ALPETIW-D were generated using the
quantile function. For 1000 repeats. The Means, Bias, and
RMSE were then calculated. Table 1 presents the outcomes of
the simulation. We concluded that the proposed model yields
consistent results when predicting parameters for the model
based on the results of the Monte Carlo simulation.
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Tablel: The Result of Simulation for Different Values of Parameters

o=14 2=09 0=08 y=1 B=13
n =20 Mean 3.78E+36 8.35E-01 8.35E-01 1.76E+00 1.323257
Bias 3.78E+36 -6.47E-02 3.53E-02 5.64E-01 2.33E-02
RMSE 5.34E+37 1.31E+00 1.30E+00 1.56E+00 2.18E-01
n=50 Mean 3.78E+36 8.35E-01 8.35E-01 1.76E+00 1.323257
Bias 3.78E+36 -6.47E-02 3.53E-02 5.64E-01 2.33E-02
RMSE 5.34E+37 1.31E+00 1.30E+00 1.56E+00 2.18E-01
n=100 Mean 9.49E+00 7.81E-01 7.81E-01 1.560636 1.261314
Bias 8.09E+00 -1.19E-01 -1.87E-02 3.61E-01 -3.87E-02
RMSE 6.79E+01 1.55E-01 1.02E-01 1.009048 2.07E-01
n =200 Mean 2.98E+43 7.90E-01 7.90E-01 2.070606 1.288546
Bias 2.98E+43 -1.10E-01 -1.05E-02 8.71E-01 -1.15E-02
RMSE 3.92E+44 7.31E-01 7.23E-01 1.960083 1.53E-01
n =500 Mean 2.51E+00 7.91E-01 7.91E-01 1.402799 1.281771
Bias 1.11E+00 -1.09E-01 -9.45E-03 2.03E-01 -1.82E-02
RMSE 4.49E+00 1.17E-01 4.37E-02 4.33E-01 1.48E+01
Application 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66,

This data set represents the remission times (in months) of a
sample size of 128 bladder cancer patients reported in Lee and
Wang (2003). The data are reported below

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23,
3.52,4.98,6.97,9.02,13.29,0.40,2.26, 3.57, 5.06, 7.09, 9.22,
13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82,
0.51,2.54,3.70,5.17,7.28,9.74, 14.76,6.31,0.81, 2.62, 3.82,
5.32,7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34,

1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75,
4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66,
11.25,17.14,79.05,1.35,2.87, 5.62,7.87,11.64, 17.36, 1.40,
3.02, 434, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26,
11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31,
4.51, 6.54, 8.53,12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73,
2.07,3.36, 6.93, 8.65, 12.63, 22.69

Table 2: Information Criteria Measure and Goodness of Fit Models Using Bladder Cancer Output Data

Distribution LL k AIC BIC KS-stat KS-P CVM-P

W -441.896 2 887.793 893.497 0.1412 0.0122 0.0022

TLIW -428.962 2 861.923 867.627 0.1144 0.0702 0.0239

ETLIW -428.869 3 863.737 872.293 0.1161 0.0633 0.0225

APETLIW -424.808 5 859.616 873.877 0.0959 0.19 0.0797
Discussion Aryal, G. R., Ortega, E. M., Hamedani, G., and Yousof, H. M.

The analysis of the APETIW distribution demonstrated its
efficiency in modeling real-life data. This new distribution
outperformed its competitors, as indicated by smaller values
of information criteria (aryal2017regression), as shown in
Tables 1 and 2. The simulation results in 1 indicated that the
model's performance improves as the sample size increases.
The fitted CDF and PDF plots from the an illustrate above the
flexibility of the proposed distribution compared to existing
distributions.

CONCLUSION

This paper introduces a new distribution called the Alpha
power Exponentiated Topp- Leon Inverse Weibull
distribution. The mathematical properties were derived and
the parameter estimation of the new distribution was
examined using the maximum likelihood method. The
behavior of the maximum likelihood estimation was also
investigated to assess consistency. In conclusion, we suggest
that the proposed distribution performs better, than existing
distributions in terms of information criteria and goodness-of-
fit tests.
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