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ABSTRACT

Advances in sensor technology and automation are shifting aviation maintenance from fixed schedules to
condition-based predictive maintenance (CBPM), which leverages real-time sensor data and machine learning
to anticipate failures and optimize interventions. In this study, a deep learning architecture is presented,
integrating BILSTM with a multi-head self-attention module for RUL prediction, and its performance is
assessed using the NASA C-MAPSS dataset. The BiLSTM captures bidirectional temporal dependencies in
degradation sequences, while the attention mechanism adaptively emphasizes critical cycles and sensor
signals. Pre-processing involved piecewise RUL labelling (capped at 125 cycles), cluster-based
normalization, rolling statistical features, and sliding-window sequence generation. On FD004, the BILSTM—
attention model achieved an MAE of 9.45, RMSE of 15.52, and PHM score of 3853.21, outperforming the
baseline LSTM (MAE 17.80, RMSE 25.14, PHM 4211.21). On FDO001, the BiLSTM-attention delivered
comparable accuracy, with an MAE of 11.42, RMSE of 15.05, and PHM score of 387.15, matching or
exceeding baseline performance (MAE 11.23, RMSE 15.12, PHM 395.55). These findings demonstrate that
integrating bidirectional sequence modelling with adaptive attention enhances predictive robustness across
varying operating conditions. The proposed approach not only achieves strong generalization but also
outperforms state-of-the-art benchmarks in aircraft engine Remaining Useful Life prediction, offering
practical benefits for predictive maintenance through improved safety, reduced operational costs, and
extended fleet availability.
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INTRODUCTION

The aerospace sector, along with other industries reliant on
complex machinery, is witnessing a paradigm shift from
conventional preventive maintenance (PM) strategies to
more sophisticated condition-based predictive maintenance
(CBPM) approaches (Ensarioglu et al., 2023; Fan et al.,
2024). Traditional PM practices, which are typically
governed by fixed inspection and servicing intervals, often
result in redundant maintenance activities and elevated
operational costs (Andenyangtso et al., 2024; Asif et al.,
2022; Donatus et al., 2025). Conversely, CBPM leverages
advances in sensing technologies and data-driven analytics
to continuously assess system health in real time, enabling
proactive interventions grounded in empirical evidence
(Adryan Fitra Azyus et al., 2025). Within this framework,
accurate estimation of an asset’s Remaining Useful Life
(RUL) stands out as a key objective, providing forecasts of
operational cycles prior to failure and thereby enhancing
safety, reducing downtime, and optimizing maintenance
planning (Fan et al., 2024; Wu et al., 2024).

In industrial systems, aviation, and aerospace, predictive
maintenance is consequently a key priority, with RUL
estimation of turbofan engines central to ensuring system
reliability (Elsherif et al., 2025; Ensarioglu et al., 2023;
Ohoriemu & Ogala, 2024). The NASA Commercial Modular
Aero-Propulsion System Simulation (C-MAPSS) dataset
provides a widely adopted benchmark, simulating engine
degradation under varying operating conditions and
generating time-series data from nominal operation to failure
(Adryan Fitra Azyus et al., 2025; Elsherif et al., 2025). This
dataset has facilitated the application of diverse modelling
strategies, ranging from survival analysis and ensemble
learning (e.g., random forests, XGBoost) to deep learning

methods particularly long short-term memory (LSTM)
architectures (Adryan & Sastra, 2021; AsifKhan et al., 2022)
Despite notable advances, ensuring robust and generalizable
predictions across complex operating conditions remains an
open challenge (Azyus, 2022; Remadna et al., 2021).

Recent studies have explored advanced architectures such as
GRUs, CNNs, autoencoders, and self-attention to improve
degradation modelling and temporal feature extraction (Dida
et al., 2025; Ensarioglu et al., 2023). Hybrid models that
combine CNNs with recurrent networks, particularly
BiLSTMs, consistently deliver stronger performance in
complex operating conditions (Y. Liu & Wang, 2021;
Muneer et al., 2021). Approaches integrating convolutional
autoencoders with GRU or BIiLSTM layers further
demonstrate the effectiveness of multi-architecture designs
for turbofan RUL prediction (Fan et al., 2024; Li et al.,
2025).

Despite rapid progress, contemporary RUL approaches
exhibit several recurring limitations. Many data-driven
models depend heavily on careful feature engineering or
dataset-specific  pre-processing, which reduces their
robustness when transferred to new operating regimes
(Elsherif et al., 2025; Kumar et al., 2024). Deep recurrent or
convolutional architectures can model temporal dynamics
effectively but often lack uncertainty quantification and
interpretability, making them difficult to trust for safety-
critical decisions (Adryan & Sastra, 2021; Wu et al., 2024).
multi-condition datasets such as C-MAPSS FD004, simpler
models overfit or fail to generalize, while more complex
models suffer from high computational cost and unstable
training, especially for long sequences (Azyus, 2022; Kumar
et al., 2024; Remadna et al., 2021).
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Turbofan RUL prediction is challenging because degradation
signals are non-stationary, noisy, and influenced by
changing operational settings and multiple concurrent fault
modes; this heterogeneity obscures consistent failure
signatures and complicates learning (Kumar et al., 2024).
Engines operate under variable loads and environmental
conditions that change sensor distributions over time,
necessitating normalization or domain-aware schemes to
avoid spurious correlations (Dida et al., 2025; Pan et al.,
2025). Moreover, the scarcity of labelled run-to-failure data
for some fault types and the long horizons needed for safe
maintenance decisions increase sensitivity to late prediction
errors and motivate metrics (e.g., PHM score) that penalize
such mistakes (Cohen et al., 2021).

The recent literature on turbofan engine Remaining Useful
Life (RUL) prediction highlights a progressive evolution of
methods from foundational pre-processing strategies to
cutting-edge state-space models. Asif et al (2022)
established a strong baseline by demonstrating that deep
LSTM models can achieve improved RUL prediction when
combined with meticulous pre-processing, including
piecewise linear labelling and correlation-based sensor
selection. Building on this, Ensarioglu et al (2023) proposed
an engine-specific labelling method using change-point
detection alongside handcrafted features, implemented in a
hybrid 1D-CNN-LSTM model, which enhanced predictive
accuracy by better capturing individual degradation patterns.
Fan et al (2024) advanced the field by introducing a Two-
Stage Attention-Based Hierarchical Transformer, which
systematically applies temporal and sensor-wise attention to
capture long-range dependencies more effectively than
traditional RNNs. Complementing this, Elsherif et al (2025),
developed a hybrid Convolutional Autoencoder and
Attention-based LSTM (CAELSTM) framework, where the
autoencoder reduces noise and extracts features before
attention-driven temporal modelling, yielding highly
competitive prognostic performance. Most recently, Li et al
(2025) proposed a Bidirectional Mamba model combined
with causal discovery, representing a new generation of
approaches that improve computational efficiency for long
sequences while enhancing interpretability by uncovering
causal relationships.

Collectively, these studies illustrate the trajectory of RUL
prognostics research, moving from pre-processing and
hybrid deep learning toward increasingly efficient,
interpretable, and attention-driven architectures.

Recent reviews and experimental studies indicate a gap at
the intersection of (a) architectures that both capture long-
range temporal context and provide sensor-wise
interpretability, and (b) rigorous cross-condition evaluations
that include ablation, uncertainty estimation, and
computational-cost reporting. In particular, while attention
and transformer variants have shown promise, many studies
either (i) apply attention without clear ablation vs. strong
bidirectional recurrent baselines, or (ii) report accuracy gains
without demonstrating robustness across multi-regime
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subsets such as FD004 or without reporting training stability
and compute trade-offs (Z. Liu et al., 2024).

However, despite these advances, existing approaches often
struggle to generalize across diverse operating conditions
and to effectively capture long-range temporal dependencies
in degradation patterns. To address this gap, this study
proposes a hybrid framework that combines bidirectional
LSTM networks with multi-head attention, designed to
enhance temporal modelling while adaptively focusing on
the most informative features for robust Remaining Useful
Life prediction.

i. We propose a hybrid BiLSTM-multi-head self-
attention architecture that combines bidirectional
temporal modelling with sensor-wise attention to
improve robustness across variable operating
conditions.

ii We introduce pre-processing steps (cluster-based
normalization, rolling statistics and fixed-length
sliding windows) tailored to mitigate distribution shifts
among C-MAPSS subsets.
We provide a thorough empirical evaluation on FD0O01
and FDO004 including ablation studies (LSTM vs
BiLSTM vs BiLSTM+Attention), reporting MAE,
RMSE, PHM score, and computational considerations
to demonstrate both accuracy and practical trade-offs.
We analyse model interpretability by visualizing
attention weights to identify sensors and time windows
most predictive of imminent failure, improving
operational trust.
v. We discuss limitations, uncertainty behaviour, and
deployment considerations for condition-based
maintenance in aircraft operations.

ii.

iil.

MATERIALS AND METHODS

Dataset and Problem Formulation

This study employs the NASA C-MAPSS dataset, a widely
used benchmark for turbofan Remaining Useful Life (RUL)
prediction (Graves et al., 2023). Each engine trajectory
contains 26 variables, including an engine identifier, cycle
count, three operating settings, and 21 sensor measurements,
with realistic noise added to replicate operational conditions.
RUL is defined as the number of cycles remaining before
engine failure, making the task a regression problem. To
stabilize model training, a piecewise labelling approach was
applied with RUL values capped at 125 cycles.

The dataset consists of four subsets (FD001-FD004). For
this work, FDOO1, which contains one operating condition
and a single fault mode, and FD004, which includes six
operating conditions and two concurrent fault modes, were
selected to balance simple and complex scenarios. This
combination allowed a comprehensive evaluation of the
model’s ability to generalize across different degradation
complexities. The characteristics of the four C-MAPSS
subsets are summarized in Table 1 to highlight their
operating conditions and fault modes.

Table 1: Overview of C-MAPSS Dataset Subsets and Operating Conditions

Subset ID Number of Train  Number of Test Operational Fault Primary Faults
Trajectories Trajectories Conditions Modes

FDO001 100 100 One (Sea Level) One HPC Degradation

FDO002 260 259 Six One HPC Degradation

FD003 100 100 One (Sea Level) Two HPC, Fan Degradation

FD004 248 249 Six Two HPC, Fan Degradation
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Data Pre-processing
The raw dataset was reformatted into structured input
sequences for model training. Pre-processing involved
piecewise RUL labelling capped at 125 cycles, cluster-based
normalization to ensure comparability across operating
conditions, and the use of rolling statistical features to
smooth fluctuations and highlight degradation trends.
Raw Data ‘
(FD004)

-

Piecewise RUL Labeling
(Cap at 125 cycles)
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Temporal dependencies were captured with a sliding-
window approach of 100 cycles and stride of one, with the
RUL of the last cycle serving as the target. Shorter
sequences were zero-padded to maintain consistent
dimensions. These steps ensured robust and representative
inputs for subsequent learning. The complete pre-processing
and modelling pipeline is illustrated in Figure 1.

Cluster-based Normalization
(by operating conditions)

h 4

Sliding Window Generation
(Window=100, Zero-padding)

Rolling Statistics
(Mean & Std features)

L

BIiLSTM Layer
(Bidirectional temporal encoding)

Muilti-Head Self-Attention
(4 heads)

—

Regression Output

(Predicted RUL)

Dense + Dropout + L2
Feature Integration

Figure 1: Proposed Data Pre-processing and BiLSTM—Attention Model

Pipeline for RUL Prediction

Model Architectures

To evaluate performance fairly, three model categories were
implemented. As a traditional benchmark, a Random Forest
regressor was trained on rolling statistical features using 100
estimators and a maximum depth of 20 with bootstrap
aggregation. For a deep learning baseline, a stacked LSTM
was constructed with two recurrent layers of 128 and 64
hidden units, followed by dense layers for regression.
Dropout of 0.2 and L2 regularization with a coefficient of
le-4 were applied to improve generalization. The proposed
BiLSTM with multi-head attention extended this baseline by
incorporating bidirectional LSTM layers of 128 and 64 units,

Table 2: Summary of Model Architectures

followed by a self-attention block with four heads to
adaptively weight informative time steps and sensor signals.
The outputs were passed to dense layers of 64 and 32 units
before the final regression output. All deep models were
optimized with Adam using an initial learning rate of le-3,
mean squared error (MSE) loss, dropout, early stopping, and
regularization. A learning-rate scheduler was further applied
in the BiLSTM—Attention model to enhance convergence.
The detailed configurations of the Random Forest, LSTM
baseline, and proposed BiLSTM-Attention model are
presented in Table 2 for clarity and reproducibility.

Input Features . oL Training
Model & Window Layers / Units Regularization  Output Settings
Random Rolling statistical 100 trees, max depth = 20 N/A RUL Default scikit-
Forest features, no (bootstrap) (regression) learn, train-test

sequence split
LSTM Sliding windows ~ LSTM (128) — LSTM (64) — Dropout=0.2, Linear Adam (Ir=1e-3),
(Baseline) (length = 100, Dense (64, ReLU) L2 =1e-4 batch = 256, 30

stride = 1) epochs, early

stopping

BIiLSTM +  Sliding windows  BiLSTM(128) — BiLSTM(64) Dropout =0.2, Linear Adam (Ir=1e-3),
Attention (length = 100, — Multi-Head Attention (4 L2=1e-4 batch = 64-128,

stride = 1)
Dense(32, ReLU)

heads) — Dense(64, ReLU) —

30-50 epochs,
early stopping

Training and Evaluation Metrics

Input sequences were generated with a sliding-window
length of 100 cycles and training was conducted with early
stopping based on validation loss. All experiments were
implemented in Python using Google Colab with an
NVIDIA T4 GPU to ensure reproducibility and efficient
computation.

Model performance was evaluated using four metrics: mean
absolute error (MAE), which measures the average
prediction deviation; root mean squared error (RMSE),
which emphasizes large errors; coefficient of determination
(R?), which represents the proportion of variance explained
by the model; and the PHM score, which penalizes late
predictions more heavily than early ones, reflecting safety-
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critical maintenance requirements. Together, these metrics
provide a comprehensive measure of the models’ predictive
accuracy and generalization across datasets.

RESULTS AND DISCUSSION

Quantitative Performance

The proposed BiLSTM-multi-head self-attention framework
was evaluated on the NASA C-MAPSS dataset using four
performance metrics: MAE, RMSE, R?, and the PHM score.
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MAE and RMSE measure absolute prediction accuracy, R?
reflects explained variance, while the PHM score penalizes
late predictions more heavily than early ones to align with
safety-critical requirements. The comparative performance
of Random Forest, baseline LSTM, and the proposed
BiLSTM-Attention model on FDO001 and FDO004 is
summarized in Table 3, highlighting the framework’s
effectiveness across both simple and complex prognostic
settings.

Table 3: Comparative Performance of Baseline Models and Proposed Model FD001 and FD004 Datasets

Dataset Model MAE | RMSE | R*? PHM Score |
FDO001 Random Forest 13.856 19.110 0.789 1116.025
FDO001 Baseline LSTM 11.233 15.123 0.868 395.553

FDO0O1 BiLSTM + Attention 11.422 15.045 0.869 387.148
FD004 Random Forest 43.947 52.462 -2.689 169096708.757
FD004 Baseline LSTM 17.799 25.136 0.787 4211.214
FD004 BiLSTM + Attention 9.450 15.517 0.770 3853.213

For the simpler FDOO1 subset, Random Forest achieved
reasonable baseline accuracy, but both deep learning models
significantly improved results. The BiLSTM-Attention
model achieved MAE of 11.42, RMSE of 15.05, and R? of
0.869, providing a slight improvement over the baseline
LSTM (MAE 11.23, RMSE 15.12, R? 0.868). In contrast,
FDO004 presented more complex operating conditions, where
Random Forest completely failed to generalize. Here, the
BiLSTM-—Attention model substantially reduced errors with

an MAE of 9.45, RMSE of 15.52, and PHM score of
3853.21, outperforming the baseline LSTM (MAE 17.80,
RMSE 25.14, PHM 4211.21).

Figures 2 and 3 provide a visual comparison of model
predictions on FDO0O1 and FDO004, respectively, showing
how the proposed BiLSTM-Attention approach improves
alignment with true RUL trajectories compared to baseline
models.

FDO004: Performance Comparison of Models
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Figures 2: Assessment of Baseline Models Performance and Proposed Model on FD004
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Figures 3: Assessment of Baseline Models Performance and Proposed Model on FD0O1
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These results confirm that while attention brings only
marginal gains in simpler scenarios, it becomes critical in
complex multi-condition environments, where it enables the
model to prioritize informative time steps and mitigate late
prediction penalties. Similar observations were reported by
(Dida et al., 2025), who highlighted the importance of
attention-based sequence modelling in handling multi-
regime degradation.

Visualization and Error Analysis
To complement the quantitative metrics, visualization
analyses were performed. Scatter plots of predicted versus
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actual RUL show that the baseline LSTM generally follows
the diagonal trend but underestimates at higher RUL values.
In contrast, the BiILSTM—Attention model produces tighter
clustering around the diagonal, especially in the mid-to-high
RUL range, demonstrating better stability and reduced
variance. To further assess predictive reliability, Figures 4
and 5 present scatter plots of predicted versus actual RUL
values for the baseline LSTM and BiLSTM-Attention
models, illustrating the degree of deviation from the ideal
diagonal trend.

120

Predicted vs True RUL (FD0OO4, LSTM)
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Figure 4: Predicted versus True RUL for the Baseline LSTM Model on the

FDO004 Dataset

Predicted vs. True RUL (FD004)
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Figure 5: Predicted versus True Remaining Useful Life (RUL) for the BILSTM—
Attention Model on the FD004 Dataset

Training and validation loss curves further highlight model
behaviour. The BiIiLSTM-Attention model converged
smoothly with lower final validation error, while the LSTM
plateaued earlier with higher residual loss. The convergence

FUDMA Journal of Sciences (FJS) Vol. 9 No. 12, December (Special Issue), 2025, pp 581 — 589

behaviour of the models is shown in Figures 6 and 7, where
the training and validation loss curves reveal differences in
stability and generalization between the LSTM and
BiLSTM-Attention frameworks.
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Training & Validation Loss
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Figure 6: Training and Validation Loss (MSE) of the Proposed Model on the
FD004 Dataset

Training & Validation Loss

4000 - —— Train MSE
Val MSE
3500

3000 A
2500

2000 -

Loss (MSE)

1500 4

1000

0 5 10 15 20
Epoch
Figure 7: Training and Validation Loss (MSE) of the LSTM Model on the FD004
Dataset
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Error distributions confirm this pattern: the BiLSTM- 8 and 9 illustrate the error distributions of the baseline
Attention model produced errors tightly centered around LSTM and BiLSTM-Attention models on the FDO004
zero, indicating stable and unbiased predictions, while the dataset, providing insights into prediction variance and bias.

LSTM showed a wider spread with higher variance. Figures

Error Distribution
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Figure 8: Error Distribution of BILSTM Predictions (FD004)
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Error Distribution
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Figure 9: Error Distribution of LSTM Predictions (FD004)
Finally, Figures 10 and 11 illustrate the degradation RUL curve while the baseline LSTM fluctuates significantly
trajectories of a sample engine from FDO004, showing that in mid-life cycles, confirming the superior stability and

the BiLSTM—Attention predictions closely follow the true robustness of the proposed framework.

Degradation Pattern - Engine 1 (FD004)
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Figure 10: Degradation Pattern of Engine 1 Using the Proposed Model
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Figure 11: Degradation Pattern of Engine 1 Using the LSTM Baseline

These visualization results complement the quantitative stability and mitigates late prediction penalties across
analysis, confirming that attention enhances temporal varying operating conditions.
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Discussion of Findings and Implications

The results can be explained by two key design choices.
First, the BiLSTM captures bidirectional temporal
dependencies, enabling the model to preserve long-term
degradation patterns. Second, the attention mechanism
highlights the most informative sensors and time steps,
reducing noise and late prediction penalties. Such
architectural choices are consistent with prior prognostics
research emphasizing the complementary strengths of
bidirectional recurrent models and attention for long-
sequence learning (Dida et al., 2025; Li et al., 2025). This
dual-stage design yields a richer and more stable
representation of engine health than either recurrent
networks or attention alone.

From a practical perspective, the improved predictive
accuracy supports reliable condition-based maintenance. By
reducing both premature and delayed predictions, the
framework lowers maintenance costs, extends engine service
life, and enhances aviation safety. These findings align with
recent studies showing that hybrid recurrent—attention
architectures  outperform traditional deep learning
approaches for complex prognostic tasks (Dida et al., 2025;
Elsherif et al., 2025; Fan et al., 2024).

CONCLUSION

This study introduced a BiLSTM-multi-head attention
framework for turbofan RUL prediction and achieved clear
improvements over baseline methods. On the C-MAPSS
dataset, the model recorded MAE 11.42 / RMSE 15.05 on
FD0O01 and MAE 9.45 / RMSE 15.52 on FDO004,
outperforming the baseline LSTM and reducing late-
prediction penalties. These results demonstrate that
integrating bidirectional sequence modelling with adaptive
attention improves prediction stability and accuracy,
particularly under multi-condition scenarios, offering
practical value for condition-based maintenance through
earlier fault detection, optimized scheduling, and enhanced
operational safety. Nevertheless, the approach is limited by
its reliance on a single dataset and the absence of uncertainty
quantification, which is essential for real-world prognostics.
Future work will extend the framework to multimodal
inputs, investigate transformer-based long-sequence models,
and incorporate digital-twin simulations and uncertainty-
aware prediction methods to support deployment in
operational aviation environments.
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