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ABSTRACT 

Advances in sensor technology and automation are shifting aviation maintenance from fixed schedules to 

condition-based predictive maintenance (CBPM), which leverages real-time sensor data and machine learning 

to anticipate failures and optimize interventions. In this study, a deep learning architecture is presented, 

integrating BiLSTM with a multi-head self-attention module for RUL prediction, and its performance is 

assessed using the NASA C-MAPSS dataset. The BiLSTM captures bidirectional temporal dependencies in 

degradation sequences, while the attention mechanism adaptively emphasizes critical cycles and sensor 

signals. Pre-processing involved piecewise RUL labelling (capped at 125 cycles), cluster-based 

normalization, rolling statistical features, and sliding-window sequence generation. On FD004, the BiLSTM–

attention model achieved an MAE of 9.45, RMSE of 15.52, and PHM score of 3853.21, outperforming the 

baseline LSTM (MAE 17.80, RMSE 25.14, PHM 4211.21). On FD001, the BiLSTM–attention delivered 

comparable accuracy, with an MAE of 11.42, RMSE of 15.05, and PHM score of 387.15, matching or 

exceeding baseline performance (MAE 11.23, RMSE 15.12, PHM 395.55). These findings demonstrate that 

integrating bidirectional sequence modelling with adaptive attention enhances predictive robustness across 

varying operating conditions. The proposed approach not only achieves strong generalization but also 

outperforms state-of-the-art benchmarks in aircraft engine Remaining Useful Life prediction, offering 

practical benefits for predictive maintenance through improved safety, reduced operational costs, and 

extended fleet availability.  

 

Keywords: Attention Mechanism, Aviation Maintenance, Bidirectional LSTM, Prognostics, Remaining 

Useful Life 

 

INTRODUCTION 

The aerospace sector, along with other industries reliant on 

complex machinery, is witnessing a paradigm shift from 

conventional preventive maintenance (PM) strategies to 

more sophisticated condition-based predictive maintenance 

(CBPM) approaches (Ensarioğlu et al., 2023; Fan et al., 

2024). Traditional PM practices, which are typically 

governed by fixed inspection and servicing intervals, often 

result in redundant maintenance activities and elevated 

operational costs (Andenyangtso et al., 2024; Asif et al., 

2022; Donatus et al., 2025). Conversely, CBPM leverages 

advances in sensing technologies and data-driven analytics 

to continuously assess system health in real time, enabling 

proactive interventions grounded in empirical evidence 

(Adryan Fitra Azyus et al., 2025). Within this framework, 

accurate estimation of an asset’s Remaining Useful Life 

(RUL) stands out as a key objective, providing forecasts of 

operational cycles prior to failure and thereby enhancing 

safety, reducing downtime, and optimizing maintenance 

planning (Fan et al., 2024; Wu et al., 2024).  

In industrial systems, aviation, and aerospace, predictive 

maintenance is consequently a key priority, with RUL 

estimation of turbofan engines central to ensuring system 

reliability (Elsherif et al., 2025; Ensarioğlu et al., 2023; 

Ohoriemu & Ogala, 2024). The NASA Commercial Modular 

Aero-Propulsion System Simulation (C-MAPSS) dataset 

provides a widely adopted benchmark, simulating engine 

degradation under varying operating conditions and 

generating time-series data from nominal operation to failure 

(Adryan Fitra Azyus et al., 2025; Elsherif et al., 2025). This 

dataset has facilitated the application of diverse modelling 

strategies, ranging from survival analysis and ensemble 

learning (e.g., random forests, XGBoost) to deep learning 

methods particularly  long short-term memory (LSTM) 

architectures (Adryan & Sastra, 2021; AsifKhan et al., 2022) 

Despite notable advances, ensuring robust and generalizable 

predictions across complex operating conditions remains an 

open challenge (Azyus, 2022; Remadna et al., 2021). 

Recent studies have explored advanced architectures such as 

GRUs, CNNs, autoencoders, and self-attention to improve 

degradation modelling and temporal feature extraction (Dida 

et al., 2025; Ensarioğlu et al., 2023). Hybrid models that 

combine CNNs with recurrent networks, particularly 

BiLSTMs, consistently deliver stronger performance in 

complex operating conditions (Y. Liu & Wang, 2021; 

Muneer et al., 2021). Approaches integrating convolutional 

autoencoders with GRU or BiLSTM layers further 

demonstrate the effectiveness of multi-architecture designs 

for turbofan RUL prediction (Fan et al., 2024; Li et al., 

2025). 

Despite rapid progress, contemporary RUL approaches 

exhibit several recurring limitations. Many data-driven 

models depend heavily on careful feature engineering or 

dataset-specific pre-processing, which reduces their 

robustness when transferred to new operating regimes 

(Elsherif et al., 2025; Kumar et al., 2024). Deep recurrent or 

convolutional architectures can model temporal dynamics 

effectively but often lack uncertainty quantification and 

interpretability, making them difficult to trust for safety-

critical decisions (Adryan & Sastra, 2021; Wu et al., 2024).  

multi-condition datasets such as C-MAPSS FD004, simpler 

models overfit or fail to generalize, while more complex 

models suffer from high computational cost and unstable 

training, especially for long sequences (Azyus, 2022; Kumar 

et al., 2024; Remadna et al., 2021). 
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Turbofan RUL prediction is challenging because degradation 

signals are non-stationary, noisy, and influenced by 

changing operational settings and multiple concurrent fault 

modes; this heterogeneity obscures consistent failure 

signatures and complicates learning (Kumar et al., 2024). 

Engines operate under variable loads and environmental 

conditions that change sensor distributions over time, 

necessitating normalization or domain-aware schemes to 

avoid spurious correlations (Dida et al., 2025; Pan et al., 

2025). Moreover, the scarcity of labelled run-to-failure data 

for some fault types and the long horizons needed for safe 

maintenance decisions increase sensitivity to late prediction 

errors and motivate metrics (e.g., PHM score) that penalize 

such mistakes (Cohen et al., 2021).  

The recent literature on turbofan engine Remaining Useful 

Life (RUL) prediction highlights a progressive evolution of 

methods from foundational pre-processing strategies to 

cutting-edge state-space models. Asif et al (2022) 

established a strong baseline by demonstrating that deep 

LSTM models can achieve improved RUL prediction when 

combined with meticulous pre-processing, including 

piecewise linear labelling and correlation-based sensor 

selection. Building on this, Ensarioğlu et al (2023) proposed 

an engine-specific labelling method using change-point 

detection alongside handcrafted features, implemented in a 

hybrid 1D-CNN-LSTM model, which enhanced predictive 

accuracy by better capturing individual degradation patterns. 

Fan et al (2024) advanced the field by introducing a Two-

Stage Attention-Based Hierarchical Transformer, which 

systematically applies temporal and sensor-wise attention to 

capture long-range dependencies more effectively than 

traditional RNNs. Complementing this, Elsherif et al (2025), 

developed a hybrid Convolutional Autoencoder and 

Attention-based LSTM (CAELSTM) framework, where the 

autoencoder reduces noise and extracts features before 

attention-driven temporal modelling, yielding highly 

competitive prognostic performance. Most recently, Li et al 

(2025) proposed a Bidirectional Mamba model combined 

with causal discovery, representing a new generation of 

approaches that improve computational efficiency for long 

sequences while enhancing interpretability by uncovering 

causal relationships.  

Collectively, these studies illustrate the trajectory of RUL 

prognostics research, moving from pre-processing and 

hybrid deep learning toward increasingly efficient, 

interpretable, and attention-driven architectures. 

Recent reviews and experimental studies indicate a gap at 

the intersection of (a) architectures that both capture long-

range temporal context and provide sensor-wise 

interpretability, and (b) rigorous cross-condition evaluations 

that include ablation, uncertainty estimation, and 

computational-cost reporting. In particular, while attention 

and transformer variants have shown promise, many studies 

either (i) apply attention without clear ablation vs. strong 

bidirectional recurrent baselines, or (ii) report accuracy gains 

without demonstrating robustness across multi-regime 

subsets such as FD004 or without reporting training stability 

and compute trade-offs (Z. Liu et al., 2024). 

However, despite these advances, existing approaches often 

struggle to generalize across diverse operating conditions 

and to effectively capture long-range temporal dependencies 

in degradation patterns. To address this gap, this study 

proposes a hybrid framework that combines bidirectional 

LSTM networks with multi-head attention, designed to 

enhance temporal modelling while adaptively focusing on 

the most informative features for robust Remaining Useful 

Life prediction. 

i. We propose a hybrid BiLSTM–multi-head self-

attention architecture that combines bidirectional 

temporal modelling with sensor-wise attention to 

improve robustness across variable operating 

conditions. 

ii. ii We introduce pre-processing steps (cluster-based 

normalization, rolling statistics and fixed-length 

sliding windows) tailored to mitigate distribution shifts 

among C-MAPSS subsets. 

iii. We provide a thorough empirical evaluation on FD001 

and FD004 including ablation studies (LSTM vs 

BiLSTM vs BiLSTM+Attention), reporting MAE, 

RMSE, PHM score, and computational considerations 

to demonstrate both accuracy and practical trade-offs. 

iv. We analyse model interpretability by visualizing 

attention weights to identify sensors and time windows 

most predictive of imminent failure, improving 

operational trust. 

v. We discuss limitations, uncertainty behaviour, and 

deployment considerations for condition-based 

maintenance in aircraft operations. 

 

MATERIALS AND METHODS 

Dataset and Problem Formulation 

This study employs the NASA C-MAPSS dataset, a widely 

used benchmark for turbofan Remaining Useful Life (RUL) 

prediction (Graves et al., 2023). Each engine trajectory 

contains 26 variables, including an engine identifier, cycle 

count, three operating settings, and 21 sensor measurements, 

with realistic noise added to replicate operational conditions. 

RUL is defined as the number of cycles remaining before 

engine failure, making the task a regression problem. To 

stabilize model training, a piecewise labelling approach was 

applied with RUL values capped at 125 cycles. 

The dataset consists of four subsets (FD001–FD004). For 

this work, FD001, which contains one operating condition 

and a single fault mode, and FD004, which includes six 

operating conditions and two concurrent fault modes, were 

selected to balance simple and complex scenarios. This 

combination allowed a comprehensive evaluation of the 

model’s ability to generalize across different degradation 

complexities. The characteristics of the four C-MAPSS 

subsets are summarized in Table 1 to highlight their 

operating conditions and fault modes. 

 

Table 1: Overview of C-MAPSS Dataset Subsets and Operating Conditions 

Subset ID Number of Train 

Trajectories 

Number of Test 

Trajectories 

Operational 

Conditions 

Fault 

Modes 

Primary Faults 

FD001 100 100 One (Sea Level) One HPC Degradation 

FD002 260 259 Six One HPC Degradation 

FD003 100 100 One (Sea Level) Two HPC, Fan Degradation 

FD004 248 249 Six Two HPC, Fan Degradation 
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Data Pre-processing 

The raw dataset was reformatted into structured input 

sequences for model training. Pre-processing involved 

piecewise RUL labelling capped at 125 cycles, cluster-based 

normalization to ensure comparability across operating 

conditions, and the use of rolling statistical features to 

smooth fluctuations and highlight degradation trends. 

Temporal dependencies were captured with a sliding-

window approach of 100 cycles and stride of one, with the 

RUL of the last cycle serving as the target. Shorter 

sequences were zero-padded to maintain consistent 

dimensions. These steps ensured robust and representative 

inputs for subsequent learning. The complete pre-processing 

and modelling pipeline is illustrated in Figure 1.

 

 
Figure 1: Proposed Data Pre-processing and BiLSTM–Attention Model 

Pipeline for RUL Prediction 

 

Model Architectures 

To evaluate performance fairly, three model categories were 

implemented. As a traditional benchmark, a Random Forest 

regressor was trained on rolling statistical features using 100 

estimators and a maximum depth of 20 with bootstrap 

aggregation. For a deep learning baseline, a stacked LSTM 

was constructed with two recurrent layers of 128 and 64 

hidden units, followed by dense layers for regression. 

Dropout of 0.2 and L2 regularization with a coefficient of 

1e-4 were applied to improve generalization. The proposed 

BiLSTM with multi-head attention extended this baseline by 

incorporating bidirectional LSTM layers of 128 and 64 units, 

followed by a self-attention block with four heads to 

adaptively weight informative time steps and sensor signals.  

The outputs were passed to dense layers of 64 and 32 units 

before the final regression output. All deep models were 

optimized with Adam using an initial learning rate of 1e-3, 

mean squared error (MSE) loss, dropout, early stopping, and 

regularization. A learning-rate scheduler was further applied 

in the BiLSTM–Attention model to enhance convergence. 

The detailed configurations of the Random Forest, LSTM 

baseline, and proposed BiLSTM–Attention model are 

presented in Table 2 for clarity and reproducibility.

 

Table 2: Summary of Model Architectures 

Model 
Input Features 

& Window 
Layers / Units Regularization Output 

Training 

Settings 

Random 

Forest 

Rolling statistical 

features, no 

sequence 

100 trees, max depth = 20 

(bootstrap) 

N/A RUL 

(regression) 

Default scikit-

learn, train-test 

split 

LSTM 

(Baseline) 

Sliding windows 

(length = 100, 

stride = 1) 

LSTM (128) → LSTM (64) → 

Dense (64, ReLU) 

Dropout = 0.2, 

L2 = 1e-4 

Linear Adam (lr=1e-3), 

batch = 256, 30 

epochs, early 

stopping 

BiLSTM + 

Attention 

Sliding windows 

(length = 100, 

stride = 1) 

BiLSTM(128) → BiLSTM(64) 

→ Multi-Head Attention (4 

heads) → Dense(64, ReLU) → 

Dense(32, ReLU) 

Dropout = 0.2, 

L2 = 1e-4 

Linear Adam (lr=1e-3), 

batch = 64–128, 

30–50 epochs, 

early stopping 

 

Training and Evaluation Metrics 

Input sequences were generated with a sliding-window 

length of 100 cycles and training was conducted with early 

stopping based on validation loss. All experiments were 

implemented in Python using Google Colab with an 

NVIDIA T4 GPU to ensure reproducibility and efficient 

computation.  

Model performance was evaluated using four metrics: mean 

absolute error (MAE), which measures the average 

prediction deviation; root mean squared error (RMSE), 

which emphasizes large errors; coefficient of determination 

(R²), which represents the proportion of variance explained 

by the model; and the PHM score, which penalizes late 

predictions more heavily than early ones, reflecting safety-
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critical maintenance requirements. Together, these metrics 

provide a comprehensive measure of the models’ predictive 

accuracy and generalization across datasets. 

 

RESULTS AND DISCUSSION 

Quantitative Performance 

The proposed BiLSTM–multi-head self-attention framework 

was evaluated on the NASA C-MAPSS dataset using four 

performance metrics: MAE, RMSE, R², and the PHM score. 

MAE and RMSE measure absolute prediction accuracy, R² 

reflects explained variance, while the PHM score penalizes 

late predictions more heavily than early ones to align with 

safety-critical requirements. The comparative performance 

of Random Forest, baseline LSTM, and the proposed 

BiLSTM–Attention model on FD001 and FD004 is 

summarized in Table 3, highlighting the framework’s 

effectiveness across both simple and complex prognostic 

settings.

 

Table 3: Comparative Performance of Baseline Models and Proposed Model FD001 and FD004 Datasets 

Dataset Model MAE ↓ RMSE ↓ R² ↑ PHM Score ↓ 

FD001 Random Forest 13.856 19.110 0.789 1116.025 

FD001 Baseline LSTM 11.233 15.123 0.868 395.553 

FD001 BiLSTM + Attention 11.422 15.045 0.869 387.148 

FD004 Random Forest 43.947 52.462 -2.689 169096708.757 

FD004 Baseline LSTM 17.799 25.136 0.787 4211.214 

FD004 BiLSTM + Attention 9.450 15.517 0.770 3853.213 

 

For the simpler FD001 subset, Random Forest achieved 

reasonable baseline accuracy, but both deep learning models 

significantly improved results. The BiLSTM–Attention 

model achieved MAE of 11.42, RMSE of 15.05, and R² of 

0.869, providing a slight improvement over the baseline 

LSTM (MAE 11.23, RMSE 15.12, R² 0.868). In contrast, 

FD004 presented more complex operating conditions, where 

Random Forest completely failed to generalize. Here, the 

BiLSTM–Attention model substantially reduced errors with 

an MAE of 9.45, RMSE of 15.52, and PHM score of 

3853.21, outperforming the baseline LSTM (MAE 17.80, 

RMSE 25.14, PHM 4211.21). 

Figures 2 and 3 provide a visual comparison of model 

predictions on FD001 and FD004, respectively, showing 

how the proposed BiLSTM–Attention approach improves 

alignment with true RUL trajectories compared to baseline 

models. 

  

 
Figures 2: Assessment of Baseline Models Performance and Proposed Model on FD004 

 

 
Figures 3: Assessment of Baseline Models Performance and Proposed Model on FD001 
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These results confirm that while attention brings only 

marginal gains in simpler scenarios, it becomes critical in 

complex multi-condition environments, where it enables the 

model to prioritize informative time steps and mitigate late 

prediction penalties. Similar observations were reported by 

(Dida et al., 2025), who highlighted the importance of 

attention-based sequence modelling in handling multi-

regime degradation. 

 

Visualization and Error Analysis 

To complement the quantitative metrics, visualization 

analyses were performed. Scatter plots of predicted versus 

actual RUL show that the baseline LSTM generally follows 

the diagonal trend but underestimates at higher RUL values. 

In contrast, the BiLSTM–Attention model produces tighter 

clustering around the diagonal, especially in the mid-to-high 

RUL range, demonstrating better stability and reduced 

variance. To further assess predictive reliability, Figures 4 

and 5 present scatter plots of predicted versus actual RUL 

values for the baseline LSTM and BiLSTM–Attention 

models, illustrating the degree of deviation from the ideal 

diagonal trend. 

 

 
Figure 4: Predicted versus True RUL for the Baseline LSTM Model on the 

FD004 Dataset 

 

 
Figure 5: Predicted versus True Remaining Useful Life (RUL) for the BiLSTM–

Attention Model on the FD004 Dataset 

 

Training and validation loss curves further highlight model 

behaviour. The BiLSTM–Attention model converged 

smoothly with lower final validation error, while the LSTM 

plateaued earlier with higher residual loss. The convergence 

behaviour of the models is shown in Figures 6 and 7, where 

the training and validation loss curves reveal differences in 

stability and generalization between the LSTM and 

BiLSTM–Attention frameworks. 
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Figure 6: Training and Validation Loss (MSE) of the Proposed Model on the 

FD004 Dataset 

 

 
Figure 7: Training and Validation Loss (MSE) of the LSTM Model on the FD004 

Dataset 

 

Error distributions confirm this pattern: the BiLSTM–

Attention model produced errors tightly centered around 

zero, indicating stable and unbiased predictions, while the 

LSTM showed a wider spread with higher variance. Figures 

8 and 9 illustrate the error distributions of the baseline 

LSTM and BiLSTM–Attention models on the FD004 

dataset, providing insights into prediction variance and bias. 

 

 
 Figure 8: Error Distribution of BiLSTM Predictions (FD004) 
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Figure 9: Error Distribution of LSTM Predictions (FD004) 

 

Finally, Figures 10 and 11 illustrate the degradation 

trajectories of a sample engine from FD004, showing that 

the BiLSTM–Attention predictions closely follow the true 

RUL curve while the baseline LSTM fluctuates significantly 

in mid-life cycles, confirming the superior stability and 

robustness of the proposed framework. 

 

 
Figure 10: Degradation Pattern of Engine 1 Using the Proposed Model 

 

 
Figure 11: Degradation Pattern of Engine 1 Using the LSTM Baseline 

 

These visualization results complement the quantitative 

analysis, confirming that attention enhances temporal 

stability and mitigates late prediction penalties across 

varying operating conditions. 
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Discussion of Findings and Implications 

The results can be explained by two key design choices. 

First, the BiLSTM captures bidirectional temporal 

dependencies, enabling the model to preserve long-term 

degradation patterns. Second, the attention mechanism 

highlights the most informative sensors and time steps, 

reducing noise and late prediction penalties. Such 

architectural choices are consistent with prior prognostics 

research emphasizing the complementary strengths of 

bidirectional recurrent models and attention for long-

sequence learning (Dida et al., 2025; Li et al., 2025). This 

dual-stage design yields a richer and more stable 

representation of engine health than either recurrent 

networks or attention alone. 

From a practical perspective, the improved predictive 

accuracy supports reliable condition-based maintenance. By 

reducing both premature and delayed predictions, the 

framework lowers maintenance costs, extends engine service 

life, and enhances aviation safety. These findings align with 

recent studies showing that hybrid recurrent–attention 

architectures outperform traditional deep learning 

approaches for complex prognostic tasks (Dida et al., 2025; 

Elsherif et al., 2025; Fan et al., 2024). 

 

CONCLUSION 

This study introduced a BiLSTM–multi-head attention 

framework for turbofan RUL prediction and achieved clear 

improvements over baseline methods. On the C-MAPSS 

dataset, the model recorded MAE 11.42 / RMSE 15.05 on 

FD001 and MAE 9.45 / RMSE 15.52 on FD004, 

outperforming the baseline LSTM and reducing late-

prediction penalties. These results demonstrate that 

integrating bidirectional sequence modelling with adaptive 

attention improves prediction stability and accuracy, 

particularly under multi-condition scenarios, offering 

practical value for condition-based maintenance through 

earlier fault detection, optimized scheduling, and enhanced 

operational safety. Nevertheless, the approach is limited by 

its reliance on a single dataset and the absence of uncertainty 

quantification, which is essential for real-world prognostics. 

Future work will extend the framework to multimodal 

inputs, investigate transformer-based long-sequence models, 

and incorporate digital-twin simulations and uncertainty-

aware prediction methods to support deployment in 

operational aviation environments. 
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