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ABSTRACT

Artificial intelligence (Al) is transforming healthcare by enabling highly accurate diagnostics, personalised
treatment planning, and efficient clinical operations. Yet the opacity of advanced machine-learning models
remains a barrier to trust and widespread adoption. This paper provides a structured review of explainable Al
(XAI) techniques that reconcile predictive strength with interpretability. We examine model-agnostic methods,
including Local Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations
(SHAP), as well as model-specific approaches such as attention mechanisms and Gradient-weighted Class
Activation Mapping (Grad-CAM). Empirical evidence drawn from recent clinical studies demonstrates that
XAl significantly enhances decision-making. In radiology, Grad-CAM visualisations increased clinician
confidence by 30%, while SHAP explanations in electronic health record diagnostics improved trust by 25%.
Large-scale chest X-ray experiments (10,000 images) demonstrated that SHAP and LIME achieved high
predictive accuracies of 90% and 89%, respectively, compared to 92% for a baseline deep neural network,
while providing markedly higher interpretability scores. Patient-centred trials further revealed a 25%
improvement in diabetes treatment adherence when Al recommendations were accompanied by high-quality
explanations, with compliance rising 5% for every one-point increase in explanation quality (8; = 0.05). These
results confirm that XAl can strengthen clinician trust and patient engagement with only minimal loss in
accuracy. Remaining challenges include computational cost, absence of standardised interpretability metrics,
and evolving regulatory requirements. We recommend the development of hybrid models with intrinsic
interpretability, co-designed evaluation frameworks, and educational initiatives to prepare clinicians and

patients to act on XAl outputs.
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INTRODUCTION

Artificial intelligence (Al) is becoming a cornerstone of
modern healthcare, driving innovations that range from
precision diagnostics to personalised treatment pathways and
more efficient hospital management. Sophisticated machine-
learning (ML) algorithms, particularly deep learning
architectures, now deliver state-of-the-art performance in
tasks such as medical image interpretation, electronic health
record (EHR) analytics, and disease risk prediction (LeCun et
al., 2015; Huang et al., 2019). Deep convolutional neural
networks can detect subtle radiographic abnormalities with
accuracy that rivals or even surpasses expert clinicians
(Rajpurkar et al., 2017), while recurrent and transformer-
based models enable early detection of conditions such as
sepsis and cardiac arrhythmias by mining high-dimensional,
temporally structured EHR data (Caruana et al., 2015). These
breakthroughs promise earlier interventions, improved
outcomes, and lower costs across diverse clinical domains.
Yet the very complexity that gives these models their
predictive power also renders them difficult to interpret. Deep
neural networks often operate as “black boxes”, mapping
inputs to outputs through layers of nonlinear transformations
that defy intuitive understanding (Holzinger et al., 2019).
When algorithmic recommendations affect diagnoses,
treatment plans, or resource allocation, opacity can undermine
trust among clinicians, patients, and regulators. Clinicians are
reluctant to rely on decisions they cannot interrogate, while
patients may resist Al-driven care if they cannot comprehend
how conclusions are reached. This tension is heightened in
safety-critical settings such as oncology or intensive care,
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where incorrect or biased predictions can have immediate and
severe consequences (Amann et al., 2020).

Regulatory frameworks increasingly codify the need for
transparency. The European Union’s General Data Protection
Regulation (GDPR) articulates a “right to explanation”,
obliging organisations to provide meaningful information
about the logic behind automated decisions (Goodman &
Flaxman, 2017). Similar guidance appears in U.S. Food and
Drug Administration (FDA) proposals for adaptive Al-based
medical devices and in the World Health Organization’s
recommendations for trustworthy Al in health. Meeting these
requirements demands methods that illuminate the internal
reasoning of complex models without sacrificing their
predictive accuracy.

Explainable Al (XAl) offers a compelling response. Rather
than abandoning high-performing black-box models, XAl
techniques generate human-interpretable explanations of their
outputs. Model-agnostic approaches such as Local
Interpretable Model-Agnostic Explanations (LIME) and
SHapley Additive exPlanations (SHAP) provide feature-level
attributions applicable across model types (Ribeiro et al.,
2016; Lundberg & Lee, 2017). Model-specific strategies,
including attention mechanisms and gradient-based saliency
methods, embed interpretability directly into neural network
architectures (Bahdanau et al., 2014; Selvaraju et al., 2017).
Recent empirical studies demonstrate that such methods can
increase clinician confidence in Al recommendations (Kim et
al., 2023; Lee et al., 2024) and improve patient adherence
when explanatory feedback accompanies automated advice
(Patel et al., 2024).

.9 No. 11, November, 2025, pp 461 — 465

461


mailto:ayanlowoe@babcock.edu.ng
https://doi.org/10.33003/fjs-2025-0911-4213

EXPLAINABLE Al IN HEALTHCARE: ...

This paper situates XAl at the intersection of technological
capability and clinical necessity. We survey leading
methodologies, examine their mathematical underpinnings,
and assess evidence of their performance in real-world
healthcare applications. By critically evaluating their
strengths, limitations, and regulatory implications, we
highlight both the opportunities and the unresolved challenges
of embedding explainable Al within routine clinical practice.

Literature Review

The emergence of explainable artificial intelligence (XAl)
stems from longstanding concerns about the opacity of
complex machine-learning (ML) systems and their suitability
for high-stakes decision-making. Historically, interpretability
in predictive modelling was addressed through intrinsically
transparent algorithms, such as linear regression, decision
trees, and rule-based systems, that allow straightforward
mapping from input variables to outcomes (Molnar, 2020).
These models provide clear parameter estimates and human-
readable decision rules, making them naturally amenable to
clinical audit and regulatory review. However, the dramatic
performance gains of deep neural networks in tasks like image
classification and sequential data analysis shifted attention
toward powerful but opaque models (LeCun et al., 2015;
Rajpurkar et al., 2017). As healthcare applications
increasingly demand the accuracy of these complex systems,
researchers have sought methods to “open the black box”
without sacrificing predictive power.

Foundations of Explainability

XAl draws on a diverse set of disciplines to produce
interpretable explanations. Statistical concepts underpin
methods that quantify feature importance or sensitivity, while
game theory informs allocation of contributions across feature
subsets. Information theory and human—computer interaction
also guide the design of explanations that are not merely
mathematically rigorous but also cognitively meaningful to
end-users such as clinicians (Doshi-Velez & Kim, 2017).
Two landmark contributions remain central. Local
Interpretable  Model-Agnostic ~ Explanations  (LIME)
introduced by Ribeiro et al. (2016) approximates the
behaviour of a complex model f(x) in the vicinity of an
instance xxx with a simpler surrogate g(x), typically a sparse
linear model. By perturbing inputs around the point of interest
and weighting them according to proximity, LIME provides
an intuitive local explanation of how each feature influences
the prediction. SHapley Additive exPlanations (SHAP),
proposed by Lundberg and Lee (2017), extends cooperative
game theory to model interpretation, distributing the output
prediction among features based on their marginal
contributions across all possible feature coalitions. SHAP
values have become a de facto standard for global and local
interpretability because of their solid axiomatic foundation
and consistency guarantees.

Model-Specific Approaches

In parallel, model-specific techniques integrate explanation
directly into neural architectures. Attention mechanisms, first
described by Bahdanau et al. (2014) for neural machine
translation, learn a set of weights highlighting input
components most relevant to a prediction. This concept
readily transfers to healthcare tasks such as clinical text
mining or genomic sequence analysis, where it can reveal
clinically significant words or motifs (Huang et al., 2019).
Gradient-based visualisation methods such as Grad-CAM
(Selvaraju et al., 2017) exploit back-propagated gradients to
generate class-discriminative heatmaps over medical images,
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enabling radiologists to see which regions drive a model’s
decision. These methods are valued for their ability to provide
intuitive, visually anchored explanations without retraining
the model.

Healthcare-Specific Considerations

Healthcare literature underscores that interpretability is not
merely a technical preference but a clinical and ethical
imperative. Holzinger et al. (2019) emphasise “causability”,
the alignment between computational explanations and causal
reasoning demanded in medicine, arguing that explanations
must be comprehensible to domain experts, not only to data
scientists. Amann et al. (2020) further highlight that legal and
regulatory frameworks, including the European Union’s
General Data Protection Regulation (GDPR), enshrine a
“right to explanation”, obliging developers to provide
meaningful insights into algorithmic decisions.

Empirical studies increasingly show that XAl methods can
enhance user trust and engagement. Kim et al. (2023)
demonstrated that visual explanations via Grad-CAM
increased radiologists’ confidence in Al-based chest X-ray
diagnostics by approximately 30 %. Similarly, Lee et al.
(2024) reported a significant improvement in clinicians’
acceptance of Al-driven EHR diagnostics when SHAP
explanations accompanied model outputs. Beyond clinicians,
patient outcomes also benefit: Patel et al. (2024) found that
diabetes patients receiving Al-generated recommendations
with accompanying explanations exhibited a 25 % increase in
treatment adherence, underscoring the broader public-health
implications of interpretability.

Ongoing Debates and Challenges

Despite these advances, a persistent debate concerns the
trade-off between interpretability and predictive performance.
Rudin (2019) argues that, for high-stakes domains like
healthcare, the use of post-hoc explanations for inherently
opaque models is insufficient, advocating instead for
intrinsically interpretable models that can achieve competitive
accuracy. Others counter that hybrid strategies, combining
transparent components with deep networks, may offer a
pragmatic path forward (Molnar, 2020). Additional
challenges include the lack of universally accepted metrics for
explanation quality, the computational burden of methods
such as SHAP, and the difficulty of ensuring that explanations
are not only technically accurate but also clinically
meaningful.

Collectively, the literature reveals a field in rapid evolution:
one that balances mathematical rigour, computational
feasibility, and the ethical mandate for transparency. As Al
systems continue to penetrate clinical workflows, developing
robust, standardised, and user-centred explanation methods
remains a critical frontier for both research and practice.

MATERIALS AND METHODS

This study employs a structured narrative review enriched
with formal mathematical exposition to examine explainable
artificial intelligence (XAl) techniques in healthcare. The
approach integrates conceptual analysis, mathematical
formulation, and synthesis of empirical findings from peer-
reviewed studies published between 2023 and 2024. Our
objective is to clarify the operational principles of prominent
XAl methods and to evaluate their clinical impact in terms of
(1) improvements in clinician trust, (2) comparative model
performance, and (3) patient behavioural outcomes.
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Methodological Framework

Relevant literature was identified through searches of
PubMed, IEEE Xplore, and ACM Digital Library using
combinations of the keywords explainable Al, healthcare,
LIME, SHAP, attention, Grad-CAM, and interpretability.
Studies were included if they (i) applied an XAl technique to
a healthcare domain, (ii) reported quantitative performance
metrics, and (iii) described either clinician trust or patient
outcomes. Results were synthesised narratively, with special
attention to mathematical definitions of the methods
reviewed.

Taxonomy of XAl Techniques

XAl approaches were categorised into model-agnostic and
model-specific families to distinguish methods that can be
applied to any predictive model from those tailored to
particular architectures.

RESULTS AND DISCUSSION

This section synthesises empirical findings on the clinical
impact of explainable artificial intelligence (XAl), focusing
on clinician trust, model performance and patient behavioural
outcomes. Evidence is drawn from peer-reviewed studies and
large experimental datasets published between 2023 and
2024.

Model-Agnostic Methods

These methods operate independently of the underlying
predictive model f(x), making them broadly applicable
across classifiers and regressors.

Local Interpretable Model-Agnostic Explanations (LIME)
LIME constructs a simple surrogate model g(x) (e.g., a
sparse linear regressor) that locally approximates the complex
black-box model f(x) around a target instance x,.
Given a set of perturbed samples Z = {z,, ...,z,} and a
locality kernel m, (z) that down-weights distant points,
LIME minimises a locality-weighted squared loss:

L(f.9.m) = ) T, D@ — g@F

ZEZ
subject to a complexity constraint 2(g) that encourages
interpretability (e.g., sparsity in the coefficient vector). The
explanation is the set of non-zero coefficients of g, which
indicate the locally influential features (Bahdanau et al.,
2014).

SHapley Additive exPlanations (SHAP)

SHAP applies cooperative game theory to allocate the model
output among input features. For a model f with feature set N
and a particular feature i € N, the Shapley value ¢; is:

| — — i
o=y S D s 0 @) - s
ScN/{i}

where f(S) is the expected model output conditional on the
subset SSS of features. This equation ensures three desirable
properties, efficiency, symmetry, and additivity, which
together yield a fair attribution of the prediction to each
feature (Zhang et al., 2024).

Model-Specific Methods
These techniques leverage architectural properties of neural
networks to derive explanations from within the model itself.

Attention Mechanisms

Originally developed for neural machine translation
(Bahdanau et al., 2014), attention assigns learnable weights to
input tokens, highlighting the elements most relevant to the
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model’s decision.
For an input sequence {x, ..., x,, } and hidden representations
{h4, ..., hy}, attention scores a; are computed as

e; = v'tanh(Wh;), a; = L(EJ

J-1exp(e))
where W and v are learnable parameters. The context vector
c=Y", a;h; represents a weighted summary of salient
features. High «; values point to clinically important words,
lab results, or genomic markers.

Gradient-Weighted Class Activation Mapping (Grad-CAM)
Grad-CAM generates a class-discriminative heatmap for a
convolutional neural network (CNN) by exploiting gradients
of the target class score y¢ with respect to the final
convolutional feature maps A*. The weight for feature map k
is:

o1 Z Z ay¢
ak == _k
A ~ 5 0A;
where Z is the number of spatial locations. The saliency map
is then

LGraa-cam = ReLU (Z “liAk)

k
which highlights image regions most influential to the class

prediction, aiding radiologists in visually validating the
model’s reasoning.

Empirical Evidence

Empirical synthesis focused on clinical studies that evaluated
XAl methods in practice. Three key outcome dimensions
guided our review:

Clinician Trust: Measured through surveys or behavioural
metrics capturing confidence in Al-assisted diagnoses (e.g.,
Kimet al., 2023).

Model Performance Relative to Baseline: Comparison of
accuracy, sensitivity, and computation time of XAl-enhanced
models versus standard deep networks, such as in large-scale
chest X-ray classification tasks (Zhang et al., 2024).

Patient Behavioural Outcomes: Impact on patient adherence
and satisfaction when Al recommendations are accompanied
by explanations, exemplified by a 2024 diabetes management
trial reporting a 25 % improvement in compliance (Patel et
al., 2024).

Key datasets included multi-institutional radiology image
repositories (~10,000 chest X-rays) and anonymised EHR
diagnostic trials conducted in North America and East Asia
between 2023 and 2024.

Clinician Trust

Integrating XAl into diagnostic workflows produced
measurable gains in clinician confidence. In a controlled
reader study involving 38 radiologists, Grad-CAM visual
heatmaps were incorporated into a chest X-ray classification
system. When compared with standard outputs, the presence
of saliency maps increased mean self-reported confidence in
Al-assisted diagnoses by 30 per cent (Kim et al., 2023). A
complementary investigation of SHAP-based feature
attributions in electronic health record (EHR) diagnostics
reported a 25 per cent rise in clinician trust scores on a five-
point Likert scale relative to unannotated probability outputs
(Lee et al., 2024). These results, summarised in Table 1,
demonstrate that transparent case-specific explanations
reduce the psychological barrier to relying on automated
recommendations and support collaborative clinical decision-
making.
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Table 1: Improvement in Clinician Trust when XAl Explanations Accompany Al-driven Decisions

Application XAl Method Trust Increase (%)
Radiology (chest X-ray) Grad-CAM 30
EHR diagnostics SHAP 25

Model Performance

The trade-off between predictive accuracy, interpretability
and computational efficiency was evaluated on a chest X-ray
dataset of 10 000 images (Zhang et al., 2024). Accuracy is

reported as mean classification performance across five
disease categories, interpretability reflects structured clinician
feedback, and computation time indicates average per-case
explanation overhead. Results appear in Table 2.

Table 2: Comparative Performance of XAl Methods on Chest X-ray Classification

Method Accuracy (%) Interpretability Computation Time (s)
Deep neural network (baseline) 92 Low 0.5
SHAP 90 High 2.0
LIME 89 High 1.8
Grad-CAM 91 Medium 0.8

The results show only marginal reductions in accuracy when
explainability is introduced. SHAP and LIME maintained
high predictive power while providing the greatest
interpretability, though both incurred longer computation
times, with SHAP averaging two seconds per case. Grad-
CAM achieved a balanced profile, maintaining 91 per cent
accuracy and moderate interpretability with the lowest
computational overhead of 0.8 seconds.

Patient Outcomes

Evidence from a 2024 randomised controlled trial of diabetes
management indicates that explainability can also improve
patient behaviour (Patel et al., 2024). Participants received
Al-generated insulin dosage recommendations either with or
without explanatory feedback. Treatment compliance
increased by 25 per cent in the group receiving explanations.
The relationship between explanation quality and compliance
was quantified using a simple linear model

C= ﬁo + ﬂlE + €

where C represents the proportion of prescribed actions
followed, E is the explanation quality score on a five-point
scale, and « is the error term. The estimated coefficient §; =
0.05 indicates that each one-point increase in perceived
explanation quality corresponded to a further five-percentage-
point gain in adherence. The model achieved an R? of 0.41,
reflecting a moderate but clinically meaningful association.

Discussion

Across diverse healthcare contexts, explainable artificial
intelligence has demonstrated clear benefits. Clinician trust
improved by up to 30 per cent when Al predictions were
accompanied by interpretable explanations. Model accuracy
remained close to baseline deep-learning performance, with
only slight reductions and manageable computational costs.
Patient outcomes also improved, as illustrated by the
significant increase in diabetes treatment compliance
associated with higher-quality explanations. These findings
confirm that integrating explainability into clinical Al
systems strengthens both technical performance and the
human—Al partnership essential for safe and ethical
healthcare delivery.

CONCLUSION

Explainable artificial intelligence (XAI) stands at the
intersection of technological sophistication and clinical
necessity, offering a vital pathway for integrating advanced
machine-learning models into routine healthcare. The
evidence reviewed in this paper shows that XAl techniques,
most notably SHapley Additive exPlanations (SHAP), Local
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Interpretable Model-Agnostic Explanations (LIME), attention
mechanisms, and Gradient-weighted Class Activation
Mapping (Grad-CAM), consistently improve transparency
without materially eroding predictive power. Across a range
of clinical applications, from radiology to electronic health
record (EHR) analysis, these methods have been shown to
raise clinician trust by as much as 30 per cent and to enhance
patient adherence to treatment recommendations by a quarter,
all while maintaining near—state-of-the-art accuracy. Such
findings confirm that interpretability is not merely a desirable
adjunct but a prerequisite for ethical and effective Al
deployment in medicine.

Despite these gains, substantial barriers continue to impede
widespread adoption. Computational cost remains a
prominent concern, particularly for algorithms such as SHAP
whose complexity grows exponentially with the number of
input features. Real-time clinical environments require
explanations that are not only accurate but also generated with
low latency, a challenge when dealing with high-dimensional
medical data. A further difficulty lies in the absence of
universally accepted metrics for explanation quality. Existing
evaluations rely heavily on qualitative clinician feedback,
which, while valuable, lacks the standardisation needed for
regulatory oversight and cross-study comparison. Regulatory
expectations themselves are in flux. Frameworks such as the
European Union’s General Data Protection Regulation
mandate a “right to explanation”, yet they stop short of
defining what constitutes a sufficient explanation, leaving
developers uncertain about compliance thresholds and
exposing healthcare organisations to legal ambiguity.

Future progress will depend on a multi-pronged strategy.
First, hybrid modelling approaches that embed interpretability
within the architecture, such as combining transparent
components with deep neural networks, offer a promising
route to balance accuracy and clarity. Second, the
development of robust evaluation frameworks co-designed
with clinicians, patients, and regulators will be essential to
create metrics that capture both mathematical fidelity and
clinical relevance. Third, education and capacity building
must not be overlooked: healthcare professionals require
training to critically appraise Al outputs and to communicate
algorithmic reasoning to patients in plain language. Without
such efforts, even the most technically sophisticated
explanations may fail to achieve their ultimate goal of
informed and trustworthy clinical decision-making.

In sum, XAl provides a critical bridge between the predictive
strength of contemporary machine learning and the
transparency demanded by medical ethics, patient rights, and
regulatory bodies. Sustained collaboration among computer
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scientists, clinicians, policymakers, and educators will be
necessary to overcome current obstacles and to ensure that
explainable Al realises its full potential as a transformative
force in healthcare.
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