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ABSTRACT 

Artificial intelligence (AI) is transforming healthcare by enabling highly accurate diagnostics, personalised 

treatment planning, and efficient clinical operations. Yet the opacity of advanced machine-learning models 

remains a barrier to trust and widespread adoption. This paper provides a structured review of explainable AI 

(XAI) techniques that reconcile predictive strength with interpretability. We examine model-agnostic methods, 

including Local Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations 

(SHAP), as well as model-specific approaches such as attention mechanisms and Gradient-weighted Class 

Activation Mapping (Grad-CAM). Empirical evidence drawn from recent clinical studies demonstrates that 

XAI significantly enhances decision-making. In radiology, Grad-CAM visualisations increased clinician 

confidence by 30%, while SHAP explanations in electronic health record diagnostics improved trust by 25%. 

Large-scale chest X-ray experiments (10,000 images) demonstrated that SHAP and LIME achieved high 

predictive accuracies of 90% and 89%, respectively, compared to 92% for a baseline deep neural network, 

while providing markedly higher interpretability scores. Patient-centred trials further revealed a 25% 

improvement in diabetes treatment adherence when AI recommendations were accompanied by high-quality 

explanations, with compliance rising 5% for every one-point increase in explanation quality (𝛽1 = 0.05). These 

results confirm that XAI can strengthen clinician trust and patient engagement with only minimal loss in 

accuracy. Remaining challenges include computational cost, absence of standardised interpretability metrics, 

and evolving regulatory requirements. We recommend the development of hybrid models with intrinsic 

interpretability, co-designed evaluation frameworks, and educational initiatives to prepare clinicians and 

patients to act on XAI outputs. 
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INTRODUCTION 

Artificial intelligence (AI) is becoming a cornerstone of 

modern healthcare, driving innovations that range from 

precision diagnostics to personalised treatment pathways and 

more efficient hospital management. Sophisticated machine-

learning (ML) algorithms, particularly deep learning 

architectures, now deliver state-of-the-art performance in 

tasks such as medical image interpretation, electronic health 

record (EHR) analytics, and disease risk prediction (LeCun et 

al., 2015; Huang et al., 2019). Deep convolutional neural 

networks can detect subtle radiographic abnormalities with 

accuracy that rivals or even surpasses expert clinicians 

(Rajpurkar et al., 2017), while recurrent and transformer-

based models enable early detection of conditions such as 

sepsis and cardiac arrhythmias by mining high-dimensional, 

temporally structured EHR data (Caruana et al., 2015). These 

breakthroughs promise earlier interventions, improved 

outcomes, and lower costs across diverse clinical domains. 

Yet the very complexity that gives these models their 

predictive power also renders them difficult to interpret. Deep 

neural networks often operate as “black boxes”, mapping 

inputs to outputs through layers of nonlinear transformations 

that defy intuitive understanding (Holzinger et al., 2019). 

When algorithmic recommendations affect diagnoses, 

treatment plans, or resource allocation, opacity can undermine 

trust among clinicians, patients, and regulators. Clinicians are 

reluctant to rely on decisions they cannot interrogate, while 

patients may resist AI-driven care if they cannot comprehend 

how conclusions are reached. This tension is heightened in 

safety-critical settings such as oncology or intensive care, 

where incorrect or biased predictions can have immediate and 

severe consequences (Amann et al., 2020). 

Regulatory frameworks increasingly codify the need for 

transparency. The European Union’s General Data Protection 

Regulation (GDPR) articulates a “right to explanation”, 

obliging organisations to provide meaningful information 

about the logic behind automated decisions (Goodman & 

Flaxman, 2017). Similar guidance appears in U.S. Food and 

Drug Administration (FDA) proposals for adaptive AI-based 

medical devices and in the World Health Organization’s 

recommendations for trustworthy AI in health. Meeting these 

requirements demands methods that illuminate the internal 

reasoning of complex models without sacrificing their 

predictive accuracy. 

Explainable AI (XAI) offers a compelling response. Rather 

than abandoning high-performing black-box models, XAI 

techniques generate human-interpretable explanations of their 

outputs. Model-agnostic approaches such as Local 

Interpretable Model-Agnostic Explanations (LIME) and 

SHapley Additive exPlanations (SHAP) provide feature-level 

attributions applicable across model types (Ribeiro et al., 

2016; Lundberg & Lee, 2017). Model-specific strategies, 

including attention mechanisms and gradient-based saliency 

methods, embed interpretability directly into neural network 

architectures (Bahdanau et al., 2014; Selvaraju et al., 2017). 

Recent empirical studies demonstrate that such methods can 

increase clinician confidence in AI recommendations (Kim et 

al., 2023; Lee et al., 2024) and improve patient adherence 

when explanatory feedback accompanies automated advice 

(Patel et al., 2024). 
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This paper situates XAI at the intersection of technological 

capability and clinical necessity. We survey leading 

methodologies, examine their mathematical underpinnings, 

and assess evidence of their performance in real-world 

healthcare applications. By critically evaluating their 

strengths, limitations, and regulatory implications, we 

highlight both the opportunities and the unresolved challenges 

of embedding explainable AI within routine clinical practice. 

 

Literature Review 

The emergence of explainable artificial intelligence (XAI) 

stems from longstanding concerns about the opacity of 

complex machine-learning (ML) systems and their suitability 

for high-stakes decision-making. Historically, interpretability 

in predictive modelling was addressed through intrinsically 

transparent algorithms, such as linear regression, decision 

trees, and rule-based systems, that allow straightforward 

mapping from input variables to outcomes (Molnar, 2020). 

These models provide clear parameter estimates and human-

readable decision rules, making them naturally amenable to 

clinical audit and regulatory review. However, the dramatic 

performance gains of deep neural networks in tasks like image 

classification and sequential data analysis shifted attention 

toward powerful but opaque models (LeCun et al., 2015; 

Rajpurkar et al., 2017). As healthcare applications 

increasingly demand the accuracy of these complex systems, 

researchers have sought methods to “open the black box” 

without sacrificing predictive power. 

 

Foundations of Explainability 

XAI draws on a diverse set of disciplines to produce 

interpretable explanations. Statistical concepts underpin 

methods that quantify feature importance or sensitivity, while 

game theory informs allocation of contributions across feature 

subsets. Information theory and human–computer interaction 

also guide the design of explanations that are not merely 

mathematically rigorous but also cognitively meaningful to 

end-users such as clinicians (Doshi-Velez & Kim, 2017). 

Two landmark contributions remain central. Local 

Interpretable Model-Agnostic Explanations (LIME) 

introduced by Ribeiro et al. (2016) approximates the 

behaviour of a complex model 𝑓(𝑥) in the vicinity of an 

instance xxx with a simpler surrogate 𝑔(𝑥), typically a sparse 

linear model. By perturbing inputs around the point of interest 

and weighting them according to proximity, LIME provides 

an intuitive local explanation of how each feature influences 

the prediction. SHapley Additive exPlanations (SHAP), 

proposed by Lundberg and Lee (2017), extends cooperative 

game theory to model interpretation, distributing the output 

prediction among features based on their marginal 

contributions across all possible feature coalitions. SHAP 

values have become a de facto standard for global and local 

interpretability because of their solid axiomatic foundation 

and consistency guarantees. 

 

Model-Specific Approaches 

In parallel, model-specific techniques integrate explanation 

directly into neural architectures. Attention mechanisms, first 

described by Bahdanau et al. (2014) for neural machine 

translation, learn a set of weights highlighting input 

components most relevant to a prediction. This concept 

readily transfers to healthcare tasks such as clinical text 

mining or genomic sequence analysis, where it can reveal 

clinically significant words or motifs (Huang et al., 2019). 

Gradient-based visualisation methods such as Grad-CAM 

(Selvaraju et al., 2017) exploit back-propagated gradients to 

generate class-discriminative heatmaps over medical images, 

enabling radiologists to see which regions drive a model’s 

decision. These methods are valued for their ability to provide 

intuitive, visually anchored explanations without retraining 

the model. 

 

Healthcare-Specific Considerations 

Healthcare literature underscores that interpretability is not 

merely a technical preference but a clinical and ethical 

imperative. Holzinger et al. (2019) emphasise “causability”, 

the alignment between computational explanations and causal 

reasoning demanded in medicine, arguing that explanations 

must be comprehensible to domain experts, not only to data 

scientists. Amann et al. (2020) further highlight that legal and 

regulatory frameworks, including the European Union’s 

General Data Protection Regulation (GDPR), enshrine a 

“right to explanation”, obliging developers to provide 

meaningful insights into algorithmic decisions. 

Empirical studies increasingly show that XAI methods can 

enhance user trust and engagement. Kim et al. (2023) 

demonstrated that visual explanations via Grad-CAM 

increased radiologists’ confidence in AI-based chest X-ray 

diagnostics by approximately 30 %. Similarly, Lee et al. 

(2024) reported a significant improvement in clinicians’ 

acceptance of AI-driven EHR diagnostics when SHAP 

explanations accompanied model outputs. Beyond clinicians, 

patient outcomes also benefit: Patel et al. (2024) found that 

diabetes patients receiving AI-generated recommendations 

with accompanying explanations exhibited a 25 % increase in 

treatment adherence, underscoring the broader public-health 

implications of interpretability. 

 

Ongoing Debates and Challenges 

Despite these advances, a persistent debate concerns the 

trade-off between interpretability and predictive performance. 

Rudin (2019) argues that, for high-stakes domains like 

healthcare, the use of post-hoc explanations for inherently 

opaque models is insufficient, advocating instead for 

intrinsically interpretable models that can achieve competitive 

accuracy. Others counter that hybrid strategies, combining 

transparent components with deep networks, may offer a 

pragmatic path forward (Molnar, 2020). Additional 

challenges include the lack of universally accepted metrics for 

explanation quality, the computational burden of methods 

such as SHAP, and the difficulty of ensuring that explanations 

are not only technically accurate but also clinically 

meaningful. 

Collectively, the literature reveals a field in rapid evolution: 

one that balances mathematical rigour, computational 

feasibility, and the ethical mandate for transparency. As AI 

systems continue to penetrate clinical workflows, developing 

robust, standardised, and user-centred explanation methods 

remains a critical frontier for both research and practice. 

 

MATERIALS AND METHODS 

This study employs a structured narrative review enriched 

with formal mathematical exposition to examine explainable 

artificial intelligence (XAI) techniques in healthcare. The 

approach integrates conceptual analysis, mathematical 

formulation, and synthesis of empirical findings from peer-

reviewed studies published between 2023 and 2024. Our 

objective is to clarify the operational principles of prominent 

XAI methods and to evaluate their clinical impact in terms of 

(1) improvements in clinician trust, (2) comparative model 

performance, and (3) patient behavioural outcomes. 
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Methodological Framework 

Relevant literature was identified through searches of 

PubMed, IEEE Xplore, and ACM Digital Library using 

combinations of the keywords explainable AI, healthcare, 

LIME, SHAP, attention, Grad-CAM, and interpretability. 

Studies were included if they (i) applied an XAI technique to 

a healthcare domain, (ii) reported quantitative performance 

metrics, and (iii) described either clinician trust or patient 

outcomes. Results were synthesised narratively, with special 

attention to mathematical definitions of the methods 

reviewed. 

 

Taxonomy of XAI Techniques 

XAI approaches were categorised into model-agnostic and 

model-specific families to distinguish methods that can be 

applied to any predictive model from those tailored to 

particular architectures. 

 

RESULTS AND DISCUSSION 

This section synthesises empirical findings on the clinical 

impact of explainable artificial intelligence (XAI), focusing 

on clinician trust, model performance and patient behavioural 

outcomes. Evidence is drawn from peer-reviewed studies and 

large experimental datasets published between 2023 and 

2024. 

 

Model-Agnostic Methods 

These methods operate independently of the underlying 

predictive model 𝑓(𝑥), making them broadly applicable 

across classifiers and regressors. 

 

Local Interpretable Model-Agnostic Explanations (LIME) 

LIME constructs a simple surrogate model 𝑔(𝑥) (e.g., a 

sparse linear regressor) that locally approximates the complex 

black-box model 𝑓(𝑥) around a target instance 𝑥0. 

Given a set of perturbed samples 𝑍 = {𝑧1, … , 𝑧𝑚} and a 

locality kernel 𝜋𝑥0(𝑧) that down-weights distant points, 

LIME minimises a locality-weighted squared loss: 

ℒ(𝑓, 𝑔, 𝜋𝑥0) =∑𝜋𝑥0(𝑧)[𝑓(𝑧) − 𝑔(𝑧)]2

𝑧∈𝑍

 

subject to a complexity constraint 𝛺(𝑔) that encourages 

interpretability (e.g., sparsity in the coefficient vector). The 

explanation is the set of non-zero coefficients of 𝑔, which 

indicate the locally influential features (Bahdanau et al., 

2014). 

 

SHapley Additive exPlanations (SHAP) 

SHAP applies cooperative game theory to allocate the model 

output among input features. For a model 𝑓 with feature set 𝑁 

and a particular feature 𝑖 ∈ 𝑁, the Shapley value 𝜙𝑖 is: 

𝜙𝑖 = ∑
|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!
[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]

𝑆⊆𝑁 {𝑖}⁄

 

where 𝑓(𝑆) is the expected model output conditional on the 

subset SSS of features. This equation ensures three desirable 

properties, efficiency, symmetry, and additivity, which 

together yield a fair attribution of the prediction to each 

feature (Zhang et al., 2024).  

 

Model-Specific Methods 

These techniques leverage architectural properties of neural 

networks to derive explanations from within the model itself. 

 

Attention Mechanisms 

Originally developed for neural machine translation 

(Bahdanau et al., 2014), attention assigns learnable weights to 

input tokens, highlighting the elements most relevant to the 

model’s decision. 

For an input sequence {𝑥1, … , 𝑥𝑛} and hidden representations 

{ℎ1, … , ℎ𝑛}, attention scores 𝛼𝑖 are computed as 

𝑒𝑖 = 𝑣⊺ tanh(𝑊ℎ𝑖), 𝛼𝑖 =
𝑒𝑥𝑝(𝑒𝑖)

∑ 𝑒𝑥𝑝(𝑒𝑗)
𝑛
𝑗=1

 

where 𝑊 and 𝑣 are learnable parameters. The context vector 

𝑐 = ∑ 𝛼𝑖ℎ𝑖
𝑛
𝑖=1  represents a weighted summary of salient 

features. High 𝛼𝑖 values point to clinically important words, 

lab results, or genomic markers. 

 

Gradient-Weighted Class Activation Mapping (Grad-CAM) 

Grad-CAM generates a class-discriminative heatmap for a 

convolutional neural network (CNN) by exploiting gradients 

of the target class score 𝑦𝑐  with respect to the final 

convolutional feature maps 𝐴𝑘. The weight for feature map 𝑘 

is: 

𝛼𝑘
𝑐 =

1

𝑍
∑∑

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

𝑗𝑖

 

where 𝑍 is the number of spatial locations. The saliency map 

is then 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈 (∑𝛼𝑘

𝑐𝐴𝑘

𝑘

) 

which highlights image regions most influential to the class 

prediction, aiding radiologists in visually validating the 

model’s reasoning. 

 

Empirical Evidence 

Empirical synthesis focused on clinical studies that evaluated 

XAI methods in practice. Three key outcome dimensions 

guided our review: 

Clinician Trust: Measured through surveys or behavioural 

metrics capturing confidence in AI-assisted diagnoses (e.g., 

Kim et al., 2023). 

Model Performance Relative to Baseline: Comparison of 

accuracy, sensitivity, and computation time of XAI-enhanced 

models versus standard deep networks, such as in large-scale 

chest X-ray classification tasks (Zhang et al., 2024). 

Patient Behavioural Outcomes: Impact on patient adherence 

and satisfaction when AI recommendations are accompanied 

by explanations, exemplified by a 2024 diabetes management 

trial reporting a 25 % improvement in compliance (Patel et 

al., 2024). 

Key datasets included multi-institutional radiology image 

repositories (≈10,000 chest X-rays) and anonymised EHR 

diagnostic trials conducted in North America and East Asia 

between 2023 and 2024. 

 

Clinician Trust 

Integrating XAI into diagnostic workflows produced 

measurable gains in clinician confidence. In a controlled 

reader study involving 38 radiologists, Grad-CAM visual 

heatmaps were incorporated into a chest X-ray classification 

system. When compared with standard outputs, the presence 

of saliency maps increased mean self-reported confidence in 

AI-assisted diagnoses by 30 per cent (Kim et al., 2023). A 

complementary investigation of SHAP-based feature 

attributions in electronic health record (EHR) diagnostics 

reported a 25 per cent rise in clinician trust scores on a five-

point Likert scale relative to unannotated probability outputs 

(Lee et al., 2024). These results, summarised in Table 1, 

demonstrate that transparent case-specific explanations 

reduce the psychological barrier to relying on automated 

recommendations and support collaborative clinical decision-

making. 
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Table 1: Improvement in Clinician Trust when XAI Explanations Accompany AI-driven Decisions 

Application XAI Method Trust Increase (%) 

Radiology (chest X-ray) Grad-CAM 30 

EHR diagnostics SHAP 25 

 

Model Performance 

The trade-off between predictive accuracy, interpretability 

and computational efficiency was evaluated on a chest X-ray 

dataset of 10 000 images (Zhang et al., 2024). Accuracy is 

reported as mean classification performance across five 

disease categories, interpretability reflects structured clinician 

feedback, and computation time indicates average per-case 

explanation overhead. Results appear in Table 2. 

 

Table 2: Comparative Performance of XAI Methods on Chest X-ray Classification 

Method Accuracy (%) Interpretability Computation Time (s) 

Deep neural network (baseline) 92 Low 0.5 

SHAP 90 High 2.0 

LIME 89 High 1.8 

Grad-CAM 91 Medium 0.8 

 

The results show only marginal reductions in accuracy when 

explainability is introduced. SHAP and LIME maintained 

high predictive power while providing the greatest 

interpretability, though both incurred longer computation 

times, with SHAP averaging two seconds per case. Grad-

CAM achieved a balanced profile, maintaining 91 per cent 

accuracy and moderate interpretability with the lowest 

computational overhead of 0.8 seconds. 

 

Patient Outcomes 

Evidence from a 2024 randomised controlled trial of diabetes 

management indicates that explainability can also improve 

patient behaviour (Patel et al., 2024). Participants received 

AI-generated insulin dosage recommendations either with or 

without explanatory feedback. Treatment compliance 

increased by 25 per cent in the group receiving explanations. 

The relationship between explanation quality and compliance 

was quantified using a simple linear model 

𝐶 = 𝛽0 + 𝛽1𝐸 + 𝜀 

where 𝐶 represents the proportion of prescribed actions 

followed, 𝐸 is the explanation quality score on a five-point 

scale, and 𝜀 is the error term. The estimated coefficient 𝛽̂1 =
0.05 indicates that each one-point increase in perceived 

explanation quality corresponded to a further five-percentage-

point gain in adherence. The model achieved an 𝑅2 of 0.41, 

reflecting a moderate but clinically meaningful association. 

 

Discussion  

Across diverse healthcare contexts, explainable artificial 

intelligence has demonstrated clear benefits. Clinician trust 

improved by up to 30 per cent when AI predictions were 

accompanied by interpretable explanations. Model accuracy 

remained close to baseline deep-learning performance, with 

only slight reductions and manageable computational costs. 

Patient outcomes also improved, as illustrated by the 

significant increase in diabetes treatment compliance 

associated with higher-quality explanations. These findings 

confirm that integrating explainability into clinical AI 

systems strengthens both technical performance and the 

human–AI partnership essential for safe and ethical 

healthcare delivery. 

 

CONCLUSION 

Explainable artificial intelligence (XAI) stands at the 

intersection of technological sophistication and clinical 

necessity, offering a vital pathway for integrating advanced 

machine-learning models into routine healthcare. The 

evidence reviewed in this paper shows that XAI techniques, 

most notably SHapley Additive exPlanations (SHAP), Local 

Interpretable Model-Agnostic Explanations (LIME), attention 

mechanisms, and Gradient-weighted Class Activation 

Mapping (Grad-CAM), consistently improve transparency 

without materially eroding predictive power. Across a range 

of clinical applications, from radiology to electronic health 

record (EHR) analysis, these methods have been shown to 

raise clinician trust by as much as 30 per cent and to enhance 

patient adherence to treatment recommendations by a quarter, 

all while maintaining near–state-of-the-art accuracy. Such 

findings confirm that interpretability is not merely a desirable 

adjunct but a prerequisite for ethical and effective AI 

deployment in medicine. 

Despite these gains, substantial barriers continue to impede 

widespread adoption. Computational cost remains a 

prominent concern, particularly for algorithms such as SHAP 

whose complexity grows exponentially with the number of 

input features. Real-time clinical environments require 

explanations that are not only accurate but also generated with 

low latency, a challenge when dealing with high-dimensional 

medical data. A further difficulty lies in the absence of 

universally accepted metrics for explanation quality. Existing 

evaluations rely heavily on qualitative clinician feedback, 

which, while valuable, lacks the standardisation needed for 

regulatory oversight and cross-study comparison. Regulatory 

expectations themselves are in flux. Frameworks such as the 

European Union’s General Data Protection Regulation 

mandate a “right to explanation”, yet they stop short of 

defining what constitutes a sufficient explanation, leaving 

developers uncertain about compliance thresholds and 

exposing healthcare organisations to legal ambiguity. 

Future progress will depend on a multi-pronged strategy. 

First, hybrid modelling approaches that embed interpretability 

within the architecture, such as combining transparent 

components with deep neural networks, offer a promising 

route to balance accuracy and clarity. Second, the 

development of robust evaluation frameworks co-designed 

with clinicians, patients, and regulators will be essential to 

create metrics that capture both mathematical fidelity and 

clinical relevance. Third, education and capacity building 

must not be overlooked: healthcare professionals require 

training to critically appraise AI outputs and to communicate 

algorithmic reasoning to patients in plain language. Without 

such efforts, even the most technically sophisticated 

explanations may fail to achieve their ultimate goal of 

informed and trustworthy clinical decision-making. 

In sum, XAI provides a critical bridge between the predictive 

strength of contemporary machine learning and the 

transparency demanded by medical ethics, patient rights, and 

regulatory bodies. Sustained collaboration among computer 
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scientists, clinicians, policymakers, and educators will be 

necessary to overcome current obstacles and to ensure that 

explainable AI realises its full potential as a transformative 

force in healthcare. 
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